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The mass spectra of charmonia and bottomonia are calculated in the framework of the

relativistic quark model. The Regge trajectories of heavy quarkonia are constructed. All

daughter trajectories are almost linear and parallel, while parent trajectories exhibit some

nonlinearity. Such nonlinearity occurs only in the vicinity of ground states and few lowest

excitations and is more pronounced for bottomonia, while it is only marginal for charmo-

nia. The obtained results are compared with available experimental data, and a possible

interpretation of the new charmonium-like states above open charm production threshold

is discussed.

1 Introduction

In recent years a vast amount of experimental data on the heavy quarkonium spectroscopy
has been accumulated [1]. The number of known states is constantly increasing. Thus, in
the last eight years more than ten new charmonium-like states have been discovered [2]. The
total number of charmonium states, listed in the Particle Data Group Listings [1], is 25 at
present. Some of the new states (such as ηc(2S), hc, χc2(2P ), etc.) are the long-awaited
ones within the quark model, while some others, with masses higher than the threshold of the
open charm production, have narrow widths and unexpected decay properties [2]. There are
theoretical indications that some of these new states could be the first manifestation of the
existence of exotic hadrons (tetraquarks, molecules, hybrids etc.), which are predicted in QCD
[3]. In order to explore such options, a comprehensive understanding of the heavy quarkonium
spectroscopy up to rather high orbital and radial excitations is required. The experimentally
known bottomonium spectrum consists of 20 states [1]. Therefore, the investigation of the
masses of the excited heavy quarkonia states presents an important and interesting problem.
To achieve this goal one should treat the quark dynamics in mesons completely relativistically.
Here we extend the approach previously used for the investigation of light meson spectroscopy
[4] to heavy quarkonia. In order to improve our description, leading radiative corrections to
the heavy quark potential [5] are also taken into account. Such corrections are suppressed by
additional powers of αs, which are rather small for heavy quarkonia, and are known only in the
framework of the v2/c2 expansion. Therefore we treat them perturbatively. The calculation of
the masses of highly orbitally and radially excited states up to the fifth excitation is carried
out. On this basis, the Regge trajectories for charmonia and bottomonia can be constructed
both in the total angular momentum J and radial quantum number nr, and properties like
linearity, parallelism and equidistance of these trajectories can be checked. There are reasons
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to expect that the parent Regge trajectories can be nonlinear [6, 7] due to the compactness of
their ground and lowest excited states, which puts them in the region where both the linear
confining and Coulomb parts of the quark-antiquark potential play a comparable role.

2 Relativistic quark model

In the relativistic quark model based on the quasipotential approach a meson is described by the
wave function of the bound quark-antiquark state, which satisfies the quasipotential equation
of the Schrödinger type [8, 9]

(

b2(M)

2µR
− p2

2µR

)

ΨM (p) =

∫

d3q

(2π)3
V (p,q;M)ΨM (q), (1)

where

µR =
M4 − (m2

1 −m2
2)

2

4M3
, b2(M) =

[M2 − (m1 +m2)
2][M2 − (m1 −m2)

2]

4M2
. (2)

Here M is the meson mass, m1,2 are the quark masses, and p is their relative momentum.
The kernel V (p,q;M) in Eq. (1) is the QCD-motivated quasipotential operator of the

quark-antiquark interaction, which is constructed with the help of the off-mass-shell scattering
amplitude, projected onto the positive energy states. It is assumed that the effective interaction
is the sum of the usual one-gluon exchange term with the mixture of long-range vector and scalar
linear confining potentials

V (p,q;M) = ū1(p)ū2(−p)
{

4

3
αsDµν(k)γµ1 γ

ν
2 + V Vconf(k)Γµ1Γ2;µ + V Sconf(k)

}

u1(q)u2(−q), (3)

where the vector confining potential contains the Pauli interaction: Γµ(k) = γµ + iκ
2mσµνk

