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The f0 mesons are studied in a combined analysis of data on isoscalar S-wave processes
ππ → ππ,KK, ηη and on decays J/ψ → φ(ππ,KK), ψ(2S) → J/ψ(ππ) and Υ(2S) →
Υ(1S)ππ from the Argus, Crystal Ball, CLEO, CUSB, DM2, Mark II, Mark III, and BESIII
Collaborations. The method of analysis, based on analyticity and unitarity and using an
uniformization procedure, is set forth with some details. Some spectroscopic implications
from results of the analysis are discussed.

1 Introduction

The problem of scalar mesons, particularly their nature, parameters, and status of some of them,
is still not solved [1]. In the 3-channel analyses of ππ scattering, based on the uniformizing
variable [2, 3], we obtained parameters of the f0(600) and f0(1500) which considerably differ
from results of analyses utilizing other methods (mainly based on dispersion relation and Breit-
Wigner approaches). Reasons for this difference were understood in Refs. [4, 5]. We showed
that studying wide multi-channel resonances the Riemann-surface structure of the S-matrix
of considered processes must be allowed for properly. For the scalar states this should be at
least the 8-sheeted Riemann surface. This is related to a necessity to analyze jointly coupled
processes ππ → ππ,KK, ηη because analyzing only ππ scattering it is impossible to obtain
correct parameters for the scalar states. One can conclude: Even if a wide state does not
decay into a channel which opens above its mass but it is strongly connected with this channel,
one ought to consider this state taking into account the Riemann-surface sheets related to
the threshold branch-point of this channel. I.e., the standard dispersion relation approach,
in which amplitudes are considered on the 2-sheeted Riemann surface, does not suit for a
correct determination of resonance parameters. These conclusions are important because our
approach is based only on the demand for analyticity and unitarity of amplitude and using
an uniformization procedure. The construction of the amplitude is essentially free from any
dynamical (model) assumptions utilizing only the mathematical fact that a local behaviour of
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analytic functions determined on the Riemann surface is governed by the nearest singularities
on all corresponding sheets. Therefore, our approach permits us to omit theoretical prejudice
in extracting the resonance parameters.

Analyzing only ππ → ππ,KK, ηη(ηη′) [3] we showed that data on the ππ scattering below
1 GeV admit two sets of parameters of the f0(600): in both cases mσ ≈ mρ and the total
widths about 600 and 950 MeV – solutions “A” and “B”, respectively. For the states f0(1370),
f0(1500) (as a superposition of a broad and narrow state) and f0(1710), we got four possible
scenarios of representation by poles and zeros on the Riemann surface giving similar description
of the above processes and, however, quite different parameters of some resonances. E.g., in A
solution we got the following spread of the masses and total widths for the f0(600), f0(1370)
and f0(1710), respectively: 605-735 and 567-686 MeV, 1326-1404 and 223-345 MeV, and 1751-
1759 and 118-207 MeV. Adding the data on J/ψ → φ(ππ,KK) from the Mark III, DM2 and
BESIII [6], we could diminished the number of possible scenarios [5]. Moreover, the di-pion
mass distribution of J/ψ → φππ of the BESIII data from the threshold to about 850 MeV
prefers the solution with the wider f0(600) state – B-solution. This is a problem because most
of physicists [1] prefer the narrower f0(600). Therefore, we extend our analysis adding also data
on ψ(2S) → J/ψ(ππ) and Υ(2S) → Υ(1S)ππ from the Argus, Crystal Ball, CLEO, CUSB, and
Mark II collaborations [7, 8].

There are also problems related to interpretation of scalar mesons, e.g., as to an assignment
of the scalar mesons to qq̄ nonets. A number of properties of these states do not allow one simply
to make up this. The main problem is a discordance of the approximately equal masses of the
f0(980) and a0(980) and observed ss̄ dominance in the wave function of the f0(980). If these
states are in the same nonet, then the f0(980) must be heavier than a0(980) by 250-300 MeV
because the difference of the s- and u-quark masses is 120-150 MeV. Due to this fact, various
solutions are proposed. The most popular variant is the 4-quark interpretation of the f0(980)
and a0(980) mesons, in favour of which as though additional arguments have been found based
on interpretation of the data on φ→ γπ0π0, γπ0η [9]. However, the 4-quark model, beautifully
solving the old problem of the unusual properties of scalar mesons, sets new questions. Where
are the 2-quark states, their radial excitations and the other members of 4-quark multiplets
9, 9∗, 36 and 36∗, which are predicted to exist below 2.5 GeV [10]? We proposed our way to
solve this problem.

