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In this talk we consider revised formulas which operate with the modified collinear two-
parton distributions extracted from deep inelastic scattering to describe the inclusive cross
section of a double parton scattering in a hadron collision. The related phenomenological
effects are discussed.

1 Introduction and customary formalism

Now it has become clear that multiple parton interactions play an important role in high energy
hadronic collisions and are one of the most common, yet poorly understood [1], phenomenon at
the LHC. Experimental evidence for double hard scattering has been found in the production
of multijets[2, 3, 4] and of single photons associated with three jets [5, 6]. The theoretical
investigation of multiple parton interactions has a long history and has experienced a renewed
interest in more recent times (see, for instance, [1] and references therein), driven by the need
to understand the hadronic activity at the LHC.

Nevertheless, the phenomenology of multiple parton interactions relies on the models which
are essentially intuitive and involve substantial simplifying assumptions. Therefore, it is ex-
tremely desirable to combine theoretical efforts in order to achieve a better description of
multiple interactions, in particular, double scattering, which is very likely to be an important
multiple scattering mode at the LHC. In this talk we consider some steps towards this purpose
basing on our previous work [7]. The cross section formulas currently used to calculate the dou-
ble scattering processes are revised basing on the modified collinear two-parton distributions
extracted from deep inelastic scattering (DIS).

Using only the assumption of factorization of the two hard parton processes A and B, the
inclusive cross section of a double parton scattering process in a hadron collision may be written
in the following form

σD(A,B) =
m

2

∑

i,j,k,l

∫
Γij(x1, x2;b1,b2;Q2

1, Q
2
2)× σ̂Aik(x1, x

′
1, Q

2
1)σ̂Bjl(x2, x

′
2, Q

2
2)

×Γkl(x
′
1, x

′
2;b1 − b,b2 − b;Q2

1, Q
2
2)dx1dx2dx

′
1dx

′
2d

2b1d
2b2d

2b, (1)
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where b is the impact parameter — the distance between centers of colliding hadrons (e.g.,
the beam and the target) in transverse plane. Γij(x1, x2;b1,b2;Q2

1, Q
2
2) are the double parton

distribution functions, which depend on the longitudinal momentum fractions x1 and x2, and
on the transverse position b1 and b2 of the two partons undergoing the hard processes A and
B at the scales Q1 and Q2. σ̂Aik and σ̂Bjl are the parton-level subprocess cross sections. The
factor m/2 appears due to the symmetry of the expression for interchanging parton species i
and j. m = 1 if A = B, and m = 2 otherwise.

It is typically assumed that the double parton distribution functions may be decomposed in
terms of longitudinal and transverse components as follows:

Γij(x1, x2;b1,b2;Q2
1, Q

2
2) = Dij

h (x1, x2;Q2
1, Q

2
2)f(b1)f(b2), (2)

where f(b1) is supposed to be a universal function for all kinds of partons with its normalization
fixed as

∫
f(b1)f(b1 − b)d2b1d

2b =

∫
T (b)d2b = 1, (3)

and T (b) =
∫
f(b1)f(b1 − b)d2b1 is the overlap function.

If one also makes the assumption that the longitudinal components Dij
h (x1, x2;Q2

1, Q
2
2) re-

duce to the product of two independent one parton distributions,

Dij
h (x1, x2;Q2

1, Q
2
2) = Di

h(x1;Q2
1)Dj

h(x2;Q2
2), (4)

the cross section of double parton scattering can be expressed in the simple form

σD(A,B) = m
2

σS
(A)σ

S
(B)

σeff
, (5)

σeff = [
∫
d2b(T (b))2]−1. (6)

In this representation and at the factorization of longitudinal and transverse components, the
inclusive cross section of single hard scattering is written as

σS(A) =
∑

i,k

∫
Di
h(x1;Q2

1)f(b1)σ̂Aik(x1, x
′
1)Dk

h′(x
′
1;Q2

1)f(b1 − b)dx1dx
′
1d

2b1d
2b

=
∑

i,k

∫
Di
h(x1;Q2

1)σ̂Aik(x1, x
′
1)Dk

h′(x
′
1;Q2

1)dx1dx
′
1. (7)

These simplifying assumptions, though rather customary in the literature and quite con-
venient from a computational point of view, are not sufficiently justified and should be re-
vised [7, 8, 9, 10]. However, the starting cross section formula (1) was found (derived) in many
works (see, e.g., Refs. [8, 9, 10]) using the light-cone variables and the same approximations as
those applied to the processes with a single hard scattering.

