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It is shown that in the leading twist approximation of the Wilson operator product expan-

sion with “frozen” and analytic strong coupling constants, Bessel-inspired behavior of the

structure functions F2 and F
cc
2 at small x values, obtained for a flat initial condition in the

DGLAP evolution equations, leads to good agreement with the deep inelastic scattering

experimental data from HERA.

1 Introduction

The experimental data from HERA on the deep-inelastic scattering (DIS) structure function
(SF) F2 [1, 2], its derivative ∂ lnF2/∂ ln(1/x) [3, 4] and the heavy quark parts F cc

2 and F bb
2 [5,

6, 7] enable us to enter into a very interesting kinematical range for testing the theoretical ideas
on the behavior of quarks and gluons carrying a very low fraction of momentum of the proton,
the so-called small-x region. In this limit one expects that the conventional treatment based
on the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations [8] does not account
for contributions to the cross section which are leading in αs ln(1/x) and, moreover, the parton
distribution function (PDFs), in particular the gluon one, are becoming large and need to
develop a high density formulation of QCD.

However, the reasonable agreement between HERA data and the next-to-leading-order
(NLO) approximation of perturbative QCD has been observed for Q2 ≥ 2 GeV2 (see reviews
in [9] and references therein) and, thus, perturbative QCD could describe the evolution of F2

and its derivatives up to very low Q2 values, traditionally explained by soft processes.
The standard program to study the x behaviour of quarks and gluons is carried out compar-

ing the experimental data with the numerical solution of the DGLAP equations [8] by fitting
the QCD energy scale Λ and the parameters of the x-profile of partons at some initial Q2

0

[10, 11]. However, to investigate exclusively the small-x region, there is the alternative of doing
the simpler analysis by using some of the existing analytical solutions of DGLAP in the small-x
limit [12]-[15]. It was pointed out in [12] that the HERA small-x data can be well interpreted in
terms of the so-called doubled asymptotic scaling (DAS) phenomenon related to the asymptotic
behaviour of the DGLAP evolution discovered many years ago [16].

The study of [12] was extended in [13]-[15] to include the finite parts of anomalous dimensions
(ADs) of Wilson operators and Wilson coefficients1. This has led to predictions [14, 15] of the
small-x asymptotic PDF form in the framework of the DGLAP dynamics, which were obtained
starting at some Q2

0 with the flat function

fa(Q2
0) = Aa (hereafter a = q, g), (1)

1In the standard DAS approximation [16] only the AD singular parts were used.
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where fa are PDFs multiplied by x and Aa are unknown parameters to be determined from the
data.

We refer to the approach of [13]-[15] as generalized DAS approximation. In this approach
the flat initial conditions, Eq. (1), determine the basic role of the AD singular parts as in the
standard DAS case, while the contribution from AD finite parts and from Wilson coefficients
can be considered as corrections which are, however, important for better agreement with
experimental data.

The use of the flat initial condition, given in Eq. (1), is supported by the actual experimental
situation: low-Q2 data [17, 18, 4] are well described for Q2 ≤ 0.4 GeV2 by Regge theory with
Pomeron intercept αP (0) ≡ λP + 1 = 1.08, closed to the adopted (αP (0) = 1) one. The small
rise of HERA data [1, 2, 18, 19] at low Q2 can be explained, for example, by contributions of
higher twist operators (see [15]).

The purpose of this paper is to demostrate a good agreement [20, 21, 22] between the
predictions of the generalized DAS approach [14] and the HERA experimental data [1, 2] (see
Figs. 1 and 2 below) and [5, 7] (see Fig. 4 below) for the structure functions F2 and F cc

2 ,
respectively. We also compare the result of the slope ∂ lnF2/∂ ln(1/x) calculation with the H1
and ZEUS data [3, 4]. Looking at the H1 data [3] points shown in Fig. 3 one can conclude
that λ(Q2) is independent on x within the experimental uncertainties for fixed Q2 in the range
x < 0.01. The rise of λ(Q2) linearly with lnQ2 could be tracted in strong nonperturbative
way, i.e., λ(Q2) ∼ 1/αs(Q

2). The analysis [23], however, demonstrated that this rise can be
explained naturally in the framework of perturbative QCD.