ν .
Here αs is the QCD coupling constant, Dµν is the gluon propagator in the Coulomb gauge, γµ
and u(p) are the Dirac matrices and spinors and k = p− q; κ is the Pauli interaction constant
characterizing the anomalous chromomagnetic moment of quarks. Vector and scalar confining
potentials in the nonrelativistic limit reduce to

V Vconf(r) = (1− ε)(Ar +B), V Sconf(r) = ε(Ar +B), (4)

where ε is the mixing coefficient. Therefore, in this limit the Cornell-type potential is reproduced
VNR(r) = − 4

3
αs

r
+Ar +B.

All the model parameters have the same values as in our previous papers [8, 4, 10]: the
constituent quark masses mu = md = 0.33 GeV, ms = 0.5 GeV, mc = 1.55 GeV, mb = 4.88
GeV, and the parameters of the linear potential A = 0.18 GeV2 and B = −0.16 GeV. The value
of the mixing coefficient of vector and scalar confining potentials ε = −1 has been determined
from the consideration of charmonium radiative decays [8] and matching heavy quark effective
theory (HQET). Finally, the universal Pauli interaction constant κ = −1 has been fixed from
the analysis of the fine splitting of heavy quarkonia 3PJ - states [8]. In this case, the long-range
chromomagnetic interaction of quarks, which is proportional to (1 + κ), vanishes in accordance
with the flux-tube model.

The investigations of the heavy quark dynamics in heavy mesons indicate that the charm
quark is not heavy enough to be considered as nonrelativistic. Indeed, estimates of the averaged
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velocity squared for the ground-state charmonium give the value 〈v2/c2〉 ∼ 0.25. For excited
charmonium states the 〈v2/c2〉 values are even higher. Therefore, a reliable calculation of the
charmonium spectroscopy requires a completely relativistic treatment of the charmed quark
without an expansion in its velocity. The quasipotential (3) can in principal be used for arbitrary
quark masses. The substitution of the Dirac spinors into (3) results in an extremely nonlocal
potential in the configuration space. Clearly, it is very hard to deal with such potentials
without any additional approximations. In order to simplify the relativistic QQ̄ potential,

we make the following replacement in the Dirac spinors: ǫ1,2(p) =
√

m2
1,2 + p2 → E1,2 ≡

(M2 −m2
2,1 +m2

1,2)/2M (see the discussion of this point in [4, 10]). This substitution makes

the Fourier transformation of the potential (3) local. The resulting QQ̄ potential then reads

V (r) = VSI(r) + VSD(r), (5)

where the explicit expression for the spin-independent VSI(r) and spin-dependent VSD(r) parts
can be found in Ref. [4].

3 Results and discussion

We solve the quasipotential equation with the quasipotential (5), which nonperturbatively ac-
counts for the relativistic dynamics of both heavy quarks, numerically. Then we add the
one-loop radiative corrections and the additional one-loop correction for bottomonium due to
the finite mass [8] of the charmed quark by using perturbation theory. The calculated masses of
charmonia and bottomonia are given in Tables 1,2, where n = nr + 1, nr is the radial quantum
number, L, S and J are the quantum numbers of the orbital, total spin and total angular mo-
menta, respectively. They are confronted with available experimental data from PDG [1], good
agreement is found. It is important to note that the nonperturbative relativistic treatment gives
a better agreement with data than our previous heavy quarkonium mass spectrum calculation
[8], where only relativistic corrections up to v2/c2 order were taken into account. However,
the differences between former and new predictions are rather small for most of the low-lying
states and become noticeable only for higher excitations, where relativistic effects turn out to
be particularly important.

In our analysis we calculated masses of both orbitally and radially excited heavy quarkonia
up to rather high excitation numbers (L = 5 and nr = 5). This makes it possible to construct
the Regge trajectories in the (J,M2) and (nr,M

2) planes using the following definitions:
(a) the (J,M2) Regge trajectory: J = αM2 + α0;
(b) the (nr,M

2) Regge trajectory: nr = βM2 + β0,
where α, β are the slopes and α0, β0 are the intercepts. These relations arise in most models
of quark confinement, but with different values of the slopes.