2 Revised formulas in momentum representation

All the previous formulas were written in the mixed (momentum and coordinate) representa-
tion. Recall that in general, for the case of the multiple parton interactions, we have to use
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Figure 1: Graphs for double parton scattering according to the first term in Eq. (9) (left)
and according to the second evolution term in Eq. (9) (right). A and B are the hard parton
subprocesses. q is the momentum transfer through the ladders L1, L2, L1′ and L2′.

the Generalized Parton Distribution Functions (GPDF). In other words, in the Feynman dia-
gram (ladder) which describes the GPDF, the parton momenta kL (in the left part of diagram
corresponding to the amplitude A∗) and kR (in the right part of the diagram corresponding to
amplitude A) may be different. Let us denote kL = k + q/2 and kR = k − q/2, where q is the
momentum transfer through the whole ladder. Since the ladders in Figure 1 form a loop we
will call q the loop momentum. In the previous formulas, instead of transverse momentum qt,
we used the conjugate coordinate b 1.

For our further goal the momentum representation is more convenient:

σD(A,B) =
m

2

∑

i,j,k,l

∫
Γij(x1, x2;q;Q2

1, Q
2
2)σ̂Aik(x1, x

′
1)σ̂Bjl(x2, x

′
2)

×Γkl(x
′
1, x

′
2;−q;Q2

1, Q
2
2)dx1dx2dx

′
1dx

′
2

d2q

(2π)2
. (8)

The hard subprocesses A and B originate from two different branches of the parton cascade.
Note that only the sum of the parton momenta (in both branches) is conserved, while in each
individual branch there may be some difference, q, between the transverse (parton) momenta
in the initial state wave function and the conjugate wave function.

The main problem is to make the correct calculation of Γij(x1, x2;q;Q2
1, Q

2
2) without simpli-

fying assumptions (2) and (4). These functions are available in the current literature [11, 12, 13,
14] only for q = 0 in the collinear approximation. In this approximation the two-parton distri-
bution functions, Γij(x1, x2;q = 0;Q2, Q2) = Dij

h (x1, x2;Q2, Q2) with the two hard scales set
equal, satisfy the generalized Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equations, derived initially in Refs. [13, 14].

The evolution equation for Γij consists of two terms. The first term describes the inde-
pendent (simultaneous) evolution of two branches of parton cascade: one branch contains the
parton x1, and another branch — the parton x2. The second term allows for the possibility of
splitting of one parton evolution (one branch k) into two different branches, i and j. It con-
tains the usual splitting function Pk→ij(z). The solutions of the generalized DGLAP evolution
equations with the given initial conditions at the reference scales µ2 may be written [7, 15] in

1In the case of conventional DIS the cross section is given by the integral over b corresponding to qt = 0.
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the form:

Dj1j2
h (x1, x2;µ2, Q2

1, Q
2
2) = Dj1j2

h1 (x1, x2;µ2, Q2
1, Q

2
2) +Dj1j2

h2 (x1, x2;µ2, Q2
1, Q

2
2) (9)

with

Dj1j2
h1 (x1, x2;µ2, Q2

1, Q
2
2)

=
∑

j1′j2′

1−x2∫

x1

dz1

z1

1−z1∫

x2

dz2

z2
Dj1

′j2
′

h (z1, z2;µ2)Dj1
j1′(

x1

z1
;µ2, Q2

1)Dj2
j2′(

x2

z2
, µ2, Q2

2) (10)

and

Dj1j2
h2 (x1, x2;µ2, Q2

1, Q
2
2)

