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The concept of self-similarity in the contemporary physics of Deep Inelastic Scattering
(DIS) was introduced in 2002 when Lastovicka proposed a functional form of the struc-
ture function F2(x,Q2) at small x. In this paper, we use the original Lastovicka’s model

to compute the momentum sum rule
1∫
0

(
F2(x,Q2) +G(x,Q2)

)
dx = 1, which relates the

fraction of momentum carried by quarks and gluons inside the proton. There exists a sin-
gularity at x ≈ 0.019 in this model. Therefore, we use Cauchy’s principal value integration
method to construct the fraction of momentum carried by quarks and gluons defined as

〈x〉q =
1∫
0

F2(x,Q2)dx and 〈x〉g =
1∫
0

G(x,Q2)dx respectively. We suggest that the relation

between quarks and gluons is given as G(x,Q2) = x−λ(Q
2)F2(x,Q2), where λ(Q2) is the

function of Q2.

1 Introduction

Self-similarity is a possible feature of multi-partons inside a proton at small Bjorken-x, first
suggested by Lastovicka of DESY, Germany in the year 2002 [1]. Based on this notion, a form
of structure function F2(x,Q2) was proposed which could explain the H1 and ZEUS data for
6.2× 10−7 6 x 6 0.01. In the present work, we use the momentum sum rule [2]

1∫

0

(
F2(x,Q2) +G(x,Q2)

)
dx = 1 (1)

and explore the possibility of pinning down the gluon distribution G(x,Q2) from it. The
momentum sum rule is to be satisfied by any reasonable model of structure function. However,
such requirement calls for information about the entire physical regime of x (0 6 x 6 1). It is
also well-known that the gluon PDFs are, on the other hand, not directly measurable although
there are several indirect ways of measuring like the longitudinal structure function or the slope
and curvature of the structure function. We summarize the preliminary results of our analysis.
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2 Formalism

A description of the proton structure function F2(x,Q2) reflecting self-similarity was proposed
with a few parameters which were fitted from the HERA data [3, 4]. The concept of self-
similarity, when applied to proton structure, leads to a simple parameterization of quark

densities within the proton. The structure function (using two magnification factors
1

x
and

(
1 +

k2t
Q2

0

)
) is subsequently obtained as:

F2(x,Q2) =
eD0 Q2

0 x
−D2+1

1 +D3 −D1 log x

(
x
−D1 log

(
1+Q2

Q2
0

)(
1 +

Q2

Q2
0

)D3+1

− 1

)
(2)

where the parameters are

D0 = 0.339± 0.145

D1 = 0.073± 0.001

D2 = 1.013± 0.01

D3 = −1.287± 0.01

Q2
0 = 0.062± 0.01 GeV2 (3)

Here D1, D2 and D3 are the parameters identified as the relevant fractal dimensions [1].
This specific parameterization provides an excellent description of the data in the region of four
momentum transfer squared, 0.045 6 Q2 6 120 GeV2 and Bjorken-x, 6.2 × 10−7 6 x 6 0.01.
We assume, for simplicity, the following relation between the structure function and the gluon
distribution [5]:

G(x,Q2) = c(x,Q2) · F2(x,Q2) (4)

where the function G(x,Q2) is to be determined from momentum sum rule. The momentum
sum rule is given as:

1 =

1∫

0

{
F2(x,Q2) +G(x,Q2)

}
dx

=

1∫

0

{
F2(x,Q2) + c(x,Q2)F2(x,Q2)

}
dx

⇒
1∫

0

{
c(x,Q2)F2(x,Q2)

}
dx = 1−

1∫

0

F2(x,Q2)dx (5)

Thus, knowing the value of
1∫
0

F2(x,Q2)dx, the gluon content of the proton can be determined.

