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We discuss recent work on gluon correlations in high energy collisions and argue that they
are most naturally understood in the Color Glass Condensate framework. We discuss
first the dense-dense regime which is relevant for, e.g., the “ridge”-correlation observed at
midrapidity in AA and pp collisions. We then describe recent progress in understanding
two-particle correlations in the dilute-dense system, relevant for forward dihadron produc-
tion in deuteron-gold collisions. This requires computing the energy dependence of higher
point Wilson line correlators from the JIMWLK renormalization group equation. We find
that the large Nc approximation used so far in the phenomenological literature is not very
accurate. On the other hand a Gaussian finite Nc approximation is a surprisingly good
approximation of the result from the full JIMWLK equation.

1 Introduction

The physics of high energy hadronic or nuclear collisions is dominated by the gluonic degrees of
freedom of the colliding particles. These small x gluons form a dense nonlinear system that is,
at high enough

√
s, best described as a classical color field and quantum fluctuations around it.

The Color Glass Condensate (CGC, for reviews see [1, 2, 3, 4]) is an effective theory developed
around this idea. It gives an universal description that can equally well be applied to small-xDIS
as to dilute-dense (pA or forward AA) and dense-dense (AA or very high energy pp) hadronic
collisions. The CGC is based on an effective description of large-x partons as a color charge
density and small-x ones as a classical field radiated by these charges. The most convenient
parametrization of the dominant gauge field is in terms of Wilson lines that describe the eikonal
propagation of a projectile through it. The cutoff separating the large-x and small-x degrees
of freedom is an arbitrary factorization scale, thus the requirement that physical observables
cannot depend on it leads to a renormalization group equation. This nonlinear equation, known
by the acronym JIMWLK [5, 6, 7, 11, 12], describes the evolution in rapidity of the probability
distribution of the Wilson lines. It reduces, in a large Nc- mean field approximation, to the
BK [13, 14] equation and further, in the dilute linear regime, to the BFKL one.

The nonlinear interactions of the small-x gluons generate dynamically a new transverse
momentum scale, the saturation scale Qs. The saturation scale grows with energy, as the
increased density of gluons makes their interactions nonlinear at higher transverse momenta.
At high enough energy the color glass condensate is thus a one-scale system, characterized by
a dominant momentum scale Qs that is hard enough to justify a weak coupling calculation.
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Figure 1: Left: evolution of unintegrated (“dipole”) gluon distribution starting from an MV
model initial condition. Right: The resulting gluon spectrum produced in a heavy ion collision.
Note that this should be thought of as the gluon spectrum at midrapidity with y representing
the logarithm of

√
s.

The scale Qs dominates both the gluon spectrum and multigluon correlations. The nature of a
unique saturation scale as both the typical gluon transverse momentum and as the correlation
length 1/Qs differentiates the CGC qualitatively from the high-x part of the wavefunction.

2 Bulk particle production

One of the most unique aspects of the CGC framework is the prospect of understanding bulk
quantities, such as particle multiplicities integrated over the whole pT spectrum, in weak cou-
pling. At leading order in αs, calculating the spectrum of gluons produced in the initial stages
of a heavy ion collision requires solving the time evolution of the non-perturbative strong clas-
sical gauge field (known as the glasma field [15]). This field is then, at late enough times,
Fourier-decomposed and the modes interpreted as on-shell gluons. This calculation needs the
Wilson lines corresponding to the individual colliding nuclei to provide the initial condition for
the glasma fields [16], whose equations of motion must then be solved numerically [17, 18, 19].
In most of the numerical studies in the literature, the Wilson lines have been taken from the
MV model [20, 21, 22], which is straightforward to implement numerically.

Only very recently [23] an actual numerical solution of the JIMWLK equation has been
used to provide the initial condition for the evolution of the glasma fields. The JIMLWK
equation is solved, in practice, by reformulating the RGE for the probability distribution of
Wilson lines as a Langevin equation [24, 25, 26] for the rapidity dependence of an ensemble
of Wilson lines. These configurations can then directly be used in the initial condition for the
glasma fields. The results of this calculation are summarized in Fig. 1. On the left is plotted the
correlation function of Wilson lines U(xT ) (i.e. dipole cross section or dipole gluon distribution)
in momentum space:

C(kT ) = k2
T

∫
d2xT e

ikT ·(xT−yT ) 1

Nc

〈
TrU†(xT )U(yT )

〉
, (1)
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Figure 2: The two gluon correlation function in the MV model, from a full non-perturbative
classical field calculation [27]. The near side pT ≈ qT and away side pT ≈ −qT peak structure
is clearly seen.

starting from an MV model initial condition at y = 0. The main effect of the evolution (as
expected from BK evolution) is the hardening of the unintegrated gluon distribution due to the
development of a geometric scaling region for kT & Qs. The effect on the gluon spectrum in
the glasma is shown in Fig. 1 (right): also the spectrum of gluons in the glasma gets harder
with increasing energy. Note that, as advocated above, the spectrum is integrable and the total
gluon multiplicity finite without any additional cut-offs. This is a non-trivial consequence of
the non-linear interactions of the gluonic field.