=
∑

j′j1′j2′

min(Q2
1,Q

2
2)∫

µ2

dk2αs(k
2)

2πk2

1−x2∫

x1

dz1

z1

1−z1∫

x2

dz2

z2
Dj′

h (z1 + z2;µ2, k2)

× 1

z1 + z2
Pj′→j1′j2′

(
z1

z1 + z2

)
Dj1
j1′(

x1

z1
; k2, Q2

1)Dj2
j2′(

x2

z2
; k2, Q2

2), (11)

where αs(k
2) is the QCD coupling, Dj1

j1′(z; k2, Q2) are the known single distribution functions

(the Green’s functions) at the parton level with the specific δ-like initial conditions at Q2 = k2.

D
j′1,j

′
2

h (z1, z2, µ
2) is the initial (input) two-parton distribution at the relatively low scale µ. The

one parton distribution (before splitting into the two branches at some scale k2) is given by

Dj′

h (z1 + z2, µ
2, k2). Note, that in Eq. (9) we assume that the loop momentum q < µ is small

and due to strong ordering of parton transverse momenta in the collinear DGLAP evolution it
may be neglected.

The first term is the solution of homogeneous evolution equation (independent evolution of
two branches), where the input two-parton distribution is generally not known at the low scale
µ. For this nonperturbative two-parton function at low z1, z2 one may assume the factoriza-

tion Dj1
′j2

′

h (z1, z2, µ
2) ' Dj1

′

h (z1, µ
2)Dj2

′

h (z2, µ
2) neglecting the constraints due to momentum

conservation (z1 + z2 < 1). This leads to

Dij
h1(x1, x2;µ2, Q2

1, Q
2
2) ' Di

h(x1;µ2, Q2
1)Dj

h(x2;µ2, Q2
2). (12)

As a rule, the multiple interactions take place at relatively low transverse momenta and low
x1, x2 where the factorization hypothesis (12) for the first term is a good approximation. In this
case, the cross section for double parton scattering can be estimated, using the two-gluon form
factor of the nucleon F2g(q) [8, 16] for the dominant gluon-gluon scattering mode (or something
similar for other parton scattering modes),

σD,1×1
(A,B) =

m

2

∑

i,j,k,l

∫
Di
h(x1;µ2, Q2

1)Dj
h(x2;µ2, Q2

2)σ̂Aik(x1, x
′
1)σ̂Bjl(x2, x

′
2)

×Dk
h′(x′1;µ2, Q2

1)Dl
h′(x′2;µ2, Q2

2)dx1dx2dx
′
1dx

′
2

∫
F 4

2g(q)
d2q

(2π)2
. (13)
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From the dipole fit F2g(q) = 1/(q2/m2
g + 1)2 to the two-gluon form factor follows that the

characteristic value of q is of the order of the “effective gluon mass” mg. Thus the initial
conditions for the single distributions can be fixed at some not large reference scale µ ∼ mg,
because of the weak logarithmic dependence of these distributions on the scale value. In this

approach
∫
F 4

2g(q)
d2q

(2π)2 gives the estimation of [σeff ]−1.

The second term in Eq. (9) is the solution of complete evolution equation with the evolution
originating from one “nonperturbative” parton at the reference scale. Here, the independent
evolution of two branches starts at the scale k2 from a point-like parton j′. In this case the
large qt domain is not suppressed by the form factor F2g(q) and the corresponding contribution
to the cross section reads

σD,2×2
(A,B) =

m

2

∑

i,j,k,l

∫
dx1dx2dx

′
1dx

′
2

min(Q2
1,Q

2
2)∫
d2q

(2π)2

×
∑

j′j1′j2′

min(Q2
1,Q

2
2)∫

q2

dk2αs(k
2)

2πk2

1−x2∫

x1

dz1

z1

1−z1∫

x2

dz2

z2
Dj′

h (z1 + z2;µ2, k2)