Further we shall consider mainly the 3-channel case because this is a minimal number of
channels needed for obtaining correct values of parameters of the scalar resonances.

2 Method of the uniformizing variable

Our model-independent method which essentially utilizes a uniformizing variable can be used
only for the 2- and the 3-channel cases [2, 3]. The 3-channel S-matrix is determined on the
8-sheeted Riemann surface. The matrix elements Sij , where i, j = 1, 2, 3 denote channels,
have the right-hand cuts along the real axis of the s complex plane (s is the invariant total
energy squared), starting with the channel thresholds si, and the left-hand cuts related to
the crossed channels. The Riemann-surface sheets, denoted by the Roman numbers, are num-
bered according to the signs of analytic continuations of the square roots

√
s− si as follows:

signs
(

Im
√
s− s1, Im

√
s− s2, Im

√
s− s3

)

= + + +, −+ +, −−+, +−+, +−−, −−−,

−+−, + +− correspond to sheets I, II,· · · , VIII, respectively.
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Figure 1: Sewing together the sheets of the Rie-
mann surface.

In the upper part of Fig. 1, the right-hand
cuts of the 3-channel S-matrix are shown on
the s-plane. The lower part shows how the
Riemann sheets are sewed together. E.g.,
sheet I is sewed with sheet II, III, and VI be-
tween the thresholds ππ and KK, KK and
ηη, and above the ηη threshold, respectively.
Our approach is based on analyticity and uni-
tarity and realizes an idea of the consistent
account of the nearest (to the physical re-
gion) singularities on all sheets of the Rie-
mann surface of the S-matrix, thus giving a
chance to obtain a model-independent infor-
mation on resonances from the data analysis.
The main model-independent contribution of
resonances is given by poles and correspond-
ing zeros on the Riemann surface. A simple
description of the background is a criterion of
correctness of this statement.

If a resonance has the only decay mode
(1-channel case), a general statement about
the amplitude is that for energies in proxim-
ity of the resonance energy it describes the
propagation of resonance as if it is a free par-
ticle. This means that in the matrix element the resonance (in the limit of its narrow width) is
represented by a pair of complex conjugate poles on sheet II and by a pair of conjugate zeros
on sheet I at the same points of complex energy. This model-independent statement about
the poles as the nearest singularities holds also when taking account of the finite width of a
resonance and in the multi-channel case.

An arrangement of poles and zeros of a multi-channel resonance on the Riemann surface
is obtained using the proved fact that on the physical sheet, the S-matrix elements can have
only resonance zeros (beyond the real axis), at least, around the physical region. This allows
to obtain formulas expressing analytic continuations of the S-matrix elements to all sheets
in terms of those on the physical sheet [11]. To this end, let us consider the N -channel S-
matrix (all are two-particle channels) determined on the 2N -sheeted Riemann surface. The
surface has the right-hand (unitary) cuts along the real axis of the s-variable complex plane
(si,∞) (i = 1, 2, · · · , N is a channel) through which the physical sheet is sewed together with
other sheets. The branch points are at the zero channel momenta kα = (s/4 −m2

α)1/2. For
now we will neglect the left-hand cut on the Riemann surface related to the crossing-channel
contributions, which, in principle, can be included in the background part of the amplitude.

It is convenient to label the sheets as follows (see, e.g., [12]): the physical sheet is denoted
as L0 and the other sheets as Li1···ik where i1 · · · ik is a system of subscripts of those channel-
momenta kin that change signs at analytical continuations from the physical onto the indicated
sheet. Then the analytical continuation of S-matrix elements Sik to the unphysical sheet Li1···ik
is S

(i1···ik)
ik . We obtain the formula for S

(i1···ik)
ik expressed in terms of S

(0)
ik (the matrix elements

Sik on the physical sheet L0), using the reality property of the analytic functions and the N -
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channel unitarity. The direct derivation of these formulas requires rather bulky algebra. It can
be simplified if we use Hermiticity of the K-matrix.