The ZEUS and H1 Collaborations have also presented [4] the preliminary data for λ(Q2)
at quite low values of Q2. The ZEUS value for λ(Q2) is consistent with a constant ∼ 0.1 at
Q2 < 0.6 GeV2, as it is expected under the assumption of single soft Pomeron exchange within
the framework of Regge phenomenology. It was important to extend the analysis of [23] to low
Q2 range with a help of well-known infrared modifications of the strong coupling constant. We
used the “frozen” and analytic versions (see, [20]).

2 Generalized DAS approach

The flat initial condition (1) corresponds to the case when PDFs tend to some constant
value at x→ 0 and at some initial value Q2

0. The main ingredients of the results [14, 15], are:

• Both, the gluon and quark singlet densities 2 are presented in terms of two components
(” + ” and ”− ”) which are obtained from the analytic Q2-dependent expressions of the
corresponding (” + ” and ”− ”) PDF moments.

• The twist-two part of the ” − ” component is constant at small x at any values of Q2,
whereas the one of the ” + ” component grows at Q2 ≥ Q2

0 as

∼ eσ, σ = 2

√

[

d̂+s−

(

D̂+ + d̂+
β1

β0

)

p

]

ln

(

1

x

)

, ρ =
σ

2 ln(1/x)
, (2)

where σ and ρ are the generalized Ball–Forte variables,

s = ln

(

as(Q
2
0)

as(Q2)

)

, p = as(Q
2
0)− as(Q

2), d̂+ =
12

β0
, D̂+ =

412

27β0
. (3)

2The contribution of valence quarks is negligible at low x.
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Hereafter we use the notation as = αs/(4π). The first two coefficients of the QCD β-function
in the MS-scheme are β0 = 11 − (2/3)f and β1 = 102 − (114/9)f with f is being the number
of active quark flavors.

Note here that the perturbative coupling constant as(Q
2) is different at the leading-order

(LO) and NLO approximations. Hereafter we consider for simplicity only the LO approxima-
tion3, where the variables σ and ρ are given by Eq. (2) when p = 0.

2.1 Parton distributions and the structure function F2

The SF F2 and PDFs have the following form

F2(x,Q2) = e fq(x,Q2), fa(x,Q2) = f+
a (x,Q2) + f−a (x,Q2), (a = q, g) (4)

where e = (
∑f

1 e2
i )/f is the average charge square.

The small-x asymptotic results for PDFs f±a are

f+
g (x,Q2) =

(

Ag +
4

9
Aq

)

I0(σ) e−d+(1)s + O(ρ), f+
q (x,Q2) =

f

9

ρI1(σ)

I0(σ)
+ O(ρ),

f−g (x,Q2) = −
4

9
Aqe

−d−(1)s + O(x), f−q (x,Q2) = Aqe
−d−(1)s + O(x), (5)

where Iν (ν = 0, 1) are the modified Bessel functions, d−(1) = 16f/(27β0) and d+(1) =
1 + 20f/(27β0) is the regular part of AD d+(n) in the limit n → 1. Here n is the variable in
Mellin space.

2.2 Effective slopes

As it has been shown in [14], the behaviour of PDFs and F2 given in the Bessel-like form by
generalized DAS approach can mimic a power law shape over a limited region of x and Q2

fa(x,Q2) ∼ x−λeff
a

(x,Q2) and F2(x,Q2) ∼ x−λeff
F2

(x,Q2).