× 1

z1 + z2
Pj′→j1′j2′

(
z1

z1 + z2

)
Di
j1′(

x1

z1
; k2, Q2

1)Dj
j2′(

x2

z2
; k2, Q2

2)σ̂Aik(x1, x
′
1)σ̂Bjl(x2, x

′
2)

×
∑

j′j1′j2′

min(Q2
1,Q

2
2)∫

q2

dk
′2αs(k

′2)

2πk′2

1−x′
2∫

x′
1

dz1

z1

1−z1∫

x′
2

dz2

z2
Dj′

h′(z1 + z2;µ2, k
′2)

× 1

z1 + z2
Pj′→j1′j2′

(
z1

z1 + z2

)
Dk
j1′(

x′1
z1

; k
′2, Q2

1)Dl
j2′(

x′2
z2

; k
′2, Q2

2), (14)

or in substantially shorter yet less transparent form:

σD,2×2
(A,B) =

m

2

∑

i,j,k,l

∫
dx1dx2dx

′
1dx

′
2

min(Q2
1,Q

2
2)∫
d2q

(2π)2

×Dij
h2(x1, x2; q2, Q2

1, Q
2
2)σ̂Aik(x1, x

′
1)σ̂Bjl(x2, x

′
2)Dkl

h′2(x′1, x
′
2; q2, Q2

1, Q
2
2). (15)

By analogy, the combined (“interference”) contribution may be written as

σD,1×2
(A,B) =

m

2

∑

i,j,k,l

∫
dx1dx2dx

′
1dx

′
2

min(Q2
1,Q

2
2)∫
F 2

2g(q)
d2q

(2π)2
(16)

×[Di
h(x1;µ2, Q2

1)Dj
h(x2;µ2, Q2

2)σ̂Aik(x1, x
′
1)σ̂Bjl(x2, x

′
2)Dkl

h′2(x′1, x
′
2; q2, Q2

1, Q
2
2)

+Dij
h2(x1, x2; q2, Q2

1, Q
2
2)σ̂Aik(x1, x

′
1)σ̂Bjl(x2, x

′
2)Dk

h′(x′1;µ2, Q2
1)Dl

h′(x′2;µ2, Q2
2)].

The equations (13), (15) and (16) present our solution of the problem — we obtain the
estimation of the inclusive cross section for double parton scattering, taking into account the
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QCD evolution and based on the well-known collinear distributions extracted from deep inelastic
scattering. Similar results were obtained in Ref. [17] with an emphasis on the differential cross

sections. However, one should note that the input two-parton distribution D
j′1,j

′
2

h (z1, z2, µ
2)

may be more complicated than that given by factorization ansatz (12). Now, let us discuss in
more detail the second term, that is the 2× 2 contribution.

3 Discussion and conclusions

The contribution to the cross section from the second term induced by the QCD evolution
cannot be reduced to the form (5) with some new constant effective cross section as it was
done in earlier estimations [18, 19, 20]. The QCD evolution effects for the cross section are
anticipated to be larger than for the two-parton distribution functions. For those such effects
were estimated in Refs. [12, 21] on the level of 10% - 30% as compared to the “factorization”
components at x ∼ 0.1 and Q ∼ 100 GeV. Indeed, in Eq. (14) the integration over q includes
no strong suppression factor F2g(q) and the phase space integral may be estimated as

∫ Q2

dq2

∫ Q2

q2

dk2

k2

∫ Q2

q2

dk
′2

k′2
' 2Q2, Q2 � µ2, (17)

where within the leading order (LO) accuracy we take q2 as the lower limit for k2 and k
′2

integrations; at q2 > k2 the loop momentum qt destroys the logarithmic structure of the integrals
for collinear evolution from k2 to Q2.

We see that at a large final scale Q2 the contribution of the second (2×2) component should
dominate being proportional to Q2, while the contributions of the 1 × 1 or 1 × 2 components
∼ m2

g ∼ 1/σeff are limited by the nucleon (hadron) form factor F2g
2.