First, let us introduce the notation: S[i1···ik] is a matrix with zero matrix elements except
for the rows i1, · · · , ik, that consist of elements Sinim . In the matrix S{i1···ik}, on the contrary,
the rows i1, · · · , ik are zeros. Therefore, S[i1···ik] + S{i1···ik} = S. Further we introduce the
diagonal matrices ∆[i1···ik] and ∆{i1···ik} with the diagonal elements

∆
[i1···ik]
ii =

{

1 if i ∈ (i1 · · · ik),
0 for remaining i,

and ∆
{i1···ik}
ii =

{

0 if i ∈ (i1 · · · ik).
1 for remaining i,

Further using relation of the S- and K-matrices

S =
I + iρ1/2Kρ1/2

I − iρ1/2Kρ1/2
where ρij = 0 (i 6= j), ρii = 2ki/

√
s (1)

and SS+ = I, it is easy to obtain K = K+, i.e., the K-matrix has no discontinuity when
crossing the two-particle unitary cuts and has the same value in all sheets of the Riemann
surface. Using the latter fact, we obtain the needed formula. The analytical continuations of
the S-matrix to the sheet Li1···ik will be represented as

S(i1···ik) =
S(0){i1···ik} − i∆[i1···ik]

∆{i1···ik} − iS(0)[i1···ik]
. (2)

From eq. (2) the corresponding relations for the S-matrix elements can be derived by the
formula for the matrix division. In Table 1 the result is shown for the 3-channel case. We
have returned to more standard enumeration of sheets by Roman numerals I, II,...,VIII. In

L0 L1 L12 L2 L23 L123 L13 L3

Process I II III IV V VI VII VIII

1→ 1 S11 1/S11 S22/D33 D33/S22 det S/D11 D11/det S S33/D22 D22/S33

1→ 2 S12 iS12/S11 −S12/D33 iS12/S22 iD12/D11 −D12/det S iD12/D22 D12/S33

2→ 2 S22 D33/S11 S11/D33 1/S22 S33/D11 D22/det S det S/D22 D11/S33

1→ 3 S13 iS13/S11 −iD13/D33 −D13/S22 −iD13/D11 D13/det S −S13/D22 iS13/S33

2→ 3 S23 D23/S11 iD23/D33 iS23/S22 −S23/D11 −D23/det S iD23/D22 iS23/S33

3→ 3 S33 D22/S11 det S/D33 D11/S22 S22/D11 D33/det S S11/D22 1/S33

Table 1: Analytic continuations of the 3-channel S-matrix elements to unphysical sheets.

Table 1, the superscript I is omitted to simplify the notation, detS is the determinant of the
3 × 3 S-matrix on sheet I, Dαβ is the minor of the element Sαβ , that is, D11 = S22S33 − S2

23,
D22 = S11S33 − S2

13, D33 = S11S22 − S2
12, D12 = S12S33 − S13S23, D23 = S11S23 − S12S13, etc.

These formulas show how singularities and resonance poles and zeros are transferred from
the matrix element S11 to matrix elements of coupled processes. Starting from the resonance
zeros on sheet I, one can obtain the arrangement of poles and zeros of resonance on the whole
Riemann surface (“pole clusters”). In the 3-channel case, we obtain 7 types of resonances
corresponding to 7 possible situations when there are resonance zeros on sheet I only in S11 –
(a); S22 – (b); S33 – (c); S11 and S22 – (d); S22 and S33 – (e); S11 and S33 – (f);
S11, S22 and S33 – (g). A necessary and sufficient condition for existence of the multi-channel
resonance is its representation by one of the types of pole clusters. A main model-independent
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contribution of resonances is given by the pole clusters and possible remaining small (model-
dependent) contributions of resonances can be included in the background. This is confirmed
further by the obtained very simple description of the background.

