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We present a precise calculation of the dilepton invariant-mass spectrum and branching
fraction for B+ → π+ℓ+ℓ− (ℓ± = e±, µ±) in the Standard Model (SM) based on the effec-
tive Hamiltonian approach for the b → dℓ+ℓ− transitions. Theoretical estimates strongly
depend on the form factors f+(q2), f0(q

2) and fT (q2). Of these, f+(q2) is well measured in
the semileptonic decays B → πℓνℓ and we use the B-factory data to parametrize it. Using
an SU(3)F -breaking Ansatz and Lattice-QCD data, we calculate the B → π form factors.
The resulting total branching fraction B(B+ → π+µ+µ−) =

`

1.88+0.32
−0.21

´

× 10−8 is in good
agreement with the experimental value obtained by the LHCb collaboration.

1 Introduction

Recently, the LHCb collaboration has reported the first observation of the B+ → π+µ+µ−

decay with 5.2σ significance, using 1.0 fb−1 integrated luminosity in proton-proton collisions at
the Large Hadron Collider (LHC) at

√
s = 7 TeV [1]. The measured branching ratio B(B+ →

π+µ+µ−) = [2.3±0.6(stat)±0.1(syst)]×10−8 [1] is in good agreement with the SM expectated
rate [2], which, however, is based on model-dependent input for the B → π form factors. Hence,
it is very desirable to calculate the form factors from first principles, such as the Lattice-QCD,
which have their own range of validity restricted by the recoil energy. With improved lattice
technology, one can use the lattice form factors to predict the decay rates in the B → π
transitions in the low-recoil region, where the lattice results apply without any extrapolation,
in a model-independent manner. We describe such a framework, which makes use of the methods
based on the Heavy-Quark Symmetry (HQS) in the large-recoil region, data on the charged-
current processes B0 → π−ℓ+νℓ and B+ → π0ℓ+νℓ, to determine one of the form factors,
f+(q2), and the available lattice results for the form factors in the low-recoil region. The details
of the analysis are presented in our recent paper [3] and the main steps are summarized in this
contribution.

2 Theory of B
+

→ π
+
ℓ
+
ℓ

− Decay

The effective weak Hamiltonian encompassing the transitions b → d ℓ+ℓ− (ℓ = e, µ, or τ), in
the Standard Model (SM) can be written as follows [4]:

Hb→d
eff =

4GF√
2

[

VudV
∗

ub

(

C1O(u)
1 + C2O(u)

2

)

+ VcdV
∗

cb (C1O1 + C2O2)− VtdV
∗

tb

10
∑

i=3

CiOi

]

, (1)

where GF is the Fermi constant, Vq1q2
are the CKM matrix elements which satisfy the unitary

condition VudV
∗

ub + VcdV
∗

cb + VtdV
∗

tb = 0 (it can be used to eliminate one combination). In
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contrast to the b → s transition, all three terms in the unitarity relation are of the same order
in λ (V ∗ubVud ∼ V ∗cbVcd ∼ V ∗tbVtd ∼ λ3), with λ = sin θ12 ≃ 0.2232 [5]. The local operators
appearing in (1) are the dimension-six operators defined at an arbitrary scale µ as in [6]. The
Wilson coefficients Ci(µ) (i = 1, . . . , 10) depending on the renormalization scale µ are calculated
at the matching scale µW ∼ MW , the W -boson mass, as a perturbative expansion in the strong
coupling constant αs(µW ) [6] and can be evolved to a lower scale µb ∼ mb using the anomalous
dimensions of the above operators to NNLL order [6].

The hadronic matrix elements of the operators Oi between the B- and π-meson states are
expressed in terms of three independent form factors [7]:

〈π(pπ)|b̄γµd|B(pB)〉 = f+(q2)

[

pµ
B + pµ

π −
m2

B −m2
π

q2
qµ

]

+ f0(q
2)

m2
B −m2

π

q2
qµ, (2)

〈π(pπ)|b̄σµνqνd|B(pB)〉 =
ifT (q2)

mB + mπ

[

q2 (pµ
B + pµ

π)−
(

m2
B −m2

π

)

qµ
]

, (3)

where pµ
B and pµ

π are the four-momenta of the B- and π-mesons, respectively, mB and mπ

are their masses, and qµ = pµ
B − pµ

π is the momentum transferred to the lepton pair. The
B → π transition form factors f+(q2), f0(q

2) and fT (q2) are scalar functions whose shapes are
determined by using non-perturbative methods.