For simplicity, we assume that c(x,Q2) has the following form:

c(x,Q2) = x−λ(Q
2) (6)
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where λ(Q2) is to be determined from momentum sum rule. Eq. (6) conforms to the expectation
that for small x gluon dominates.
Integrating the structure function of Eq. (2), we have:

1∫

0

F2(x,Q2)dx =

1∫

0

eD0 Q2
0 x
−D2+1

1 +D3 −D1 log x

(
x
−D1 log

(
1+Q2

Q2
0

)(
1 +

Q2

Q2
0

)D3+1

− 1

)
dx (7)

Substituting the corresponding values of the parameters in the above equation, we get:

1∫

0

F2(x,Q2)dx =

1∫

0

e0.339 0.062
(
1
x

)0.013

0.073 log( 1
x )− 0.287



(

1

x

)0.073 log
(
1+ Q2

0.062

)(
1 +

Q2

0.062

)−0.287
− 1


 dx

(8)
Using Eq. (2) and after a few steps following Cauchy’s principal value integration method [6],
we arrive at the following form of the integrated structure function (for any Q2):

1∫

0

F2(x,Q2)dx =
e0.339 0.062

0.073

(
1 +

Q2

0.062

)−0.287
e−µy0 ·

(
log
∣∣∣ymax − y0

y0

∣∣∣− µymax +

∞∑

n=2

(−1)nµn

n · n!

{
(ymax − y0)

n
+ (−1)n+1yn0

}
)

−e
0.339 0.062

0.073
e−ρy0 ·

(
log
∣∣∣ymax − y0

y0

∣∣∣− ρymax +

∞∑

n=2

(−1)nρn

n · n!

{
(ymax − y0)

n
+ (−1)n+1yn0

}
)

(9)

where

µ = 1−
(

0.013 + 0.073 log

(
1 +

Q2

0.062

))

ρ = 0.987

y0 = 3.93

ymax = log

(
1

xmin

)
(10)

and xmin is introduced to take care of the end-point singularity x = 0 in the model. Taking
only the first term in the infinite series of RHS of Eq. (9), we get [7, 8]

1∫

0

F2(x,Q2)dx = 0.024607 · log
∣∣∣ymax − y0

y0

∣∣∣ · Q2

0.062
(11)

leading to

xmin ≈ 3.58× 10−4. (12)
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Using this value of xmin, we calculate

〈x〉q =

1∫

xmin

F2(x,Q2)dx (13)

and
〈x〉g = 1− 〈x〉q (14)

for any Q2 using the RHS of Eq. (9), where 〈x〉q and 〈x〉g are fraction of momentum carried
by quarks and gluons respectively.

3 Results

In Table 1, we record the values of 〈x〉q and 〈x〉g for several representative values of Q2:

Q2 (GeV2) 〈x〉q 〈x〉g
10 0.0716 0.9283
20 0.1433 0.8567
30 0.2149 0.7850
35 0.2508 0.7492
40 0.2867 0.7133
45 0.3225 0.6775
50 0.3583 0.6418
55 0.3942 0.6058
60 0.4299 0.5700
65 0.4658 0.5342
70 0.5017 0.4983
75 0.5375 0.4625
80 0.5733 0.4267
85 0.6092 0.3908
90 0.6449 0.3550

Table 1: Values of 〈x〉q and 〈x〉g for a few representative values of Q2.

In Figure 1, it is shown that within the leading term approximation used, 〈x〉q increases

with Q2 while 〈x〉g decreases. At Q2 ≈ 70 GeV2, both of them become nearly equal, i.e. both
quarks and gluons share momentum equally.

It is to be noted that one usually expects the other pattern, i.e. 〈x〉g =
1∫
0

G(x,Q2)dx should

increase with Q2 and 〈x〉q =
1∫
0

F2(x,Q2)dx should decrease [9]. This feature is presumably

due to the overestimation of the large x quarks in the original Eq. (2) used and the crude
approximation of taking only the first term of the infinite series in Eq. (9). The effects of large
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x and higher order terms are currently under study. It will then lead to proper evaluation of
the exponent λ in the definition of gluon in Eq. (6).

Figure 1: 〈x〉q and 〈x〉g vs Q2.

4 Conclusion

In this paper, we have reformulated the gluon distribution function based on momentum sum
rule. We also report some preliminary results of how quark and gluon momenta are shared
in the proton. Inclusion of higher order terms in the infinite series and the large x effect will
hopefully pin down the gluon accurately.
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