The cluster type is related to the nature of state. E.g., if we consider the ππ, KK and ηη
channels, then a resonance, coupled relatively more strongly to the ππ channel than to the KK
and ηη ones is described by the cluster of type (a). In the opposite case, it is represented by
the cluster of type (e) (say, the state with the dominant ss̄ component). The glueball must be
represented by the cluster of type (g) as a necessary condition for the ideal case.

One can formulate a model-independent test as a necessary condition to distinguish a bound
state of colorless particles (e.g., a KK molecule) and a qq̄ bound state [11, 13]. In the 1-channel
case, the existence of the particle bound-state means the presence of a pole on the real axis
under the threshold on the physical sheet. In the 2-channel case, existence of the bound-state in
channel 2 (KK molecule) that, however, can decay into channel 1 (ππ decay), would imply the
presence of the pair of complex conjugate poles on sheet II under the second-channel threshold
without the corresponding shifted pair of poles on sheet III.

In the 3-channel case, the bound state in channel 3 (ηη) that, however, can decay into
channels 1 (ππ decay) and 2 (KK decay), is represented by the pair of complex conjugate poles
on sheet II and by the pair of shifted poles on sheet III under the ηη threshold without the
corresponding poles on sheets VI and VII.

According to this test, earlier we rejected interpretation of the f0(980) as the KK molecule
because this state is represented by the cluster of type (a) in the 2-channel analysis of ππ →
ππ,KK and, therefore, does not satisfy the necessary condition to be the KK molecule [11].

It is convenient to use the Le Couteur-Newton relations [14]. They express the S-matrix
elements of all coupled processes in terms of the Jost matrix determinant d(k1, · · · , kN ) ≡ d(s)
that is a real analytic function with the only branch-points at ki = 0:

Sii(s) =
d(i)(s)

d(s)
,

∣

∣

∣

∣

∣

∣

∣

Si1i1(s) · · · Si1ik(s)
...

...
...

Siki1(s) · · · Sikik(s)

∣

∣

∣

∣

∣

∣

∣

=
d(i1···ik)(s)

d(s)
. (3)

Rather simple derivation of these relations, using the ND−1 representation of amplitudes and
Hermiticity of the K-matrix, can be found in Ref. [12]. The real analyticity implies d(s∗) =
d∗(s) for all s. The unitarity condition requires further restrictions on the d-function for
physical s-values which will be discussed below in the example of 3-channel S-matrix.

In order to use really the representation of resonances by various pole clusters, it ought to
transform our multi-valued S-matrix, determined on the 8-sheeted Riemann surface, to one-
valued function. But that function can be uniformized only on torus with the help of a simple
mapping. This is unsatisfactory for our purpose. Therefore, we neglect the influence of the
lowest (ππ) threshold branch-point (however, unitarity on the ππ cut is taken into account).
This approximation means the consideration of the nearest to the physical region semi-sheets
of the Riemann surface of the S-matrix. In fact, we construct a 4-sheeted model of the initial 8-
sheeted Riemann surface that is in accordance with our approach of a consistent account of the
nearest singularities on all the relevant sheets. In the corresponding uniformizing variable, we
have neglected the ππ-threshold branch-point and taken into account theKK- and ηη-threshold
branch-points and the left-hand branch-point at s = 0:

w =

√

(s− s2)s3 +
√

(s− s3)s2
√

s(s3 − s2)
(s2 = 4m2

K and s3 = 4m2
η). (4)
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288 HQ2013



In Fig. 2 we show the representation of resonances of types (a), (b), (c) and (g) used in
this analysis on the uniformization w-plane for the 3-channel-ππ-scattering S-matrix element.
Representation of other type resonances can be found in Ref. [3].
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Figure 2: Uniformization w-plane. Representation of resonances of types (a), (b), (c) and (g)
in S11 is shown.

