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We discuss, for the evolution of double-parton densities, a first step beyond the double
DGLAP approximation.

1 Introduction

In recent years multiple interactions have received increasing interest, both for event generators
and for precision calculations of inclusive cross sections[2, 3, 4, 5, 6, 7, 8, 9]. As an example,
the double inclusive cross section in the standard collinear approximation

dσ =
∑

i1i2

∫
dx1dx2fi1(x1, µ)dσ̂i1i2→2 jet(x1, x2, µ;p1, Y1,p2, Y2)fi2(x2, µ) (1)

receives corrections from the two chain configuration (see fig.1, left)):

dσDP =
m

σeff

∑

i1,j1,i2,j2

∫
dx1dy1dx2dy2Hi1j1(x1, y1, µa, µb)

dσ̂i1i2→ jet(x1, y1, µa;p1, Y1)dσ̂j1j2→jet(y2, y2, µb;p2, Y2)Hi2j2(x2, y2, µa, µb) (2)

In a popular approximation the double parton density is the product of two single parton
densities (double DGLAP approximation):

Hij(x, y, µaµb) = fi(x, µa)fj(y, µb) (3)

where each parton density obeys the standard DGLAP evolution equations. On general grounds,
however, one expects the evolution of multiparton densities to be more complicated: there
should be correlations between the two densities and there are transitions between parton
states with different parton numbers. In this contribution we want to make a few comments on
aspects of multiparton evolution which go beyond this ’double DGLAP’ approximation.

2 General aspects of evolution equations

In the context of deep inelastic electron proton scattering and HERA measurements it has
become clear that evolution equations can be formulated either in terms of the momentum
scale (DGLAP) or in rapidity (BFKL). In the former case, evolution equations can be classified
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Figure 1: illustration of double and single chain cross sections.

in powers of 1/Q2 (twist): the DGLAP evolution equations belong to the leading twist, and they
determine the scale dependence of (single) parton densities. Splitting functions are now known
in NLLO accuracy. Higher twist evolution equations, in the context of deep inelastic scattering,
have been formulated and investigated in [10]. As an example, twist 4 introduces t-channels
with four gluons, and their evolution shares many features with double parton densities. In
leading order, the evolution of n-gluon states is described by the sum over pairwise 2 → 2
interactions, the nonforward DGLAP splitting functions. Mixing between different twist 4
operators leads to transitions from two to four-parton states. In NLO, the evolution equations
will contain also three body interactions. Evolution in rapidity, on the other hand, starts
from the BFKL evolution equations and describes BFKL Green’s functions of reggeized gluons
(sometimes also referred to as unintegrated smallx-gluon densities). Their evolution kernels
(presently known in NLO accuracy) are different from the DGLAP kernels, but there exists a
common region of validity. The generalization of the BFKL equation to multi-gluon Green’s
functions (known as the BKP equations [12]) is the analogue of the higher twist evolution, and
the evolution, in leading order, is given by the sum of pairwise two-body interactions, described
by the nonforward BFKL kernels. Transitions between different gluon states are described by
momentum dependent transition kernels, e.g. the 2 → 4 transition vertex (triple Pomeron
vertex). We illustrate the situation in Fig.2.

As mentioned before, the notion of higher twist has been introduced and discussed mainly
in the context of deep inelastic scattering where the twist expansion is a power series expansion
in 1/Q2. When searching for an analogous power suppression of a double parton cross section
where the large momentum scale is set, for example, by the transverse momenta of the produced
jets such a power counting has to be applied with care: there exist regions of momenta where
the contributions from double parton scattering are of the same order as those due to single
parton scattering; it is only after the integration of the outgoing momenta where a higher
twist suppression holds. In contrast to the single parton density cross section no factorization
theorem exists for the double scattering formula.
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Figure 2: Building blocks of the evolution of double parton densities. The diagrams illustrate
both the higher twist evolution and rapidity evolution.
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From studies of deep inelastic scattering we know that, at small x, the rapidity evolution
starts to compete with the momentum scale evolution equations. Furthermore, the logarithms
in 1/x start to compensate the higher twist suppression (multi-ladder exchanges), and the twist-
expansion in powers 1/Q2 becomes useless. The same small-x enhancement is at work also in
the double parton cross section: this is why rapidity evolution (BFKL and BKP evolution
equations) become increasingly important. This framework also allows to address the question
of (soft) rescattering corrections to the double parton formula: from the AGK[11] rules we know
that exchanges across the production vertices cancel, not only for single inclusive cross sections
but also for double (and higher) inclusive cross sections. A prerequisite for the AGK rules to
be valid is the symmetry of the coupling of the four gluons to the proton (Fig.2): this coupling
has to be invariant under the exchange of gluons lines (color and momenta), and independent
of the position of the cutting line.