3 Correlations in the dense-dense limit

The classical color field is a multi-gluon system, and as such has naturally built in correlations
that are long range in rapidity. The formalism for computing the observable correlations in a
collision of two high density gluonic systems in the CGC framework was developed in [28, 29, 30].
The essential power-counting argument can be summarized as follows. In the CGC, and the
glasma, the gluon fields are non-perturbatively strong; Aµ ∼ 1/g. Therefore the correlations
arising from quantum fluctuations around the field, which give the typical correlations in a
perturbative calculation, are actually subleading compared to the ones arising from the prob-
ability distribution of Wilson lines. Physically this means that the dominant correlations are
those that are enhanced by large logarithms of x, present already in the wavefunctions of the
colliding projectiles and re-summed by the JIMWLK evolution.

The only nonperturbative calculation of the double inclusive gluon spectrum has been per-
formed in Ref. [27]. The main result is shown in Fig. 2 in terms of the quantity

κ2(pT ,qT ) = S⊥Q
2
s

C2(pT ,qT )〈
dN

dyp d2pT

〉〈
dN

dyq d2qT

〉 , (2)

where the correlated double inclusive gluon spectrum is defined as

C2(pT ,qT ) =

〈
dN

dyp d2pT

dN

dyq d2qT

〉
−
〈

dN

dyp d2pT

〉〈
dN

dyq d2qT

〉
. (3)
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Figure 3: Left: Near side correlated multiplicity (integrated over azimuthal angle) as a function
of the saturation scale the CGC calculation. Right transverse momentum spectrum of the
correlated secondary particles. Figures from Ref. [31].

Here S⊥ is the transverse area of the collision system. The result displays two characteristic
main features. Firstly the double inclusive spectrum, scaled with the number of correlation
regions S⊥Q2

s , is of order one. Secondly one observes a characteristic enhancement in the
back-to-back pT ∼ −qT and near side pT ∼ qT regions. While the former is present also in
the dilute limit, due to momentum conservation, the latter is a genuine nontrivial high gluon
density effect that has no counterpart in a purely perturbative (or string fragmentation, for
that matter) picture. This is the basis of the CGC contribution to the ”ridge” correlation, a
structure at small azimuthal angle and large rapidity separation, that has been observed in AA
and pp collisions at high energy.

The calculation of Ref. [27] uses the MV model for the Wilson line distribution. Work on
repeating the calculation using the Wilson line configurations from JIMWLK evolution is still
ongoing. In the meanwhile the effects of high energy evolution have been analyzed in a kT -
factorized approximation [31, 32], which is valid for particle production at pT & Qs [33]. The
kT -factorized approximation for the double inclusive gluon spectrum is

C(pT ,qT ) =
α2

s

4π10

Nc
2S⊥

(Nc
2 − 1)3 pT 2q2

T

×
{∫

d2kTΦ2
A1

(yp,kT )ΦA2
(yp,pT − kT )

[
ΦA2

(yq,qT + kT ) + ΦA2
(yq,qT − kT )

]

+ Φ2
A2

(yq,kT )ΦA1(yp,pT − kT )
[
ΦA1(yq,qT + kT ) + ΦA1(yq,qT − kT )

]}
. (4)

Here ΦAi , the unintegrated gluon distribution in nucleus i, is related to the correlator C(kT )
of Eq. (1) simply by Φ(kT ) = C(kT )/(4αsNc). In [31, 32] it is obtained from the mean field
BK equation. The qualitative features of the correlation obtained using Eq. (4) are illustrated
in Fig. 3. What is shown is the correlation integrated over ∆ϕ, the azimuthal angle separation
between the two produced gluons. It rises for increasing Qs, which corresponds to increasing
centrality. Also the dependence of the correlation on the pT -cutoff, first rising and then de-
creasing, matches that seen in the CMS data [34]. A more recent detailed analysis [35] confirms
the conclusions reached here on a more quantitative level.
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Figure 4: The JIMWLK result for the quadrupole correlator compared to the Gaussian approx-
imation. Shown are the initial condition (MV model) at y = 0 and the result after 5.18 units
of evolution in rapidity, for the “line” (left) and “square” (right) coordinate configurations.
Figures from Ref. [36].

