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We address the question of how to simultaneously account for unitarity constraints in
a variety of different types of very high energy cross sections wherein a description of
multiple hard partonic collisions is important. It is shown how models and extrapolations
that utilize the concept of multiple hard partonic scatterings can be made consistent with
one another while still adequately describing existing experimental data.

1 Introduction

1.1 s-channel unitarity

The procedure to account for s-channel unitarity in very high energy hadronic collisions has
been understood for many years now; one defines a profile function for the limit of s >> −t
in terms of the amplitude A(s, t) for elastic hadron-hadron scattering in the high energy limit
t ≈ −q2

t :

Γ(s, bt) ≡
1

2is(2π)2

∫
d2qt e

iqt·btA(s, t), (1)

Imposing unitarity and analyticity leads to the following set of well known relations between
the elastic, total, and inelastic cross sections:

σtot(s) = 2

∫
d2bt Re Γ(s, bt), (2)

σel(s) =

∫
d2bt |Γ(s, bt)|2 , (3)

σinel(s) =

∫
d2bt

(
2 Re Γ(s, bt)− |Γ(s, bt)|2

)
. (4)

Defining an inelastic profile function,

Γinel(s, bt) ≡
(

2 Re Γ(s, bt)− |Γ(s, bt)|2
)
, (5)
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a description of the total cross section must obey

Γinel(s, b),Γ(s, b) ≤ 1. (6)

(Here it is assumed that the amplitude is entirely imaginary which is appropriate in the s >> −t
limit.) Generally, the profile function grows with energy. When Γinel(s, bt) ≈ 1 in some region
bt < bmax then it is said to have reached the “black disk limit” (BDL).

1.2 Minijets and multiple hard collisions

It has become common to combine the s-channel picture with treatments of multiple hard
partonic collisions (e.g., [1] and references therein) thereby relating descriptions of minimum
bias events, the underlying event, and other complex aspects of hadron-hadron collisions to
the treatment of the total cross section. One common approach is to describe the production
of semi-hard minijets using the standard perturbative QCD expression while modeling the
contribution from soft physics (using for example Regge theory) and using an eikonal model of
multiple scattering to reconstruct from this the total cross section:

Γ(s, b) = 1− e−χh(s,b)−χs(s,bt), (7)

where χh(s, b) and χs(s, bt) are eikonals that describe the hard and soft partonic collisions
respectively.

For the case of just one hard collision the inclusive cross section can be calculated directly
from the standard perturbative QCD factorization formula:

σinc
pQCD(s; pct) =

∑

i,j,k,l

K

1 + δkl

∫
d x1d x2

∫
d p2t×

× dσ̂ij→kl
dp2t

fi/p1(x1; pt) fj/p2(x2; pt) θ(pt − pct) ,
(8)

where fi/p1(x1; pt) and fj/p2(x2; pt) are the ordinary parton distribution functions. The per-
turbative expression is only valid for sufficiently large jet transverse momentum pt, so a lower
cutoff pct must be imposed on the integral in Eq. 8. In practice, the value of σinc

pQCD(s; pct) is quite
sensitive to the precise choice of pct , and the cross section grows rapidly with energy [2]. This
has been a persistent complication in attempts to incorporate Eq. (8) into complete descriptions
of multiple partonic scattering, such as the eikonal description in Eq. (7). One naturally hopes
to be guided by considerations like unitarity to determine the most appropriate value for pct .
However, constraints like the Froissart bound do not apply directly to inclusive cross sections
like Eq. (8) which are proportional to particle multiplicity.

One way to tame the rapid growth of the cross section while lowering pct is to adjust the
width of the distribution of hard partons in impact parameter space, so that the unitarization
effects built into the eikonal description of Eq. (7) become stronger. However, this does not
actually increase the range of validity of the perturbative expression, as illustrated in Fig. 1.
Moreover, it conflicts with direct measurements of the impact parameter distribution of hard
partons, as we will discuss later.