The effective slopes λeff
a (x,Q2) and λeff

F2
(x,Q2) have the form:

λeff
F2

(x,Q2) = λeff
g (x,Q2) =

f+
g (x,Q2)

fg(x,Q2)
ρ

Ĩ1(σ)

Ĩ0(σ)
≈ ρ−

1

4 ln (1/x)
,

λeff
q (x,Q2) =

f+
q (x,Q2)

fq(x,Q2)
ρ

Ĩ2(σ)

Ĩ1(σ)
≈ ρ−

3

4 ln (1/x)
, (6)

where the symbol ≈ marks the approximation obtained in the expansion of the modified Bessel
functions, when the “−” component is negligible. These approximations are accurate only at
very large σ values (i.e. at very large Q2 and/or very small x).

3The NLO results may be found in [14, 15].
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2.3 Structure functions F
cc
2 and F

bb
2

In the framework of the photon-gluon fusion (PGF) process, the SFs F cc
2 and F bb

2 have the
following form [24]

F ii
2 (x,Q2) ≈M i

2,g(1, Q
2, µ2)fg(x, µ2), (i = c, b) (7)

where M i
2,g(1, Q

2, µ2) is the first Mellin moment of the so-called gluon coefficient function

Ci
2,g(x,Q2, µ2). AT LO, it has the form [24]

M i
2,g(1, c) =

2

3
[1 + 2(1− ci)J(ci)] (8)

with

J(ci) = −
√

bi ln ti, ti =
1−

√
bi

1 +
√

bi

, bi =
1

1 + 4ci

, ci =
m2

i

Q2
. (9)

3 Comparison with experimental data

Using the results of previous section we have analyzed HERA data for F2 [1, 2] and F cc
2 [5, 7]

and also the slope ∂ lnF2/∂ ln(1/x) [3, 4] at small x from the H1 and ZEUS Collaborations.
In order to keep the analysis as simple as possible, we fix f = 4 and αs(M

2
Z) = 0.1166 (i.e.,

Λ(4) = 284 MeV) in agreement with the recent ZEUS results in [1].

3.1 Structure function F2

As it is possible to see in Figs. 1, 2 and 3, the twist-two approximation is reasonable at Q2 ≥ 2÷4
GeV2. At smaller Q2, some modification of the approximation should be considered.

In Refs. [20, 21], to improve the agreement at small Q2 values, we modifed the QCD
coupling constant. We have found a good agreement with experimental data at essentially
lower Q2 values: Q2 ≥ 0.5 GeV2 (see Figs. 1 and 2).

We considered two modifications.

In one case, which is more phenomenological, we introduce freezing of the coupling constant
by changing its argument Q2 → Q2+M2

ρ , where Mρ is the ρ-meson mass (see [20] and references
therein). Thus, in the formulae of the Section 2 we should do the following replacement:

as(Q
2)→ afr(Q

2) ≡ as(Q
2 + M2

ρ ) (10)

The second possibility incorporates the Shirkov–Solovtsov idea [25] about analyticity of the
coupling constant that leads to the additional its power dependence. Then, in the formulae of
the previous section the coupling constant as(Q

2) should be replaced as follows: (k = 1 and 2
at LO and NLO)

aan(Q2) = as(Q
2)−

1

kβ0

Λ2

Q2 − Λ2
+ . . . , (11)

where the symbol . . . stands for terms which are zero and negligible at Q ≥ 1 GeV [25] at LO
and NLO, respectively.
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Figure 1: x dependence of F2(x,Q2) in bins of Q2. The experimental data from H1 (open points)
and ZEUS (solid points) [1] are compared with the NLO fits for Q2 ≥ 0.5 GeV2 implemented
with the canonical (solid lines), frozen (dot-dashed lines), and analytic (dashed lines) versions
of the strong-coupling constant.

