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We investigate several ingredients for a theory of multiple hard scattering in hadron-hadron
collisions. Issues discussed include the space-time structure of multiple interactions, their
power behavior, Sudakov logarithms, and the possibility to constrain multiparton distri-
butions by connecting them with generalized parton distributions.

1 Introduction

The phenomenology of multiparton interactions relies on models that are physically intuitive
but involve significant simplifications. So far a systematic description of multiple interactions
in QCD remains elusive. Here we report on some steps towards this goal. We will see to which
extent the cross section formulae currently used to calculate multiple-scattering processes can
be justified in QCD and to which extent they need to be completed.

We consider the case of two hard scatters at parton level. For definiteness we analyze the
production of two electroweak gauge bosons with large invariant mass (γ∗, Z, or W ). Since
the main interest in multiparton interactions is driven by the need to understand details of
the final state, we keep the transverse momenta of the produced gauge bosons differential,
rather than integrating over them. For the production of a single boson there is a powerful
theoretical description based on transverse-momentum dependent parton densities [1], which
we aim to extend to the case of multiparton interactions, starting from first-principle QCD.
Integrating over transverse momenta gives the more familiar formulation in terms of collinear
parton distributions.

The following discussion is a short summary of [2]. Detailed derivations of our results and
further discussion are given in [3].

2 Tree-level analysis

We begin with the cross section formula for double parton scattering at tree level. For definite-
ness we take two colliding protons and consider the case where the two partons coming from
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Figure 1: Graphs for the production of two gauge bosons by double (a) or single (b) hard
scattering. The dotted line denotes the final-state cut. The decays of the gauge bosons into
fermion-antifermion pairs are not shown for simplicity.

one of the protons are quarks. The corresponding graph is shown in Fig. 1a, which also specifies
our assignment of momentum variables.

We use light-cone coordinates v± = (v0± v3)/
√

2 and v = (v1, v2) for any four-vector v and
choose a reference frame where p moves fast to the right and p̄ fast to the left, with transverse
momenta p = p̄ = 0. We consider kinematics where the invariant masses of the bosons are
large and where their transverse momenta are much smaller, i.e. we require qT � Q with
q2

1 ∼ q2
2 ∼ q2

T and q2
1 ∼ q2

2 ∼ Q2.
The two-quark distributions required to describe graph 1a read

Fa1,a2(x1, x2, z1, z2,y) = 2p+

∫
dy−

dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

〈
p
∣∣Oa2(0, z2)Oa1(y, z1)

∣∣p
〉

(1)

with bilinear operators

Oa(y, z) = q̄(y − 1
2z) Γa q(y + 1

2z)
∣∣∣
z+=y+=0

. (2)

The transverse positions zi and y are Fourier conjugate to the transverse momenta ki and r
in figure 1a. Furthermore, a = q,∆q, δq labels the quark polarization and

Γq = 1
2γ

+ , Γ∆q = 1
2γ

+γ5 , Γjδq = 1
2 iσ

j+γ5 (3)

with j = 1, 2. The operators in (2) are well-known from the definitions of single-parton den-
sities for unpolarized, longitudinally polarized and transversely polarized quarks, see e.g. [4].
Analogous definitions hold for antiquarks and for a left-moving hadron. The cross section can
finally be written as

dσ |1a∏2
i=1 dxi dx̄i d

2qi
=

1

C

∑

a1,a2=q,∆q,δq
ā1,ā2=q̄,∆q̄,δq̄

[ 2∏

i=1

σ̂i,aiāi(q
2
i )

∫
d2zi
(2π)2

e−iziqi

]

×
∫
d2y Fa1,a2(xi, zi,y) Fā1,ā2(x̄i, zi,y) (4)
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where here and in the following we write F (xi, zi,y) instead of F (x1, x2, z1, z2,y) for brevity.
The σ̂i,aā are the partonic cross sections and it is understood that for each ai = δq both
Fa1,a2 and σ̂i,aā carry extra indices j associated with the direction of the transverse quark
polarization. Corresponding remarks hold for āi = δq̄. C is a combinatorial factor related to
identical particles in the final state.

Integration of the cross section over q1 and q2 leads to collinear (i.e. transverse-momentum
integrated) two-parton densities

Fa1,a2(xi,y) = Fa1,a2(xi, zi = 0,y) . (5)

The corresponding cross section formula is the basis for the phenomenology of multiple inter-
actions and has been used for a long time. It was derived in [5] for scalar partons and in [6] for
quarks.