2 Total cross section from multiple hard collisions

Given a description of hard multiple partonic scatterings, one can directly reconstruct their con-
tribution to the total inelastic cross section from basic combinatorial arguments [3]. Following
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Figure 1: If the distribution of hard partons in transverse coordinate space is narrow, the cross
section is tamed, but the approach to the black disk limit is faster, signaling a more rapid
breakdown of normal QCD factorization.

the reasoning of Ref. [4], one finds

Γinel
dijets(s, bt; p

c
t) =

∞∑

n=1

(−1)n−1χ2n(s, bt; p
c
t), (9)

where χ2n(s, bt; p
c
t) is the impact parameter dependent probability for n hard scatterings at

impact parameter bt. Overall consistency with Sect. 1.1 therefore requires that

Γinel
dijets(s, b; p

c
t) ≤ Γinel

actual(s, b). (10)

If it is assumed that the partons are identical and correlations are totally ignored, then

χ2n(s, bt; p
c
t) =

1

n!
χ2(s, bt; p

c
t)
n, (11)

and the contribution to the total inelastic cross section in Eq. (9) becomes

Γinel
dijets(s, bt; p

c
t) = 1− exp [−χ2(s, bt; p

c
t)] . (12)

Note that Eq. (12) has the same form as the eikonal expression in Eq. (7), though the reasoning
that leads to it is quite different. χ2(s, bt; p

c
t) represents the distribution in transverse coordinate

space of hard partons. Therefore, a description of the bt-dependence of χ2(s, bt; p
c
t) is required

to completely reproduce the total inelastic profile function.
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3 Two-gluon form factor

Fortunately, the bt-dependence in χ2(s, bt; p
c
t) can be extracted directly from experiments that

probe impact parameter dependence. In Ref. [5], for instance, the following form was fitted to
the two-gluon form factor in exclusive deeply inelastic vector meson production:

Fg(x, t;µ) =
1

(
1− t

mg(x,µ)2

)2 , (13)

where the x and µ dependence in the parameter mg(x, µ) account for some of the effects of
evolution. Using this result allows χ2(s, bt; p

c
t) to be written as

χ2(s, bt; p
c
t) = σinc

pQCD(s; pct)P2(s, bt; p
c
t) (14)

where

P2(s, bt; p
c
t) ≡

m2
g(x; pct)

12π

(
mg(x; pct)bt

2

)3

K3(mg(x; pct)bt). (15)

Expressed in this way, the total inclusive dijet cross section σinc
pQCD(s; pct) is

σinc
pQCD(s; pct) =

∫
d2bt χ2(s, bt; p

c
t). (16)

Using Eq. (14) in Eq. (12) then gives the contribution from dijet production to the left side of
Eq. (10). The comparison in Eq. (10) was performed in Ref. [6] against typical extrapolations
of Γinel

actual(s, b) to high energy, and the inequality was found to be violated even for bt & 1 fm
where multiple hard collisions are expected to be rarer. Since the impact parameter distribution
is fixed by other measurements, this suggests that there is a problem with the uncorrelated
scattering ansatz of Eq. (11).

4 General correlations

Reconciling the descriptions of the total cross section from Sect. 1.1 and 1.2 with the require-
ments of unitarity requires an account of non-perturbative correlations between the initial state
partons. We note that the sizes of correlations can be extracted from measurements of observ-
ables like σeff [7] (Also, see E. Dobson, these proceedings). Therefore, in Ref. [6] the role of
correlations was organized so that their effect on Γinel

dijets(s, b; p
c
t) is easy to analyze.

Starting with the n = 2 contribution in the uncorrelated ansatz Eq. (11), a shift parametrized
by η2(s, b) is introduced to account for correlations between two initial state partons. That is,
we write

χ4(s, b; pct)→
1

2
(1 + η4(s, bt))χ2(s, b; pct)

2, (17)

and similarly for larger n to account for triple and higher correlations. We call η2n(s, bt) the
n-correlation correction. Using Eq. (9) then gives

Γinel
jets(s, bt; p

c
t) = 1− exp [−χ2(s, bt; p

c
t)]−

∞∑

n=2

(−1)nη2n(s, bt)

n!
χ2(s, bt; p

c
t)
n exp [−χ2(s, bt; p

c
t)] .

(18)
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FIG. 8: Inelastic profile functions calculated exactly as in Fig. 8 but now with the Gaussian form for the overlap function.