3 Recombination effects in the two-chain evolution

As we have already indicated (and illustrated in Fig.2), the evolution of double parton densities
contains the sum over pairwise 2→ 2 interactions (ignoring, for the moment, transitions from
two to four gluon states). In the factorization approximation (’double DGLAP’), when viewed
from the t-channel, two color singlet ladders are formed, and each ladder, evaluated at zero mo-
mentum transfer (Fig.3a) obeys the standard DGLAP evolution equation. This approximation
can be justified: the color singlet two gluon system has, at least at small x, the largest anoma-
lous dimension, and from the initial condition at the proton, there is a strong damping which
suppresses large momentum transfer across the ladder. Nevertheless, it is an approximation,
and there are corrections to it.

In the following we will consider a special set of corrections which we name ’recombinations’.
Counting powers of the strong coupling and powers of large logarithms, this is the first correction
to the double DGLAP approximation. A pair of such recombinations is illustrated in Fig.3b:
starting from the lower proton we have, initially, two separate ladders, formed by gluons ’1’
and ’4 and by gluons ’2’ and ’3’. After a few steps, there is a recombinations of gluons: gluon
’1’ goes with gluon ’3’, and gluon ’2’ with gluon ’4’. The first rungs after this rearrangement
define the ’recombination vertex’. It is important to note that, in the double logarithmic
approximation (leading power in ln 1/x and ln k2⊥), this recombination is of the same order as
the two independent ladders in Fig.3a, i.e. the recombination does not lose any logarithm.
There is, however, a color suppression factor of the form

1

N2 − 1
(4)

In order to become a non-negligible effect, this recombination requires a subtle interplay of
momentum and rapidity dependence.

In the following we will give a brief sketch of the argument.
For the further analysis it is important to keep in mind that there are three transverse loop

momenta (in Fig. 3c denoted by l′, q, and l). Beginning with the analysis of transverse mo-
mentum integrals, one looks for configurations where transverse momenta are strongly ordered,
both above and below the two production vertices. Smallest momenta are near the proton,
largest near the production vertices. A straightforward analysis leads to the observation that
the dependence on the loop momentum q resides near the two recombination vertices above
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Figure 3: (a) double DGLAP evolution, (b ) two recombinations, (c) and a schematic redrawing
of the recombination in (b): rungs in (b) are replaced by BFKL amplitudes.

and below the production vertices, and its integral diverges in the infrared region:

∫
d2q

(q2)2
. (5)

As a result, the dominant values are small, the transverse logarithms of the ladders between the
recombination vertices and the protons are destroyed, and the recombination vertices become
parts of the nonperturbative protons. The situation changes if we allow for small values of x
and include into our analysis the rapidity dependence of the ladders. For this it is convenient
to replace the rungs in Fig.3b by BFKL amplitudes, as shown in Fig.3c. The main observation
is that, once rapidity intervals may become large, sizable anomalous dimensions will affect
the momentum integrals, in particular the integration over q. The analysis starts from the
expression of Fig.3c:

dσ

dY1dY2d2p1d
2p2

∼ 1

R2
c

1

R2
c

1

(p2
1)2

1

(p2
2)2

∫
dµ′

2πi

∫
dµ

2πi

∫
dµ′1
2πi

∫
dµ1

2πi

∫
dµ′2
2πi

∫
dµ2

2πi
·

∫
dY

∫
dY ′

∫
d2q

q4

[( q2

Q2
0

)µ′

e(Ytot−Y ′)χ(µ′)
]2
·

[(p2
1

q2

)µ′
1

e(Y
′−Y1)χ(µ

′
1)
][(p2

1

q2

)µ1

e(Y1−Y )χ(µ1)
][(p2

2

q2

)µ′
2

e(Y
′−Y2)χ(µ

′
2)
][(p2

2

q2

)µ2

e(Y2−Y )χ(µ2)
]
·

·
[( q2

Q2
0

)µ
eY χ(µ)

]2
. (6)

Here Ytot denotes the total rapidity, and Y ′ and Y are the rapidities of the recombination
vertices above and below the production vertices, resp.. For an analysis of this formula one
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searches for saddle points of the integrations. Details are described in [1] and in this contribution
we only discuss a few results.

An interesting possibility is to put the recombination vertices, in rapidity, as close as possible
to the high ET dijet production matrix elements. In this case there is no BFKL or DGLAP
evolution in the intervals between the produced pairs of jets and the recombination vertices.
That is, in the centre of Fig.3, we simply delete the four ’BFKL blobs’ nearest to the produced
jet pairs. Correspondingly, in (6) we eliminate the third line, together with the integrations
over µ1, µ2, µ

′
1, µ
′
2. The rapidities Y, Y ′ are close to Yi, and the q2 integral takes the form

∫
d ln q2

q2
q4(µs+µ

′
s) , (7)

where the saddle point values, µs and µ′s, follow from the conditions:

0 = χ′(µs)Y + ln
q2

Q2
0

(8)

and

0 = χ′(µ′s)(Ytot − Y ′) + ln
q2

Q2
0

. (9)

Their approximate value are values are:

µs ≈
1

2
− 1

χ′′( 1
2 )

ln q2

Q2
0

Y
, (10)

i.e. the integral over q2 receives its main contribution from q2 close to min{p21, p22}.
Let us consider also a more realistic situation with Y1 = Y2 but p2 < p1. Recall that the

true argument of the BFKL amplitude is not rapidity but the momentum fraction x, that is
actually we have to write ln(1/xi) instead of Yi. When p2 � p1 for the same rapidities Y1 = Y2
we find, in the right ladder, the momentum fraction x2 ∼ 2p2/