In Figs. 1, 2 we plot the Regge trajectories in the (J,M2) and (nr,M
2) planes for char-

monia and bottomonia. We see that the calculated charmonium masses fit nicely to the linear
trajectories in both planes (maybe with the exception of the parent trajectories, where the J/ψ
and ηc mesons seem to have slightly lower masses). These trajectories are almost parallel and
equidistant. For the bottomonium the situation is more complicated. The daughter trajectories,
which involve both radially and orbitally excited states, turn out to be almost linear. On the
other hand, the parent trajectories, which start from ground states, are exhibiting a nonlinear
behaviour in the lower mass region. Such nonlinearity is most pronounced in bottomonium.
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State Theory Experiment State Theory Experiment
n2S+1LJ JPC meson mass n2S+1LJ JPC meson mass

11S0 0−+ 2981 ηc(1S) 2980.3(1.2) 23D1 1−− 4150 ψ(4160) 4153(3)
13S1 1−− 3096 J/ψ(1S) 3096.916(11) 23D2 2−− 4190
21S0 0−+ 3635 ηc(2S) 3637(4) 23D3 3−− 4220
23S1 1−− 3685 ψ(2S) 3686.09(4) 21D2 2−+ 4196 X(4160)? 4156(2925)
31S0 0−+ 3989 33D1 1−− 4507
33S1 1−− 4039 ψ(4040) 4039(1) 33D2 2−− 4544
41S0 0−+ 4401 33D3 3−− 4574
43S1 1−− 4427 ψ(4415) 4421(4) 31D2 2−+ 4549
51S0 0−+ 4811 43D1 1−− 4857
53S1 1−− 4837 43D2 2−− 4896
61S0 0−+ 5155 43D3 3−− 4920
63S1 1−− 5167 41D2 2−+ 4898
13P0 0++ 3413 χc0(1P ) 3414.75(31) 13F2 2++ 4041
13P1 1++ 3511 χc1(1P ) 3510.66(7) 13F3 3++ 4068
13P2 2++ 3555 χc2(1P ) 3556.20(9) 13F4 4++ 4093
11P1 1+− 3525 hc(1P ) 3525.41(16) 11F3 3+− 4071
23P0 0++ 3870 χc0(2P ) 3918.4(1.9) 23F2 2++ 4361
23P1 1++ 3906 23F3 3++ 4400
23P2 2++ 3949 χc2(2P ) 3927.2(2.6) 23F4 4++ 4434
21P1 1+− 3926 21F3 3+− 4406
33P0 0++ 4301 13G3 3−− 4321
33P1 1++ 4319 13G4 4−− 4343
33P2 2++ 4354 X(4350)? 4351(5) 13G5 5−− 4357
31P1 1+− 4337 11G4 4−+ 4345
43P0 0++ 4698 13H4 4++ 4572
43P1 1++ 4728 13H5 5++ 4592
43P2 2++ 4763 13H6 6++ 4608
41P1 1+− 4744 13H5 5+− 4594
13D1 1−− 3783 ψ(3770) 3772.92(35)
13D2 2−− 3795
13D3 3−− 3813 X(3820) 3823.5(2.5)
11D2 2−+ 3807

Table 1: Charmonium mass spectrum (in MeV).
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State Theory Experiment State Theory
n2S+1LJ JPC meson mass n2S+1LJ JPC