The differential branching fraction in the dilepton invariant mass q2 can be expressed as
follows:

dB (B+ → π+ℓ+ℓ−)

dq2
=

G2
F α2

emτB

1024π5m3
B

|VtbV
∗

td|2
√

λ(q2)

√

1− 4m2
ℓ

q2
F (q2), (4)

where αem is the fine-structure constant, mℓ is the lepton mass, τB is the B-meson lifetime,

λ(q2) =
(

m2
B + m2

π − q2
)2 − 4m2

Bm2
π is the kinematical function encountered in three-body

decays (triangle function), and F (q2) is a dynamical function encoding the Wilson coefficients
and the form factors:

F (q2) =
2

3
λ(q2)

(

1 +
2m2

ℓ

q2

) ∣

∣

∣

∣

Ceff
9 (q2) f+(q2) +

2mb

mB + mπ
Ceff

7 (q2) fT (q2)

∣

∣

∣

∣

2

(5)

+
2

3
λ(q2)

(

1− 4m2
ℓ

q2

)

∣

∣Ceff
10 f+(q2)

∣

∣

2
+

4m2
ℓ

q2

(

m2
B −m2

π

)2 ∣

∣Ceff
10 f0(q

2)
∣

∣

2
.

The dynamical function (5) contains the effective Wilson coefficients Ceff
7 (q2), Ceff

9 (q2) and Ceff
10

which are specific combinations of the Wilson coefficients entering the effective Hamiltonian (1).
To the NNLO approximation, the effective Wilson coefficients given in [6, 8, 9].

To perform a numerical analysis one needs to know the B → π transition form factors
f+(q2), f0(q

2) and fT (q2) in the entire kinematic range: 4m2
ℓ ≤ q2 ≤ (mB −mπ)

2
. Their

model-independent determination is the main aim of this paper, which is described in detail in
subsequent sections. Several parametrizations of the semileptonic form factors f+(q2), f0(q

2)
and fT (q2) have been proposed in the literature. We especially outline the Boyd-Grinstein-
Lebed (BGL) parametrization because namely this parametrization was used in our analysis.
In the framework of BGL parametrization the shape for the form factors fi(q

2) with i = +, 0, T
is presented as follows [10]:

fi(q
2) =

1

P (q2)φi(q2, q2
0)

kmax
∑

k=0

ak(q2
0)

[

z(q2, q2
0)

]k
, z(q2, q2

0) =

√

m2
+ − q2 −

√

m2
+ − q2

0
√

m2
+ − q2 +

√

m2
+ − q2

0

, (6)
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Figure 1: (Color online) The vector, scalar and tensor B → π transition form factors fp(q2), f0(q
2)

and fT (q2), respectively, in the entire kinematical region using the BGL parametrization. The solid
green lines show the uncertainty in the form factors. The vertical bars in the left and middle plots are
the Lattice-QCD data [12]

with the pair-production threshold m2
+ = (mB +mπ)2 and a free parameter q2

0 . In our analysis
we make the choice q2

0 = 0.65m2
−. The proposed shapes (6) for the form factors contains the

so-called Blaschke factor P (q2) which accounts for the hadronic resonances in the sub-threshold
region q2 < m2

+. For the semileptonic B → πℓνℓ decay, where ℓ is an electron or a muon, there
is only B∗-meson with the mass mB∗ = 5.325 GeV satisfying the sub-threshold condition and
producing the pole in the form factor at q2 = m2

B∗ . In this case, the Blaschke factor is simply
P (q2) = z(q2,m2

B∗) for f+,T (q2) and P (q2) = 1 for f0(q
2).

The coefficients ak (k = 0, 1, . . . , kmax) entering the Taylor series in Eq. (6) are the param-
eters, which are determined by fits of the data. The outer function φi(q

2, q2
0) is an arbitrary

analytic function, whose choice only affects particular values of the coefficients ak and are given
in [11]. Having relatively small values of z(q2, q2

0) in the physical region of q2, the shape of the
form factor can be well approximated by the truncated series at kmax = 2 or 3.