√
s << x1 ∼ 2p1/

√
s. In other

words, in this configuration we may put, in Fig.3c, the recombination vertex just into the cell
nearest to the left dijet. But then there will be a large lnx (and may be ln q2) interval for
the evolution of the right ladders (between the dijets on the rhs and the two recombination
vertices). In other words in Fig.3c. we delete only the two ’BFKL blobs’ on the lhs below and
above the dijet production. Assuming that, in (6), the total rapidity interval Ytot is very large,
we may perform first the rapidity integral

∫
dY exp[−Y (χ(µ2)− 2χ(µ))] =

1

χ(µ2)− 2χ(µ)
(11)

where for the BFKL blobs on the lhs we have set χ(µ1) = 0, and for µ we put its asymptotic value
µ = 1/2. Now we close the countor of the µ2 integration around the pole χ(µ2) − 2χ(µ) = 0:
this leads to µ2 ' 0.18. The same result is obtained for µ′2. Finally, the q2 integral takes the
form ∫ p22

d ln q2q2(1−µ2−µ′
2), (12)

and the major contribution comes from the domain close to upper limit q2 ∼ p22.

6 MPI@LHC 2011

Jochen Bartels

156 MPI@LHC 2011



A closer look reveals still another detail. In the region of interest, for example in a 14
TeV pp-collision at the LHC, we observe in the central region the dijet with p1 ∼ 20GeV ,
corresponding to x ∼ 2p1/

√
s ∼ 0.003. For such x-values, the anomalous dimension observed

at HERA is not so large. For x < 0.01 the behaviour of the structure function F2(x, q2) can be
parametrized as

F2 = c(q2)x−λ (13)

with c(q2) ' const and λ = (0.048 ± 0.004) · lnQ2/Λ2 [16]. This means that the effective
anomalous dimension µeff = λ ln(1/x) ∼ 0.28 for x = 3 · 10−3. This value is still large enough
to provide the convergence of the q2 integral (7) in the large q2 domain for the case considered
above where both recombination vertices are just near the dijet production cell. However it is
not evident that the parametrization (13) reflects the behaviour of a single ladder. At not large
q2 the experimentally measured F2 already includes some absorptive effects which reduce the
growth of F2 with x decreasing and thus leads to a lower value of λ in comparison with a single
ladder contribution. In other words the true value of µeff which corresponds to a single lad-
der may be even larger, pushing the characteristic values of q2 closer to the (lower) hard scale p22.

4 Generalizations

So far we have discussed the effect of two recombinations inside a two-chain contribution: one
recombination on each side of the produced jet pairs. Let us first comment on the case where
we have no second recombination vertex above the jet pairs: as far as only one recombination
vertex is concerned, the integration over q is logarithmic. However, q runs also through both
upper ladders and defines the low momentum scale Q2

0 where the evolution starts: a large
value of q therefore kills the evolution in the upper ladders, whereas a low value prevents the
evolution in the lower ladders. Therefore, a single recombination vertex is suppressed.

Next a comment on the color suppression factor (4). This suppression applies to the case
when, as illustrated in Fig.2, there is evolution above and below the recombination vertex.
As we have discussed before, in a preferred situation we have little or no evolution between
the recombination vertices and the dijet production vertices. In this case there is no need
to reconnect, between the two recombination vertices, the four t-channel gluon lines to color
singlet pairs. As result, the color suppression becomes much weaker.

Next we mention another important possibility. Besides the recombination illustrated in
Fig.3 there exists another configuration to which our discussion applies. We show this in Fig.4.
Below the lower (or above the upper) recombination vertex, color singlet gluon ladders to the
right and to the left of the cutting line allow for final states with rapidity gaps . Such config-
urations are absent in the double DGLAP approximation. Applying our previous discussion,
we conclude that the momentum scale at the upper end of the lower rapidity gap, q2, will be
above Q2

0 but not too close to the jet momenta p21 = p22: this allows for ’semihard’ diffraction
and is in qualitative agreement with inclusive diffraction seen at HERA.

Finally we consider the case of more than two chains, say three chains with three produced
pairs of jets. In this case a pair of two recombination vertices can be attributed to any pair of

chains, i.e. we have three possibilities. Similarly, for n chains we have n(n−1)
2 possiblities: these

counting factors can easily overcome the color suppression factor in (4). As an example, for
n = 4, the overall counting factor is already 3/4, and it exceeds unity for n ≥ 5. This counting
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Figure 4: A recombination of two ladders which allows for diffractive states

argument is particularly important for event generators where the number of participating
chains may become quite sizable.

The recombination considered is this contribution is very closely related to a recent expla-
nation [13, 14] of the ridge effect observed in pp collisions at the LHC [15].

5 Conclusions

We view this analysis only as first step of investigating the evolution of double parton densities
beyond the factorizing approximation. Clearly our analysis has to be made quantitative. Also,
it is necessary to go beyond the double leading-log approximation. Work along these lines is in
progress.
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