3 Power behavior

A pair of electroweak gauge bosons can be produced by two hard scatters, but also by a single
one. An example graph is shown in figure 1b, and the corresponding cross section formula reads

dσ |1b∏2
i=1 dxi dx̄i d

2qi
=

dσ̂

dx1 dx̄1 d2q1

∫
d2z

(2π)2
e−iz(q1+q2)fq(x, z)fq̄(x̄, z) , (6)

where x = x1 +x2, x̄ = x̄1 + x̄2, σ̂ is the cross section for qq̄ annihilation into two gauge bosons
and fq(x, z) is the analog of Fq,q(xi, zi, y) for a single quark.

Dimensional analysis of (4) and (6) reveals that

dσ∏2
i=1 dxi dx̄i d

2qi
∼ 1

Q4Λ2
(7)

for both the single and double hard-scattering mechanisms. Here the small scale Λ2 repre-
sents q2

T or the scale of non-perturbative interactions, whichever is larger. We thus obtain an
important result: multiple hard scattering is not power suppressed in cross sections that are
sufficiently differential in transverse momenta.

The situation changes when one integrates over q1 and q2, because single hard-scattering
populates a larger phase space. In single hard-scattering, only the sum q1 + q2 is restricted to
be of order Λ, while the individual momenta can be as large as the hard scale Q. In contrast,
both boson transverse momenta are restricted to be of order Λ in double hard-scattering. Thus
power counting yields

dσ |1a∏2
i=1 dxi dx̄i

∼ Λ2

Q4
,

dσ |1b∏2
i=1 dxi dx̄i

∼ 1

Q2
. (8)

In the transverse-momentum integrated cross section multiple hard-scattering is thus power
suppressed. This is in fact required for the validity of the usual collinear factorization formulae,
which describe only the single hard-scattering contribution.
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Figure 2: Visualization of the cross section formula (11) when q1 and q2 are integrated over.

4 Impact parameter

The distributions F (xi, zi,y) depend on spatial transverse coordinates for the quarks but still
refer to a proton with definite (zero) transverse momentum. A representation purely in im-
pact parameter space can be obtained using the methods of [7, 8, 9], where impact parameter
densities for a single parton are constructed from generalized parton distributions. To this
end we first define non-forward distributions F (xi, zi,y; ∆) with proton states 〈p+, 1

2∆| and
|p+,− 1

2∆〉 with different transverse momenta. Now we introduce the wave packet

|p+, b〉 =

∫
d2p

(2π)2
e−ibp |p+,p〉 , (9)

which describes a proton with definite transverse position b, and the Fourier transform of
F (xi, zi,y; ∆),

Fa1,a2
(
xi, zi,y; b

)
=

∫
d2∆

(2π)2
e−ib∆Fa1,a2

(
xi, zi,y; ∆

)
. (10)

Integrating F (xi, zi,y; b) over b one recovers the distributions F (xi, zi,y), so that the cross
section can be cast into the form

dσ |1a∏2
i=1 dxi dx̄i d

2qi
=

1

C

∑

a1,a2=q,∆q,δq
ā1,ā2=q̄,∆q̄,δq̄

[ 2∏

i=1

σ̂i,aiāi(q
2
i )

∫
d2zi
(2π)2

e−iziqi

] ∫
d2y d2b d2b̄

× Fa1,a2(xi, zi,y; b) Fā1,ā2(x̄i, zi,y; b̄) , (11)

which has a simple geometric interpretation in impact parameter space. Taking the average of
transverse positions in the amplitude and its conjugate, one identifies y as the average distance
between the two scattering partons, as can be seen from (2). Likewise, b is the average distance
between parton 2 and the right-moving proton, and b̄ is the average distance between parton 2
and the left-moving proton. This is illustrated in Fig. 2 for the case where the cross section is
integrated over qi, so that zi = 0 and the positions in the amplitude and its conjugate coincide.

5 Beyond leading order

Our discussion so far has been concerned with tree graphs as in Fig. 1. At this level, our results
can readily be generalized to other hard-scattering processes, in particular to jet production
with the well-known subprocesses qq → qq, qg → qg, etc.
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Figure 3: Example graph with a collinear gluon lc and a soft gluon ls.

A proper factorization formula in QCD must of course include corrections to the tree-level
cross section, and in particular take care of additional gluon exchange. In [3] we argue that the
factorization proof for Drell-Yan production can to a large part be extended to double hard-
scattering processes producing colorless states such as electroweak gauge bosons. We restrict
ourselves to such processes from now on.