11S0 0−+ 9398 ηb(1S) 9398.0(3.2) 23D1 1−− 10435
13S1 1−− 9460 Υ(1S) 9460.30(26) 23D2 2−− 10443
21S0 0−+ 9990 ηb(2S) 9999(4) 23D3 3−− 10449
23S1 1−− 10023 Υ(2S) 10023.26(31) 21D2 2−+ 10445
31S0 0−+ 10329 33D1 1−− 10704
33S1 1−− 10355 Υ(3S) 10355.2(5) 33D2 2−− 10711
41S0 0−+ 10573 33D3 3−− 10717
43S1 1−− 10586 Υ(4S) 10579.4(1.2) 31D2 2−+ 10713
51S0 0−+ 10851 43D1 1−− 10949
53S1 1−− 10869 Υ(10860) 10876(11) 43D2 2−− 10957
61S0 0−+ 11061 43D3 3−− 10963
63S1 1−− 11088 Υ(11020) 11019(8) 41D2 2−+ 10959
13P0 0++ 9859 χb0(1P ) 9859.44(52) 13F2 2++ 10343
13P1 1++ 9892 χb1(1P ) 9892.78(40) 13F3 3++ 10346
13P2 2++ 9912 χb2(1P ) 9912.21(40) 13F4 4++ 10349
11P1 1+− 9900 hb(1P ) 9899.3(1.0) 11F3 3+− 10347
23P0 0++ 10233 χb0(2P ) 10232.5(6) 23F2 2++ 10610
23P1 1++ 10255 χb1(2P ) 10255.46(55) 23F3 3++ 10614
23P2 2++ 10268 χb2(2P ) 10268.65(55) 23F4 4++ 10617
21P1 1+− 10260 hb(2P ) 10259.8(1.2) 21F3 3+− 10615
33P0 0++ 10521 13G3 3−− 10511
33P1 1++ 10541 χb(3P ) 10534(9) 13G4 4−− 10512
33P2 2++ 10550 13G5 5−− 10514
31P1 1+− 10544 11G4 4−+ 10513
43P0 0++ 10781 13H4 4++ 10670
43P1 1++ 10802 13H5 5++ 10671
43P2 2++ 10812 13H6 6++ 10672
41P1 1+− 10804 13H5 5+− 10671
13D1 1−− 10154
13D2 2−− 10161 Υ(1D) 10163.7(1.4)
13D3 3−− 10166
11D2 2−+ 10163

Table 2: Bottomonium mass spectrum (in MeV).
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Figure 1: Parent and daughter (J,M2) Regge trajectories for charmonium (left) and bottomo-
nium (right) states with natural (P = (−1)J ) parity. Diamonds are predicted masses. Available
experimental data are given by dots with particle names. The dashed line corresponds to a
nonlinear fit for the parent trajectory.

The origin of this nonlinearity can be easily understood, if one compares the mean radii of these
states.

State
√

〈r2〉ψ
√

〈r2〉Υ State
√

〈r2〉ψ
√

〈r2〉Υ
1S 0.37 0.22 2D 0.99 0.76
1P 0.59 0.41 1H 1.08 0.85
2S 0.71 0.50 3P 1.09 0.84
1D 0.74 0.54 2F 1.09 0.85
2P 0.87 0.65 4S 1.16 0.90
1F 0.87 0.65 3D 1.18 0.94
3S 0.94 0.72 4P 1.26 1.01
1G 0.98 0.75 5S 1.32 1.07

Table 3: Mean square radii
√

〈r2〉 for the spin-singlet states
of charmonia and bottomonia (in fm).