On the w-plane, the Le Couteur–Newton relations are somewhat modified taking account
of the used model of initial 8-sheeted Riemann surface:

S11 =
d∗(−w∗)

d(w)
, S22 =

d(−w−1)

d(w)
, S33 =

d(w−1)

d(w)
, (5)

S11S22 − S2
12 =

d∗(w∗−1)

d(w)
, S11S33 − S2

13 =
d∗(−w∗−1)

d(w)
, S22S33 − S2

23 =
d(−w)

d(w)
. (6)

The 3-channel unitarity requires the following relations to hold for physical w-values: |d(−w∗)| ≤
|d(w)|, |d(−w−1)| ≤ |d(w)|, |d(w−1)| ≤ |d(w)| and |d(w∗−1)| = |d(−w∗−1)| = |d(−w)| = |d(w)|.

The S-matrix elements in Le Couteur–Newton relations are taken as S = SBSres. The d-
function is for the resonance part dres(w) = w−M

2

∏M
r=1(w+w∗

r ) (M is a number of resonance

zeros) and for the background part dB = exp[−i∑3
n=1(

√
s− sn/2mn)(αn + iβn)] where

αn = an1 + anσ
s− sσ
sσ

θ(s− sσ) + anv
s− sv
sv

θ(s− sv),

βn = bn1 + bnσ
s− sσ
sσ

θ(s− sσ) + bnv
s− sv
sv

θ(s− sv).

Here sσ is the σσ threshold and sv is the combined threshold of the ηη′, ρρ and ωω channels.
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Di-meson mass distributions in decays J/ψ → φ(ππ,KK) and V ′ → V ππ (e.g., ψ(2S) →
J/ψ(ππ) and Υ(2S) → Υ(1S)ππ) are calculated using formalism of Refs. [13]. There is assumed
that pairs of pseudo-scalar mesons in final states have I = J = 0 and only they undergo strong
interactions, whereas a final vector meson (φ, V ) acts as a spectator. The decay amplitudes
are related with the scattering amplitudes Tij (i, j = 1− ππ, 2−KK) as follows:

F (J/ψ → φππ) =
√

2/3 [c1(s)T11 + c2(s)T21], (7)

F (J/ψ → φKK) =
√

1/2 [c1(s)T12 + c2(s)T22], (8)

F (V ′ → V ππ (V = ψ,Υ)) = [(d1, e1)T11 + (d2, e2)T21] (9)

where c1 = γ10 + γ11s, c2 = α2/(s−β2)+ γ20 + γ21s, and (di, ei) = (δi0, ρi0)+ (δi1, ρi1)s are
functions of couplings of the J/ψ, ψ(2S) and Υ(2S) to channel i; α2, β2, γi0, γi1, δi0, ρi0, δi1
and ρi1 are free parameters. The pole term in c2 is an approximation of possible φK states,
not forbidden by OZI rules when considering quark diagrams of these processes. Obviously this
pole should be situated on the real s-axis below the ππ threshold.

The expressions N |F |2
√

(s− si)
(

m2
ψ − (

√
s−mφ)2

)(

m2
ψ − (

√
s+mφ)2

)

for J/ψ → φππ, φKK (and the analogues ones for V ′ → V ππ) give the di-meson mass dis-
tributions. N (normalization to experiment) is 0.7512 for Mark III, 0.3705 for DM2, 5.699 for
BESIII, 1.015 for Mark II, 0.98 for Crystal Ball(80), 4.3439 for Argus, 2.1776 for CLEO, 1.2011
for CUSB, and 0.0788 for Crystal Ball(85).

3 The combined 3-channel analysis of data

We performed the combined 3-channel analysis of data on isoscalar S-wave processes ππ →
ππ,KK, ηη and on J/ψ → φ(ππ,KK), ψ(2S) → J/ψ(ππ) and Υ(2S) → Υ(1S)ππ.

For the data on multi-channel ππ scattering we used the results of phase analyses which
are given for phase shifts of the amplitudes δαβ and for the modules of the S-matrix elements
ηαβ = |Sαβ | (α, β = 1, 2, 3): Sαα = ηαα exp{2iδαα}, Sαβ = iηαβ exp{iφαβ}. If below the third
threshold there is the 2-channel unitarity then the relations η11 = η22, η12 = (1−η112)1/2 and
φ12 = δ11 + δ22 are fulfilled in this energy region.