4 Correlations in the dense-dilute limit

One of the more striking signals of saturation physics at RHIC is the observed broadening
of the away-side peak in di-hadron correlations in forward deuteron-gold scattering [37, 38].
Our theoretical starting point in analyzing these correlations is to consider the high-x parton
from the proton required to produce two relatively large pT particles at forward rapidity in
the final state. We assume the high-x particle to be a quark, since the valence distribution
dominates at high x. In order to have a correlated production of two particles this quark
must then radiate a gluon, carrying a fraction z of its longitudinal momentum. To leading
order we then have a picture of a quark-gluon system propagating (eikonally in our high energy
approximation) through the target nucleus. The eikonal matrix element is given by Wilson
lines in the appropriate representation for the two particles, leading to a double inclusive cross
section

dσqA→qgX

d3k1 d3k2
∝ αsNc

2

∫

xT ,x̄T ,yT ,ȳT

e−ikT1·(xT−x̄T ) e−ikT2·(yT−ȳT )F(x̄T − ȳT ,xT − yT )

〈
Q̂(yT , ȳT , x̄T ,xT ) D̂(xT , x̄T )− D̂(yT ,xT )D̂(xT , z̄T )− D̂(zT , x̄T )D̂(x̄T , ȳT )

+
CF
Nc

D̂(zT , z̄T ) +
1

Nc
2

(
D̂(yT , z̄T ) + D̂(zT , ȳT )− D̂(yT , ȳT )

)〉
, (5)

with zT = zxT + (1 − z)yT and likewise, z̄T = zx̄T + (1 − z)ȳT . The kinematical factors
denoted by F can be calculated in light cone perturbation theory [39]. What is then needed to
describe the target are the expectation values of the dipole, quadrupole, and sextupole Wilson
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Figure 5: The JIMWLK result for the quadrupole correlator compared to the “naive large Nc”
approximation. Shown are the initial condition (MV model) at y = 0 and the result after 5.18
units of evolution in rapidity, for the “line” (left) and “square” (right) coordinate configurations.
Figures from Ref. [36].

line operators D = 〈D̂〉, Q = 〈Q̂〉, and 〈D̂Q̂〉 defined by

D̂(xT ,yT ) =
1

Nc
TrU(xT )U†(yT ), Q̂(xT ,yT ,uT ,vT ) =

1

Nc
TrU(xT )U†(yT )U(uT )U†(vT ).

(6)
For practical phenomenological work it would be extremely convenient to be able to express
these higher point correlators in terms of the dipole, which is straightforward to obtain from
the BK equation. In the phenomenological literature so far [40, 41] this has been done using a
“naive large Nc” approximation as

Q(xT ,yT ,uT ,vT ) ≈
Nc→∞

1

2

(
D(xT ,yT )D(uT ,vT ) +D(xT ,vT )D(uT ,yT )〉

)
. (7)

A more elaborate scheme would be a “Gaussian” approximation (“Gaussian truncation” in [42]),
where one assumes the relation between the higher point functions and the dipole to be the
same as in the (Gaussian) MV model. The expectation value of the quadrupole operator in the
MV model has been derived e.g. in Ref. [43]; the one for the 6-point function is unfortunately
not known yet.

In Ref. [36] we have studied the validity of these approximations by comparing them nu-
merically to the solution of the JIMWLK equation, following the conjecture of Ref. [44] that
the JIMWLK result should significantly deviate from both of them. As studying the full
8-dimensional phase space for the quadrupole operator would be cumbersome, we have concen-
trated on two special coordinate configurations. The “line” configuration is defined by taking
uT = xT and vT = yT , with r = |xT − yT | and the “square” by taking xT ,yT ,uT ,vT as
the corners of a square with side r. For these particular configurations the “naive large Nc”
approximation reduces to

Qnaive
| (r) ≈ Qnaive

� (r) ≈ D(r)2 (8)
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and the Gaussian approximation to

Q|(r) ≈ Nc + 1

2

(
D(r)

)2 Nc+2
Nc+1 − Nc − 1

2

(
D(r)

)2 Nc−2
Nc−1

(9)

Q�(r) ≈ (D(r))
2

[
Nc + 1

2

(
D(r)

D(
√

2r)

) 2
Nc+1

− Nc − 1

2

(
D(
√

2r)

D(r)

) 2
Nc−1 ]

. (10)

Our results [36] for the quadrupole expectation value are shown in Figs. 4 and 5, with a
comparison of the initial and evolved (for 5.18 units in y) results to the approximations. The
MV-model initial condition y = 0 satisfies the Gaussian approximation by construction. Fig-
ure 4 shows that the Gaussian approximation is still surprisingly well conserved by the evolution.
A possible explanation for this based on the structure of the JIMWLK equation has recently
been proposed in [45, 46]. The naive large Nc approximation used in some phenomenological
works, on the other hand, fails already at the initial condition, as shown in Fig. 5. This stresses
the importance the various SU(3) group structure constraints violated in this approach. Cru-
cially for the phenomenological consequences, even the characteristic length/momentum scale
differs by factor ∼ 2 from the actual result.

This result does not yet fully address the effect on the measurable cross section. For that one
must perform the integrals in (5) to go from the position space correlator to the momentum
space one. Also additional effects such as inelastic contributions [47] and high-x effects in
the deuteron (as compared to the proton) must be included, as discussed in [48]. This full
calculation is still a work in progress.
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