The values of the mean square
radii

√

〈r2〉 of charmonia and
bottomonia, calculated in our
model, are given in Table 3.
The static potential of the
quark-antiquark interaction is
plotted in Fig. 3 (solid line).
In this figure we also separately
plot the contributions from lin-
ear confinement (dashed line)
and of the modulus of the
Coulomb potential (dotted line).
As seen form Fig. 3, the
Coulomb potential dominates
for distances less than 0.15 fm, while the confining potential is dominant for distances larger
than 0.5 fm. In the intermediate region both potentials play an equally important role. There-
fore the light mesons and charmonia (with the exception of the ηc and J/ψ which are in the
intermediate region) have characteristic sizes which belong to the region, where the confining
potential dominates in the interquark potential. This leads to the emergence of the linear
Regge trajectories. On the contrary, the ground and few first excited states of bottomonia have
smaller sizes and fall into the region, where the Coulomb part of the potential gives an impor-
tant contribution. As a result, the parent Regge trajectories of bottomonia are nonlinear, while
the daughter trajectories (which fall into the region, where the confining potential is dominant)
are still linear ones. In Ref. [6] an interpolating formula between the limiting cases of pure
Coulomb and linear interactions was proposed. It can be written as follows:

(a) for the parent trajectory in the (J,M2) plane: M2 =
(

J − γ1
(J+2)2 + γ0

)

/γ,
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Figure 2: The (nr,M
2) Regge trajectories for vector (S-wave), tensor and vector (D-wave)

charmonium (left) and bottomonium (right) states (from bottom to top). Notations are the
same as in Fig. 1.

(b) for the J = 1 trajectory in the (nr,M
2) plane: M2 =

(

nr − τ1
(nr+2)2 + τ0

)

/τ,

where the parameters γ, τ , γ0, τ0 and γ1, τ1 determine the slopes, intercepts and nonlinearity of
the Regge trajectories, respectively [9]. We find that the nonlinearity of the charmonium Regge
trajectories is almost negligible, and its account does not significantly improve the quality of
the fit compared to the linear one.

3.1 Comparison with experiment
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Figure 3: Static potential of the quark-
antiquark interaction without the constant
term (solid line). Dashed line shows the lin-
ear confining potential contribution, while
dotted line corresponds to the modulus of
the Coulomb potential.

We first discuss the recently found quarkonium
states below the open flavour production thresh-
old. The observation and measurement of the
mass of the pseudoscalar ground state ηb [1] pro-
vides a significant information about the spin-
spin interaction in heavy quarkonia. The aver-
aged bottomonium hyperfine splitting measured
in Υ(3S) → ηb(1S)γ, Υ(2S) → ηb(1S)γ and
Υ(2S) → ηb(2S)γ decays is ∆Mhfs(1S) ≡
MΥ(1S) − Mηb(1S) = 69.3 ± 2.8 MeV and
∆Mhfs(2S) ≡ MΥ(2S) − Mηb(2S) = 48.7 ± 2.3 ±
2.1 MeV [1, 11]. Very recently the Belle Collabora-
tion [12] reported the first observation of the radia-
tive transitions hb(1P ) → ηb(1S)γ and hb(2P ) →
ηb(2S)γ. The measured ηb(1S) mass is 9401.0 ±
1.9+1.4

−2.4 MeV, ηb(2S) mass is 9999.0±3.5+2.8
−1.9 MeV

and the hyperfine splittings ∆Mhfs(1S) = 59.3 ±
1.9+2.4

−1.4 MeV and ∆Mhfs(2S) = 24.3+4.0
−4.5 MeV [12].

Our predictions for these splittings, ∆Mhfs(1S) = 62 MeV and ∆Mhfs(2S) = 33 MeV, are in
agreement with the experimental values. Note that our model correctly predicts the branching
ratios of the corresponding radiative decays [8].

Another important experimental test of the structure of the spin splittings in heavy quarko-
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nia comes from the measurement of the masses of the spin-singlet P levels first in charmo-
nium hc(1P ) [1] and very recently in bottomonium hb(1P ) and hb(2P ) [13]. The measured
masses of these states almost coincide with the spin-averaged centroid of the triplet states
〈M(3PJ)〉 = [M(χQ0) + 3M(χQ1) + 5M(χQ2)]/9. The hyperfine mass splittings ∆Mhfs(nP ) ≡
〈M(n3PJ)〉 −M(n1P1) in bottomonium are found to be ∆Mhfs(1P ) = (1.62± 1.52) MeV and
∆Mhfs(2P ) = (0.48+1.57

−1.22) MeV [13]. This observation indicates that the spin-spin contribution
is negligible for P levels, and thus shows the vanishing of the long-range chromomagnetic in-
teraction in heavy quarkonia. In our model this is the result of the choice of the value of the
long-range chromomagnetic quark moment κ = −1. Note that our original predictions [8] for
the spin-singlet masses are confirmed by these measurements.