References to used data for processes ππ → ππ,KK, ηη can be found in [3]. For decays
J/ψ → φππ, φKK we have taken data from Mark III, DM2 and BESIII [6]; for ψ(2S) →
J/ψ(π+π−) from Mark II and for ψ(2S) → J/ψ(π0π0) from Crystal Ball Collaborations(80)
[7]; for Υ(2S) → Υ(1S)(π+π−, π0π0) from Argus, CLEO, CUSB, and Crystal Ball Collabora-
tions(85) [8]. In this analyses of the coupled scattering processes and decays, it is assumed that
in the 1500-MeV region two states – the narrow f0(1500) and wide f ′0(1500) – exist.

We have obtained the following scenarios: the f0(600) is described by the cluster of type
(a); the f0(1370) and f0(1500), type (c) and f ′0(1500), type (g); the f0(980) is represented only
by the pole on sheet II and shifted pole on sheet III. However, the f0(1710) can be described
by clusters either of type (b) or (c). For definiteness, we have taken type (c).

The resonances pole arrangement on the
√
s-plane can be found in [5]. The obtained

background parameters are: a11 = 0.0, a1σ = 0.0199, a1v = 0.0, b11 = b1σ = 0.0, b1v = 0.0338,
a21 = −2.4649, a2σ = −2.3222, a2v = −6.611, b21 = b2σ = 0.0, b2v = 7.073, b31 = 0.6421,
b3σ = 0.4851, b3v = 0; sσ = 1.6338 GeV2, sv = 2.0857 GeV2. The very simple description of
the ππ-scattering background (underlined values) confirms well our assumption S = SBSres and
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also that representation of multi-channel resonances by the pole clusters on the uniformization
plane is good and quite sufficient. Moreover, this shows that the consideration of the left-hand
branch-point at s = 0 in the uniformizing variable solves partly a problem of some approaches
(see, e.g., [15]) that the wide-resonance parameters are strongly controlled by the non-resonant
background.

Parameters of resonances and background are changed very insignificantly in comparison
with our analysis in Ref. [5] performed without consideration of the ψ(2S)- and Υ(2S)-decays
confirming our previous results. Parameters of the coupling functions of the decay particles
(J/ψ, ψ(2S) and Υ(2S)) to channel i, obtained in the analysis, are α2, β2 = 0.0843, 0.0385,
γ10, γ11, γ20, γ21 = 1.1826, 1.2798, -1.9393, -0.9808, δ10, δ11, δ20, δ21 = −0.127, 16.621, 5.983,
−57.653, ρ10, ρ11, ρ20, ρ21 = 0.405, 47.0963, 1.3352,−21.4343.

The data on the di-pion mass distribution in decay J/ψ → φππ, obtained by the BESIII
collaboration with rather small errors, rejects dramatically the A solution with the narrower
f0(600): the corresponding curve lies considerably below the data from the threshold to about
850 MeV. Therefore in the following we will discuss mainly the B solution.

Satisfactory description of all analyzed processes is obtained with the total χ2/NDF =
568.57/(481 − 65) ≈ 1.37; for the ππ scattering, χ2/NDF ≈ 1.15; for ππ → KK, χ2/NDF ≈
1.65; for ππ → ηη, χ2/ndp ≈ 0.87; for decays J/ψ → φ(ππ,KK), χ2/ndp ≈ 1.21; for ψ(2S) →
J/ψ(ππ), χ2/ndp ≈ 2.43; for Υ(2S) → Υ(1S)ππ, χ2/ndp ≈ 1.01.

The combined description of the 3-channel ππ scattering, decays J/ψ → φ(ππ,KK) from
the Mark III, DM2 and BESIII, and the data on ψ(2S)- and Υ(2S)-decays is practically the
same as that in Ref. [5] performed without considering decays of excited ψ- and Υ-mesons.
Therefore, here we show results of fitting only to the experimental data on the ψ(2S)- and
Υ(2S)-decays (Figs. 3 and 4).
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Figure 3: The ψ(2S) → J/ψππ de-
cays. Fitting to data [7].