There are two types of additional gluon exchange that are not power suppressed by the
large scale and hence need to be taken into account systematically. The first type concerns
gluons which emerge from the subgraph representing the partons in the right-moving proton
and which attach to a hard-scattering subgraph, see Fig. 3. To leading-power accuracy, the
effect of these gluons can be represented by Wilson lines that appear in the operators defining
parton distributions and make them gauge invariant. For gauge boson pair production, each
quark or antiquark field is to be multiplied by a Wilson line according to

qj(z)→ [W (z, v)]jk qk(z) , q̄j(z)→ q̄k(z) [W †(z, v)]kj (12)

with

W (z, v) = P exp

[
ig

∫ ∞

0

dλ vAa(z − λv) ta
]
, (13)

where j and k are color indices, P denotes path ordering, and the sign convention for the
coupling g is such that the covariant derivative reads Dµ = ∂µ + igAµ,a ta.

In order to avoid rapidity divergences in the parton distributions, we tilt v away from
the light-cone [1]. This results in an additional parameter ζ2 = (2pv)2/|v2| in the parton
distributions for proton p. Their ζ dependence is connected with Sudakov logarithms and will
be discussed in Section 7. As ζ is a measure of the plus-momentum of the proton [10], an
adequate choice of ζ in cross section formulae is the hard scale Q.

The second type of unsuppressed gluon exchange is between the right- and left-moving
partons as shown in Fig. 3, provided the gluons are soft and thus do not take partons far off
shell. In processes with small observed transverse momenta in the final state, the effects of
these gluons do not cancel. Provided that gluons in the Glauber region give no net contribution
(which we currently cannot show but have to assume), soft gluon effects can be described by
a so-called soft factor, which is defined in terms of vacuum expectation values of Wilson lines.
Proper care needs to be taken to prevent double counting, because the Wilson lines W (z, v) in
the parton distributions include soft gluon momenta as well [1].
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Figure 4: Illustration of the approximation (16) of a two-parton distribution in terms of single-
parton distributions. Implicit in the figure is the representation of these distributions as squares
of light-cone wave functions in the proton.

6 Connection with generalized parton distributions

In order to obtain a representation of the multiparton distributions in terms of GPDs, we insert
a complete set of intermediate states |X〉〈X| between the operators Oa2 and Oa1 in the two-
parton distributions in impact parameter space. This gives a product of single-parton operators
sandwiched between a proton state and X. If we assume that the ground state dominates in the
sum over all X and take the intermediate proton states in the impact parameter representation
(9), we obtain a representation

Fa1,a2(xi, zi,y; b) ≈ fa2(x2, z2; b + 1
2x1z1)fa1(x1, z1; b + y − 1

2x2z2) (14)

in terms of single-quark distributions

fa(x, z; b) =

∫
d2∆

(2π)2
e−ib∆

∫
dz−

2π
eixz

−p+
〈
p+, 1

2∆
∣∣Oa(0, z)

∣∣p+,− 1
2∆
〉

(15)

in impact parameter space.
At zi = 0 the relation (14) involves only collinear distributions. Integrating over b we get

Fa1,a2(xi,y) ≈
∫
d2b fa2(x2; b) fa1(x1; b + y) , (16)

which has a straightforward physical interpretation as sketched in Fig. 4. In different guises,
this relation is at the basis of most phenomenological studies and has long been used in the
literature, see e.g. [11, 12, 13] and [14, 15].

We emphasize that the relations (14) and (16) are obtained by restricting a sum over all
intermediate states to a single proton in a selected helicity state. We do not have a justification
or a strong physical motivation for this restriction, other than stating a posteriori that it
is tantamount to neglecting any correlation between both partons in the proton. It seems
plausible to assume that this is a reasonable first approximation, at least in a certain region of
variables, but one should not expect such an approximation to be very precise.

7 Sudakov logarithms

As is well known, transverse momenta qi which are much smaller than the hard scale Q of
a process give rise to Sudakov logarithms in the cross section. These logarithms must be
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resummed to all orders in perturbation theory, which for single gauge boson production can
be done using the Collins-Soper-Sterman formalism [16]. We extended this formalism to gauge
boson pair production in [3] and sketch the main results of our analysis in the following.

So far we have glossed over the color structure of double parton distributions. For two
quarks one has distributions 1F and 8F , which describe the cases where the two quark lines
with momenta k1− r/2 and k1 + r/2 in graph 1a are coupled to a color singlet or a color octet,
respectively. In the cross section formulae (4) and (11) one should replace FF by 1F 1F + 8F 8F ,
with each σ̂i including a color factor 1/3. The relations (14) and (16) hold for 1F .