The recently observed Υ(13D2) state is the only D-wave state found below the threshold of
open flavour production. Our prediction for its mass (see Table 2) is in good agreement with
the measured value. It will be interesting to observe other Υ(1D) states in order to test further
our understanding of spin-orbit and spin-spin interactions in heavy quarkonia. The mass of the
newly observed χb(3P ) state is also in accord with our prediction.

Next we discuss the observed states above the open flavour production threshold. The most
well-established states are the vector 1−− states. For charmonium PDG [1] lists seven such
states: ψ(3770), ψ(4040), ψ(4160), X(4260), X(4360), ψ(4415) and X(4660), from which only
the ψ states are included in the PDG Summary Tables [1]. These states are believed to be
ordinary cc̄ charmonium (with isospin I = 0). They are well described by our model (see
Table 1): ψ(4040) and ψ(4415) are the 33S1 and 43S1 states, while ψ(3770) and ψ(4160) are
the 13D1 and 23D1 states, respectively. These ψ states fit well to the corresponding Regge
trajectories (see Fig. 2). On the other hand, the three new vector states X are considered as
unexpected exotic states (their isospin is not determined experimentally). Indeed, we do not
have any cc̄ candidates for these states in Table 1. Contrary, in Ref. [14] we have found that these
states can be described in our model as tetraquarks composed from a diquark and antidiquark
([cq][c̄q̄], q = u, d). In particular, the X(4260) and X(4660) states can be interpreted as the
1−− states of such tetraquarks with a scalar diquark [cq]S=0 and scalar antidiquark [c̄q̄]S=0

in the relative 1P and 2P states and predicted masses 4244 MeV and 4666 MeV, respectively
[14]. The X(4360) can be viewed as the 1−− tetraquark with the axial vector diquark [cq]S=1

and axial vector antidiquark [c̄q̄]S=1 in the relative 1P state, which mass is predicted to be
4350 MeV [14].

The three vector bottomonium states, Υ(10580), Υ(10860) and Υ(11020), observed above
open bottom threshold [1], are rather well described in our model as 43S1, 53S1 and 63S1 states
(see Table 2), the mass of Υ(11020) being somewhat higher than the experimental value. They
fit to the corresponding Regge trajectory in Fig. 2.

The experimentally observed 2P charmonium states are χc2(2P ) and χc0(2P ) which masses
are predicted slightly higher (by about 20 MeV and 45 MeV, respectively) in our model. From
Table 1 we see that the exotic state X(3872) cannot be described as the 1++ 23P1 cc̄ state
or the 2−+ 11D2 cc̄ state. If this state belonged to either 2P or 1D multiplets, this could
signal a large fine splitting in these multiplets, since the X(3872) mass is 55 MeV below
χc2(2P ) and 100 MeV above ψ(3770). As we see from Table 1, our model does not sup-
port such large fine splittings. In Ref. [14] we argued that X(3872) can be considered as the
1++ ground state tetraquark, composed from the scalar and axial vector diquark and antidi-
quark (([cq]S=0[c̄q̄]S=1 + [cq]S=1[c̄q̄]S=0)/

√
2)), which mass is predicted to be 3871 MeV. As we

see from Table 1, the X(4160) and X(4350) can be attributed judging from the mass value
and charge parity C = + both to the pseudo tensor 2−+ spin-singlet 21D2 and tensor 2++
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spin-triplet 33P2 charmonium states, respectively. They fit well to the corresponding Regge
trajectories in Figs. 1, 2.