Generally, wide multi-channel states are most ade-
quately represented by pole clusters, as the pole clus-
ters give the main effect of resonances. The pole
positions are rather stable characteristics for various
models, whereas masses and widths are very model-
dependent for wide resonances. However, mass values
are needed in some cases, e.g., in mass relations for
multiplets. We stress that such parameters of the wide
multi-channel states, as masses, total widths and cou-
pling constants with channels, should be calculated us-
ing the poles on sheets II, IV and VIII, because only on
these sheets the analytic continuations have the forms:
∝ 1/SI

11, ∝ 1/SI
22 and ∝ 1/SI

33, respectively, i.e., the
pole positions of resonances are at the same points of
the complex-energy plane, as the resonance zeros on
sheet I, and are not shifted due to the coupling of chan-
nels. E.g., if the resonance part of amplitude is taken
as T res =

√
s Γel/(m

2
res − s − i

√
s Γtot), for the mass

and total width, one obtains mres =

√

E2
r + (Γr/2)

2

and Γtot = Γr where the pole position
√
sr=Er−iΓr/2

must be taken on sheets II, IV, VIII, depending on the
resonance classification.
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Then masses and total widths are (in MeV): 693.9±10.0 and 931.2±11.8 for f0(600), 1008.1±3.1
and 64.0±3.0 for f0(980), 1399.0±24.7 and 357.0±74.4 for f0(1370), 1495.2±3.2 and 124.4±18.4
for f0(1500), 1539.5±5.4 and 571.6±25.8 for f ′0(1500), 1733.8±43.2 and 117.6±32.8 for f0(1710).

4 Discussion and conclusions
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Figure 4: The Υ(2S) → Υ(1S)ππ de-
cays. Fitting to data [8].

In this combined analysis of data an additional con-
firmation of the f0(600) with mass about 700 MeV
and width 930 MeV is obtained. This mass value
accords with prediction (mσ ≈ mρ) on the basis of
mended symmetry by Weinberg [16] and with an anal-
ysis using the large-Nc consistency conditions between
the unitarization and resonance saturation suggesting
mρ−mσ = O(N−1

c ) [17]. Also, e.g., the prediction of a
soft-wall AdS/QCD approach [18] for the mass of the
lowest f0 meson – 721 MeV – practically coincides with
the value obtained in our work. Of course, such large
width of this state is a problem. Maybe, we observe
a superposition of two states – narrower σ-meson and
wider state as it is the case in the 1500-MeV region.

Indication for f0(980) is obtained to be a non-qq̄
state, e.g., the bound ηη state. The f0(1370) and
f0(1710) have the dominant ss̄ component that agrees
with a number of experiments (see discussion in[3]).
In the 1500-MeV region, there are two states: the
f0(1500) (mres ≈ 1495 MeV, Γtot ≈ 124 MeV) and the
f ′0(1500) (mres ≈ 1539 MeV, Γtot ≈ 574 MeV). The
f ′0(1500) is interpreted as a glueball due to its biggest
width among enclosing states [19].

We propose the following assignment of the scalar
mesons to lower nonets, excluding the f0(980) as the
non-qq̄ state. The lowest nonet: the isovector a0(980),
the isodoublet K∗

0 (900), and f0(600) and f0(1370)
as mixtures of the 8th component of octet and the
SU(3) singlet. The Gell-Mann–Okubo (GM-O) formula
3m2

f8
= 4m2

K∗

0

− m2
a0

gives mf8 = 870 MeV.
In relation for masses of nonet mσ + mf0(1370) =
2mK∗

0
(900) the left-hand side is by about 14% bigger

than the right-hand one. For the next nonet we find:
the isovector a0(1450), the isodoublet K∗

0 (1450), and
two isoscalars f0(1500) and f0(1710). From the GM-
O formula, mf8 ≈ 1450 MeV. In formula mf0(1500) +
mf0(1710) = 2mK∗

0
(1450) the left-hand side is by about

10% bigger than the right-hand one. This assignment
removes a number of questions, stood earlier, and does
not put any new.
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