The dependence of a two-quark distribution on the rapidity parameter ζ defined in Section 5
is governed by the differential equation

d

d log ζ

(1F
8F

)
=
[
G(x1ζ, µ) +G(x2ζ, µ) +K(z1, µ) +K(z2, µ)

](1F
8F

)
+ M(z1, z2,y)

(1F
8F

)
,

(17)

where 1F and 8F depend on xi, zi, y and ζ. They also depend on a renormalization scale µ,
but we need not discuss this dependence here. The kernels G and K in (17) already appear
in the Collins-Soper equation [10] for single-quark distributions. The matrix M mixes color
singlet and color octet distributions and is µ independent, whereas the µ dependence of G and
K is given by a renormalization group equation

γK
(
αs(µ)

)
= −dK(z, µ)

d logµ
=
dG(xζ, µ)

d logµ
(18)

and thus cancels in G+K. Both K and M are due to soft gluon exchange and can be defined
as vacuum matrix elements of Wilson line operators, similar to those discussed in Section 5.
They can only be calculated perturbatively if the transverse distances on which they depend
are sufficiently small.

The general solution of (17) can be written as
(1F (xi, zi,y; ζ)

8F (xi, zi,y; ζ)

)
= e−S(x1ζ,z1,z2)−S(x2 ζ,z1,z2)eLM(z1,z2,y)

(1Fµ0(xi, zi,y)
8Fµ0(xi, zi,y)

)
(19)

with

S(xζ,z1, z2) = − K(z1, µ0) +K(z2, µ0)

2
log

xζ

µ0
+

∫ xζ

µ0

dµ

µ

[
γK
(
αs(µ)

)
log

xζ

µ
−G(µ, µ)

]

(20)

and L = log(
√
x1x2 ζ/µ0). The scale µ0 specifies the initial condition of the differential equation

(17), with a natural choice being µ0 ∝ 1
/√
|z1||z2|.

The leading double logarithms of ζ/µ0 in (19) come from the second term in (20), whereas
terms involving K and M only contain single logarithms. The Sudakov exponent S also appears
in the solution of the Collins-Soper equation for single-quark distributions [10],

f(x, z; ζ) = e−S(xζ,z,z) fµ0(x, z) . (21)

We thus obtain the important result that to double logarithmic accuracy the Sudakov factor
for a multiparton distribution is the product of the Sudakov factors for single parton densities,
both for color singlet and color octet distributions. A non-trivial cross talk between all partons,
and in particular a mixing between color singlet and octet distributions occurs, however, at the
level of single logarithms, which are known to be important for phenomenology.
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8 Conclusions

We have studied several aspects of multiparton interactions in hadron-hadron collisions. Our
theoretical framework is hard-scattering factorization, which requires a large virtuality or mo-
mentum transfer in each partonic scattering process but is valid in the full range of parton
momentum fractions, i.e. not limited to small x.

The basic cross section formula for multiple interactions can be derived at tree level using
standard hard-scattering approximations and has an intuitive geometrical interpretation in
impact parameter space. We have shown that it can be formulated at the level of transverse-
momentum dependent multiparton distributions, which permits a description of the transverse
momenta of the particles produced in the hard scattering. This is particularly important
because it is in transverse-momentum dependent cross sections that multiparton interactions
are not power suppressed compared with single hard scattering.

To develop a reliable phenomenology, one needs information about the size and kinematic
dependences of two-parton distributions. One can relate them to generalized parton distribu-
tions for single partons, which are experimentally accessible in exclusive scattering processes,
but this requires an approximation whose reliability we cannot quantify.

To go from tree level to genuine factorization formulae, one must be able to sum certain
types of collinear and soft gluon exchanges into Wilson lines. We argue in [3] that for double-
scattering processes producing color-singlet particles this can be achieved using the methods
that have been successfully applied to single Drell-Yan production [1, 10, 17, 18]. This also
permits the resummation of Sudakov logarithms, with important results sketched in Section 7.
The production of two electroweak gauge bosons thus emerges as a channel where the current
perspectives for developing the theory look very good, and where different aspects of multiple
interactions can hopefully be explored experimentally at LHC.
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[11] T. Sjöstrand, M. van Zijl, “Multiple Parton-Parton Interactions in an Impact Parameter Picture,” Phys.
Lett. B188 (1987) 149;

[12] L. Durand, H. Pi, “QCD and Rising Total Cross-Sections,” Phys. Rev. Lett. 58 (1987) 303;

8 MPI@LHC 2011

Markus Diehl, Daniel Ostermeier, Andreas Schäfer
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