The X(4140) state, observed by CDF in B+ → K+φJ/ψ decays [15], can correspond in our
model to the scalar 0++ charmed-strange diquark-antidiquark [cs]S=1[c̄s̄]S=1 ground state with
predicted mass 4110 MeV, or the axial vector 1++ one ([cs]S=0[c̄s̄]S=1 + [cs]S=1[c̄s̄]S=0)/

√
2)

with calculated mass 4113 MeV [14]. Two of the three charmonium-like charged X± states
reported by Belle [16], which are explicitly exotic, can be interpreted in our model as tetraquark
states. We do not have tetraquark candidate for the X(4040)+ structure, while the X(4250)+

can be considered as the charged partner of the 1− 1P state [cu]S=0[c̄d̄]S=0 or as the 0− 1P
state of the ([cu]S=0[c̄d̄]S=1 +[cu]S=1[c̄d̄]S=0)/

√
2) tetraquark with predicted masses 4244 MeV

and 4267 MeV, respectively [14]. The X(4430)+ could be the first radial (2S) excitation of the
1+ X(3872) tetraquark or the 0+ 2S [cu]S=1[c̄d̄]S=1 tetraquark, which have very close masses
4431 MeV and 4434 MeV [14].

As we see, a consistent picture of the excited quarkonium states emerges in our model. All
well-established states and most of the states, which need additional experimental confirmation,
can be interpreted as excited quarkonium or diquark-antidiquark tetraquark states.

4 Conclusions

The mass spectra of charmonia, bottomonia and Bc mesons were calculated in the framework of
the relativistic quark model based on the quasipotential approach. Highly radially and orbitally
excited quarkonium states were considered. On this basis, the Regge trajectories of heavy
quarkonia were constructed both in the (J,M2) and (nr,M

2) planes. A different behaviour of
these trajectories was observed for parent and daughter trajectories. All daughter trajectories
turn out to be almost linear and parallel, while parent trajectories exhibit some nonlinearity.
Such nonlinearity occurs only in the vicinity of ground states and few lowest excitations and
is mostly pronounced for bottomonia. For charmonia this nonlinearity is only marginal, and
its account does not significantly improve the fit. It was shown that the masses of the excited
states of heavy quarkonia are determined by the average distances between quarks larger than
0.5 fm, where the linear confining part of the quark-antiquark interaction dominates. This
leads to the emergence of almost linear Regge trajectories. On the other hand, a few lowest
quarkonium states have average sizes smaller than 0.5 fm and fall in the region, where both
the Coulomb and confining potentials play an important role. As a result, the parent Regge
trajectories exhibit a certain nonlinearity in this region.

A detailed comparison of the calculated heavy quarkonium masses with available exper-
imental data was carried out. It was found that all data for the states below open flavour
production threshold are well reproduced in our model: the difference between predicted and
measured masses does not exceed few MeV. For higher excited states, which are above this
threshold, most of the well-established conventional states are also well described by our ap-
proach, the difference between theory and experiment being somewhat larger, but still within
20 MeV. In this case the multichannel consideration is desirable. It was shown that these states
fit well to the corresponding Regge trajectories. Other states, which have unexpected proper-
ties and are therefore believed to have an exotic origin, were also discussed. As it was shown
in our previous calculation [14], most of these states can be described as diquark-antidiquark
tetraquarks. Therefore we have a self-consistent picture of the heavy quarkonium spectra.
Future experimental studies of yet unobserved conventional quarkonium states and a clarifica-
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tion of the nature and quantum numbers of the exotic quarkonium-like states will provide an
additional test of our model.

The authors are grateful to A. Ali, M. A. Ivanov, V. A. Matveev and V. I. Savrin for useful
discussions. This work was supported in part by the Russian Foundation for Basic Research
under Grant No.12-02-00053-a.
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