VII. TESTS OF IMPACT PARAMETER
DEPENDENCE

A large source of uncertainty is in the role of b depen-
dence in the correlation corrections. As far as we know,
there are currently no predictions of the impact param-
eter dependence of nonperturbative correlations in mul-
tiparton distributions. If all correlations are localized at
small impact parameters, then at large impact param-
eters one simply recovers the uncorrelated model. We
find such scenarios unlikely, however, since the binding

interaction between any constituent partons should be
expected to be large, regardless of impact parameter. By
relaxing the assumption of b independence for all corre-
lation corrections, it is possible to reconstruct arbitrarily
different shapes for the profile function, though in princi-
ple this arbitrariness can be reduced by future measure-
ments of higher correlations. In Figs. 7(b) and 8(b), the
dip at intermediate b that occurs when only double cor-
relations are included suggests that higher correlations
should be included. However, a smooth form for the in-
elastic profile function can also be recovered if we allow

12

0 0.5 1 1.5 2 2.5 3
b (fm)

0

0.2

0.4

0.6

0.8

1

Γ
in

el

Quad. Corr.
Double Corr.
Uncorr.

η = 1.3

(a)

0 0.5 1 1.5 2 2.5 3
b (fm)

0

0.2

0.4

0.6

0.8

1

Γ
in

el

Quad. Corr.
Double Corr.
Uncorr.

η = 2.1

(b)

FIG. 8: Inelastic profile functions calculated exactly as in Fig. 8 but now with the Gaussian form for the overlap function.

VII. TESTS OF IMPACT PARAMETER
DEPENDENCE

A large source of uncertainty is in the role of b depen-
dence in the correlation corrections. As far as we know,
there are currently no predictions of the impact param-
eter dependence of nonperturbative correlations in mul-
tiparton distributions. If all correlations are localized at
small impact parameters, then at large impact param-
eters one simply recovers the uncorrelated model. We
find such scenarios unlikely, however, since the binding

interaction between any constituent partons should be
expected to be large, regardless of impact parameter. By
relaxing the assumption of b independence for all corre-
lation corrections, it is possible to reconstruct arbitrarily
different shapes for the profile function, though in princi-
ple this arbitrariness can be reduced by future measure-
ments of higher correlations. In Figs. 7(b) and 8(b), the
dip at intermediate b that occurs when only double cor-
relations are included suggests that higher correlations
should be included. However, a smooth form for the in-
elastic profile function can also be recovered if we allow

Figure 2: Γinel
dijets(s, bt; p

c
t) with correlation corrections imposed.

The 1 − exp [−χ2(s, b; pct)] part of Eq. 18 is the uncorrelated approximation. It also matches
the commonly used eikonal model, though the reasoning used to arrive at it is rather different.
Accounting for the η2n(s, bt) functions for increasingly large n allows one to extend Γinel

jets(s, b; p
c
t)

to larger bt before encountering a problem with Eq. (10).
The effect of double correlation corrections was estimated in Ref. [6], using the measured

value of σeff ≈ 14.5 mb from [8] which suggests a value for η2 around ∼ 1.3. As a first
try, we ignore the impact parameter dependence of the correction. Using this in Eq. (18)
gives the Γinel

jets(s, bt; p
c
t) shown in Fig. 2. For Γinel

actual(s, bt) we use a collection of Regge-like
extrapolations [9], indicated in the figure by the yellow band. The dashed curve approximates all
correlations by η ≈ 1.3, while the dotted curve keeps only the double correlations. The energy is
chosen to be the upper limit for the LHC,

√
s = 14 TeV and the transverse momentum cutoff is a

typical value of pct = 2.5 GeV. From the figure, it is clear that the large impact parameter region
becomes much more consistent with Eq. (10) when the effect of non-perturbative correlations
is included.

5 Conclusions

Taken together, existing measurements of inclusive cross sections and the impact parameter
dependence of exclusive processes imply that non-perturbative correlations are needed in models
of multiple hard scatterings in order to maintain reasonable consistency with unitarity while
describing the growth of the total cross section, particularly at large impact parameters. The
next step is to determine a method for estimating or calculating the correlation corrections in
Eq. (18). Ideally, this will follow from a complete perturbative QCD factorization treatment that
describes scattering with multi-parton correlation functions. Promising work in this direction
has recently been presented in Ref. [10, 11]. General considerations of how to extract the sizes
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of correlations from observables in high energy collisions (e.g., Ref. [12]) are also needed.
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