3 Shapes of Form Factors

Measurements of the B0 → π−ℓ+νℓ and B+ → π0ℓ+νℓ decays, where ℓ = e, µ, allow to extract
both the CKM matrix element Vub and the shape of the f+(q2) form factor. The differential
branching fractions of the above processes can be written in the form [5]:

dΓ(B → πℓ+νℓ)

dq2
= CP

G2
F |Vub|2

192π3m3
B

λ3/2(q2)f2
+(q2), (7)

where CP is the isospin factor with CP = 1 for the π+-meson and CP = 1/2 for the π0-meson,
q = pℓ + pν is the lepton-pair four-momentum bounded by m2

ℓ ≤ q2 ≤ (mB − mπ)2, and pℓ

and pν are the four-momenta of the charged lepton and neutrino, respectively.
The partial branching fraction of B0 → π−ℓ+νℓ has been measured by the BaBar and Belle

collaborations and of B0 → π−ℓ+νℓ by the Belle collaboration [13, 14, 15, 16]. Using these
data we extracted the f+(q2) form factor shape using the standard minimization procedure of
the χ2-distribution function [5]. The resulting form factor f+(q2) from the combined analysis
of the BaBar and Belle datasets is shown in the left plot in Fig. 1. In this analysis we have
assumed that the experimental points are all uncorrelated.

The parameters of f0(q
2) can be obtained from the existing results of the B → π transition

form factor calculated by the HPQCD collaboration [12]. In addition one can use the exact
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Figure 2: The dilepton invariant-mass distributions in the B+ → π+ℓ+ℓ− decay in the range 0 ≤ q2 ≤

8 GeV2 (left plot) and in the entire range 0 ≤ q2 ≤ 26.4 GeV2 (right plot).

relation f+(0) = f0(0), where f+(q2) is extracted from the experimental data. The form-factor
parametrization we use for f0(q

2) follows our default choice from the analysis of f+(q2) — the
BGL expansion in z(q2, q2

0) truncated at kmax = 2. The resulting f0(q
2) form factor shape is

shown in Fig. 1 (middle plot), where we also present the Lattice-QCD data [12].

One should mention that there is only scant information about the fBπ
T (q2) form factor

at present. So, one needs to find a reliable method to extract it from the existing model-
independent data. We use an SU(3)F -symmetry-breaking Ansatz involving the B → K and
B → π form factors. We recall that all three B → K transition form factors fBK

+ (q2), fBK
0 (q2)

and fBK
T (q2) have been calculated recently by the HPQCD collaboration [17, 18] and the two

B → π transition form factors fBπ
+ (q2) and fBπ

0 (q2) are also known [12]. With this knowledge,
we first estimate the SU(3)F -breaking corrections in the already known vector and scalar form
factors and use these corrections for estimating the B → π tensor form factor fBπ

T (q2) from
the corresponding B → K transition form factor fBK

T (q2). The resulting fBπ
T (q2) form factor

obtained is shown in the right plot in Fig. 1.

As all the form factors in the B → π transition are now known, we can make predictions for
the dilepton invariant-mass spectrum and decay width in the semileptonic B → π ℓ+ℓ− decays
for ℓ± = e±, µ±.

4 Predictions for B
+

→ π
+
ℓ
+
ℓ

− Decay

The B+-meson is a bound state of the heavy b̄- and light u-quarks, hence one can apply the
so-called Heavy-Quark Symmetry (HQS), which is valid in the large-recoil limit (at small values
of q2). Using the HQS allows one to simplify significantly the description of the B+ → π+ℓ+ℓ−

decay at small q2 (q2 ≤ 8 GeV2), namely, applying the HQS results in reducing the number of
independent form factors of the B → π transition from three to one. The relations between
the three form-factors f+(q2), f0(q

2) and fT (q2) in the HQS limit with taking into account
symmetry-breaking corrections are worked out in Ref. [7]. With use of these relations the
dimuon invariant mass spectrum was obtained and is presented in the left plot in Fig. 2.

In the low hadronic-recoil region (large-q2) there is no heavy-quark symmetry relations
among form factors f+(q2), f0(q

2) and fT (q2) any more and they should be considered as three
independent quantities. All of them were extracted by us in the entire kinematic range and
used for further calculations.
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The invariant-mass spectrum in the entire range of q2 (4m2
ℓ < q2 < 26.4 GeV2) is presented

in the right plot in Fig. 2. We get the following prediction for the total branching fraction [3]:

B(B+ → π+ µ+µ−) =
(

1.88+0.32
−0.21

)

× 10−8, (8)

where the resulting average uncertainty about 15% and is coming from the scale dependence µb

of the Wilson coefficients, the CKM matrix element |Vtd| and form factors (FF).

5 Summary and Outlook

We have presented a theoretically improved calculation of the branching fraction for the B± →
π±µ+µ− decay, measured recently by the LHCb collaboration [1]. The combined accuracy
on the branching ratio is estimated as ±15%, and the resulting branching fraction B(B± →
π±µ+µ−) = (1.88+0.32

−0.21)× 10−8 [3] is in agreement with the LHCb data [1].
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