The real gain is, of course, smaller due to the running coupling constant and the fact that
at low x distribution functions grow logarithmically on the integration variables. So we have
the additional factor in favor of the first factorized term of Eq. (9), which is proportional [22]
to the initial gluon and quark multiplicities: the second term evolves from one “nonperturba-
tive” parton, while the first term has two initial independent “nonperturbative” partons at the
reference scale.

As a result, the experimental effective cross section, σexp
eff , which is not measured directly

but is extracted by means of the normalization to the product of two single cross sections:

σγ+3j
DPS

σγjσjj
= [σexp

eff ]−1, (18)

appears to be dependent on the probing hard scale. It should decrease with increasing the reso-
lution scale because all additional contributions to the cross section of double parton scattering
are positive and increase. In the above formula, σγj and σjj are the inclusive γ+ jet and dijets
cross sections, σγ+3j

DPS is the inclusive cross section of the γ+3 jets events produced in the double
parton process. It is worth noticing that the CDF and D0 Collaborations extract σexp

eff without
any theoretical predictions on the γ+ jet and dijets cross sections, by comparing the number of
observed double parton γ + 3 jets events in one pp̄ collision to the number of γ + 3 jets events
with hard interactions occurring in the case of two separate pp̄ collisions.

2In terms of impact parameters b this means that in the second (2 × 2) term two pairs of partons are very
close to each other; |b1 − b2| ∼ 1/Q.
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The recent D0 measurements [6] represent this effective cross section, σexp
eff , as a function

of the second (ordered in the transverse momentum pT ) jet pT , pjet2
T , which can serve as a

resolution scale. The obtained cross sections reveal a tendency to be dependent on this scale.
In Ref. [23] this observation was interpreted as the first indication to the QCD evolution of
double parton distributions.

We have to emphasize that the dominant contribution to the phase space integral (17) comes
from a large q2 ∼ Q2 and, strictly speaking, the above reasoning makes no allowance for the
collinear (DGLAP) evolution of two independent branches of the parton cascade (i.e., in the
ladders L1, L2, L1′ and L2′) in the 2×2 term. Formally, in the framework of collinear approach
this contribution should be considered as the result of interaction of one pair of partons with the
2→ 4 hard subprocess 3. Recall, however, that when estimating (17) we neglect the anomalous
dimension, γ, of the parton distributions Dk

j (x/z, k2, Q2) ∝ (Q2/k2)γ . In collinear approach
the anomalous dimensions γ ∝ αs << 1 are assumed to be small. On the other hand, in a low
x region the value of anomalous dimension is enhanced by the ln(1/x) logarithm and may be
rather large numerically. So the integral over q2 is slowly convergent and the major contribution
to the cross section is expected to come actually from some characteristic intermediate region,
m2
g << q2 << Q2

1 (Q1 < Q2). Thus we do not expect such strong sensitivity to the upper limit
of q-integration as in the case of the pure phase space integral (17). Therefore it makes sense
to consider the quantitative contribution of the 2× 2 term even within the collinear approach
as applied to the LHC kinematics, where the large (in comparison with mg) available values of
Q1 and Q2 provide wide enough integration region for the characteristic loop momenta q.

Next, in a configuration with two quite different scales (say, Q2
1 << Q2

2) the upper limit of
q2 integral is given by a smaller scale (at q > Q1 the hard matrix element corresponding to σA

begins to diminish with qt). In this case the collinear evolution from the scale q = Q1 up to
the scale Q2 in the ladders (parton branches) L2 and L2′ seems sufficiently justified .

In summary, we suggest a practical method which makes it possible to estimate the inclusive
cross section for double parton scattering, taking into account the QCD evolution and based on
the well-known collinear distributions extracted from deep inelastic scattering. We also support
the conclusion in Refs. [23, 24] that the experimentally measured effective cross section, σexp

eff ,
(18) should decrease with increasing the resolution scale Q2 due to presence of the evolution
(correlation) term in the two-parton distributions.
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