3.2 Effective slopes

Figure 3 shows the experimental data for λeff
F2

(x,Q2) at x ∼ 10−3, which represents an average
of the x-values of HERA experimental data. The top dashed line represents the aforementioned
linear rise of λ(Q2) with ln(Q2). The Figs. 1, 2 and 3 demonstrate that the theoretical
description of the small-Q2 ZEUS data for λeff

F2
(x,Q2) by NLO QCD is significantly improved by

implementing the “frozen” and analytic coupling constants αfr(Q
2) and αan(Q2), respectively,

which in turn lead to very close results (see also [26]).
Indeed, the fits for F2(x,Q2) in [15] yielded Q2

0 ≈ 0.5–0.8 GeV2. So, initially we had
λeff

F2
(x,Q2

0) = 0, as suggested by Eq. (1). The replacements of Eqs. (10) and (11) modify the

value of λeff
F2

(x,Q2
0). For the “frozen” and analytic coupling constants αfr(Q

2) and αan(Q2),

the value of λeff
F2

(x,Q2
0) is nonzero and the slopes are quite close to the experimental data at

Q2 ≈ 0.5 GeV2. Nevertheless, for Q2 ≤ 0.5 GeV2, Fig. 3 shows that there is still some
disagreement with the data, which needs additional investigation.
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Figure 2: As in Fig.1 but for the combined H1&ZEUS exerimental data [2].

For comparison, we display in Fig. 3 also the results obtained by Kaidalov et al. [27] and
by Donnachie and Landshoff [28] adopting phenomenological models based on Regge theory.
While they yield an improved description of the experimental data for Q2 ≤ 0.4 GeV2, the
agreement generally worsens in the range 2 GeV2 ≤ Q2 ≤ 8 GeV2.

The results of fits in [15, 20, 21] have an important property: they are very similar in LO
and NLO approximations of perturbation theory. The similarity is related to the fact that the
small-x asymptotics of the NLO corrections are usually large and negative (see, for example,
αs-corrections [29] to BFKL approach [30] 4). Then, the LO form ∼ αs(Q

2) for some observable
and the NLO one ∼ αs(Q

2)(1−Kαs(Q
2)) with a large value of K, are similar because Λ≫ ΛLO

5

and, thus, αs(Q
2) at LO is considerably smaller then αs(Q

2) at NLO for HERA Q2 values.

In other words, performing some resummation procedure (such as Grunberg’s effective-
charge method [31]), one can see that the NLO form may be represented as ∼ αs(Q

2
eff), where

Q2
eff ≫ Q2. Indeed, from different studies [32, 26], it is well known that at small-x values the

effective argument of the coupling constant is higher then Q2.

4It seems that it is a property of any processes in which gluons, but not quarks play a basic role.
5The equality of αs(M2

Z
) at LO and NLO approximations, where MZ is the Z-boson mass, relates Λ and

ΛLO: Λ(4) = 284 MeV (as in ZEUS paper on [1]) corresponds to ΛLO = 112 MeV (see [15]).
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Figure 3: As in Fig,1 but for the Q2 dependence of λeff
F2

(x,Q2) for an average small-x value

of x = 10−3. The linear rise of λeff
F2

(x,Q2) with lnQ2 [3] is indicated by the straight dashed
line. For comparison, also the results obtained in the phenomenological models by Kaidalov et
al. [27] (dash-dash-dotted line) and by Donnachie and Landshoff [28] (dot-dot-dashed line) are
shown.

3.3 Structure function F
cc
2

We are now in a position to explore the phenomenological implications of our results for SF
F cc

2 . As for our input parameters, we choose mc = 1.25 GeV in agreement with Particle Data
Group [34]. In order to fix the unphysical mass scale µ, we put µ2 = Q2 + 4m2

c , which is the
standart scale in heavy quark production.

The PDF parameters µ2
0, Aq and Ag shown in (1), have been fixed in the fits of F2 experi-

mental data (see the subsection 3.1). Their values depend on conditions chosen in the fits: the
order of perturbation theory and the number f of active quarks.

Below b-quark threshold, the scheme with f = 4 has been used [15, 20] in the fits of F2

data. Note, that the F2 structure function contains F cc
2 as a part. In the fits, the NLO gluon

density and the LO and NLO quark ones contribute to F c
2 , as the part of to F2. Then, now

in PGF scattering the LO coefficient function (9) corresponds in m → 0 limit to the standart
NLO Wilson coefficient (together with the product of the LO anomalous dimension γqg and
ln(m2

c/Q2). It is a general situation, i.e. the coefficient funstion of PGF scattering at some
order of perturbation theory corresponds to the standart DIS Wilson coefficient with the one
step higher order. The reason is following: the standart DIS analysis starts with handbag
diagram of photon-quark scattering and photon-gluon interaction begins at one-loop level.

Thus, in our F cc
2 analysis in the LO approximation of PGF process we should take fa(x,Q2)

extracted from fits of F2 data at f = 4 and NLO approximation. In practice, in [22] we have
applied our f = 4 NLO twist-two fit [15] of H1 data for F2 with Q2 cut: Q2 > 1.5 GeV2, which
produces Q2

0 = 0.523 GeV2, Ag = 0.060 and Aq = 0.844.
The results for F cc

2 are prsented in Fig.4. We can see a good agreement between our compact
formulas (7) and (9) and the modern experimental data [5, 6, 7] for F cc

2 . To keep place on Fig.4,
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Figure 4: F cc
2 (x,Q2) evaluated as functions of x with the LO matrix elements (dashed lines)

and with the NLO ones and with the factorization/renormalization scale µ2 = Q2 + 4m2
c (solid

lines). The black points and red squares correspond to the the combine H1ZEUS preliminary
data [7] and H1 data [5], respectively.

we show only the H1 [5] data and the combine H1&ZEUS [7] one.

The good agreement between generalized double-asymptotic scaling DAS approach used here
and F2 and F cc

2 data demonstrates an equal importance of the both parton densities (gluon
one and sea quark one) at low x. It is due to the fact that F2 relates mostly to the sea quark
distribution, while the F cc

2 relates mostly to the gluon one. Dropping sea quarks in analyse
leads to the different gluon densities extracted from F2 of from F cc

2 (see, for example, [33]).

4 Conclusions

We have shown the Q2-dependence of the structure functions F2 and F cc
2 and of the slope

λeff
F2

= ∂ lnF2/∂ ln(1/x) at small-x values in the framework of perturbative QCD. Our twist-
two results are in very good agreement with precise HERA data at Q2 ≥ 2 GeV2, where
perturbative theory can be applicable. The application of the “frozen” and analytic coupling
constants αfr(Q

2) and αan(Q2) improves the agreement at small Q2 values, Q2 ≥ 0.5 GeV2.

For the slope λeff
F2

and for the structure function F cc
2 , our results agree with the corresponding

experimental data [3, 4] and [5, 6, 7] well within errors without a free additional parameters.
In the Q2 range probed by the HERA data, our NLO predictions agree very well with the

8 HQ2013

ANATOLY KOTIKOV

192 HQ2013



LO ones. Since we worked in the fixed-flavour-number scheme, our results for F cc
2 are bound

to break down for Q2 ≫ 4m2
c , which manifests itself by appreciable QCD correction factors

and scale dependences. As is well known, this problem is conveniently solved by adopting the
variable-flavour-number scheme, which not considered here.

As a next step of investigations, we plan to add the BFKL corrections to our approach [14]
(see appendix A in [35]) and to use our approach to analyse the cross sections of processes stud-
ied at LHC by analogy with our investigations [36] of the total cross section of ultrahigh-energy
deep-inelastic neutrino-nucleon scattering.

A.V.K. thanks the Organizing Committee of the Helmholtz International Summer School
”Physics of Heavy Quarks and Hadrons - 2013” for invitation and support. This work was
supported in part by RFBR grant 13-02-01005-a.
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