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A very common situation in experimental high energy physics is signal which cannot be
separated from background by use of any cut. Application of the distribution mixtures,
a modified iterative Expectation-Maximization algorithm for weighted data, and taking
advantage of Bayesian statistics represents promising multivariate technique in this area.
The paper presents statistical theory, computational aspects of the algorithm, and work-
ing results of signal from background separation obtained by application of the proposed
method to a single top analysis with the full DØ Run II dataset of 9.7 fb−1 of integrated
luminosity with corresponding signal and background Monte Carlo.

1 Distribution mixtures

A distribution mixture model, also known as the Model Based Clustering method (MBC), is an
analysis technique that separates data into groups by creating a statistical model. We focused
on the Gaussian Mixture Model (GMM), whose parameters can be obtained by an iterative
Expectation-Maximization (EM) algorithm which has been modified for weighted events. The
MBC allows us to classify given set without training in the separable cases. Since we used this
method in single top channels, where the distribution of signal and background is almost the
same, we took the advantage of the available Monte Carlo (MC) samples and applied the Bayes
rule to compute the a posteriori probability of membership of the event to each data class.

Let S = (ω1, . . . , ωK) denote a finite set of disjoint classes with P (
⋃K

k=1 ωk) = 1, where
P (ωk) > 0 is the a priori probability of the k-th class. One class represents signal and the others
different backgrounds. We focused on estimation of the parameters of class signal and class of
all backgrounds together. Assume that x = (x1, . . . , xD) is the observation of a D-dimensional
absolutely continuous random variable X. We want to find out the a priori probabilities P (ωk)
and the shape of distributions p(x |ωk) for each class.

Let x ∈ RD×N represent a set of data of dimension D with N independent and identically
distributed (i.i.d.) observations. Let p1(x |θ1), . . . , pM (x |θM ) be parametric probability density
functions of the same type, θl ∈ Θ, l ∈ {1, . . . ,M}, where M denotes the number of mixture
components, M ∈ N, M ≤ N , and where Θ ⊂ Rs is a parameter space, s ∈ N.
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Then the distribution mixture (see [1]) is any convex combination in the form of

p(x |θ) =

M∑

l=1

αlpl(x |θl),
M∑

l=1

αl = 1, αl ≥ 0, (1)

where αl denotes the weight of the l-th component. Instead of maximizing log-likelihood func-
tion (classic maximum likelihood estimate, MLE), we will maximize the conditional expected
value ([2]) of the so-called complete set z = (xT ,yT )T which consists of the observable data,
x, and the missing data, y, denoting membership of the data x to the l-th component, i.e.

(yi)l =

{
1, if xi belongs to the l-th component,

0, otherwise,
(2)

where i ∈ {1, . . . , N}, l ∈ {1, . . . ,M}, y ∈ RM×N , x ∈ RD×N , and the complete log-likelihood
function is defined as the logarithm of the probability of the complete set:

lc(θ |z) = ln p(z |θ), θ = (α1, . . . , αM , θ1, . . . , θM ) ⊂ RM× Rs×M . (3)

1.1 EM algorithm for weighted Gaussian Mixture Model

The auxiliary function Q(θ, ϑ) as the conditional expected value of the complete data is given
by

Q(θ, ϑ) = IE[lc(θ |z) |x, ϑ], (4)

where θ denotes a new (unknown) value of the distribution mixture parameter and ϑ denotes
an old (known) parameter. This function is maximized using the EM algorithm, whose k-th
iteration (k ∈ N0) consists of two steps ([3, 4]):

1. E-step: Calculate the auxiliary function Q(θ, θk)

Q(θ, θk) =

M∑

l=1

N∑

i=1

ln [αl]p(l |xi, θk)γ(xi) +

M∑

l=1

N∑

i=1

ln [pl(xi |θl)]p(l |xi, θk)γ(xi), (5a)

p(l |xi, θk) =
(
pl(xi |θkl )αk

l

)
(

M∑

l=1

pl(xi |θkl )αk
l

)−1

, (5b)

where pl(xi | θkl ) denotes the probability that observation xi ∈ RD×1 belongs to the l-th com-
ponent, i.e. the Gaussian probability density function.

2. M-step: Find θk+1 = (αk+1, µk+1,Ck+1) ∈ Θ maximizing Q(θ, θk)

αk+1
l =

(
N∑

i=1

p(l |xi, θk)γ(xi)

)(
N∑

i=1

γ(xi)

)−1

, µk+1
l =

N∑
i=1

p(l |xi, θk)γ(xi)xi

N∑
i=1

p(l |xi, θk)γ(xi)

, (6a)

Ck+1
l =

(
N∑

i=1

p(l |xi, θk)γ(xi)(xi − µk+1
l )(xi − µk+1

l )T

)(
N∑

i=1

p(l |xi, θk)γ(xi)

)−1

. (6b)
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Eventually, we can express the posterior probability of the k-th class, i.e. the probability that
observation x belongs to the k-th class, using Bayes theorem as

P (signal |x) =
p(x |signal)P (signal)

p(x |signal)P (signal) + p(x |background)P (background)
. (7)

1.2 Computational aspects of the EM algorithm

The classification of the training set is more successful with higher number of components, but
it is not trivial to find the optimal number of components because of the potential problems
with overfitting (overtraining). Figure 1 shows dependence of the success of the classification
on the number of components.

It is crucial to choose appropriate initialization parameters. Convergence of the EM algo-
rithm to a local optimum may produce different results for multiple runs. Thus, we usually
set the initial weight of each components to α0

l = 1
M , the initial expected values µ0

l are set to
the sample means, and the initial covariance matrices C0

l are diagonal matrices containing the
sample variance on the diagonal. This modification gives algorithm more variability, therefore,
it is subsequently more probable that algorithm converges to a higher local maximum.
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Figure 1: ROC curves and histograms of component weights for signal tb vs. all background in
2-Tag 2-Jets with two different settings of the number of components.

2 Analysis of single top MC from the DØ experiment

The MBC method was tested on single top (see [5, 6]) Monte Carlo, corresponding to the full
DØ Run II data of 9.7 fb−1 of integrated luminosity. We trained the model on the so-called
small training sample (STS), tested on the so-called testing sample (TS), and finally verified
the a posteriori distribution of the so-called yield sample (YS) and the real data from the DØ
detector. For details about MC, data, and official DØ analysis using Bayesian Neural Networks
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(BNN), Boosted Decision Trees (BDT), and the Matrix Element (ME) method see [7, 8].
Overall 12 sub-tasks {tb, tqb, tb+tqb} × {1-Tag, 2-Tag} × {2-Jets, 3-Jets} were computed using
up to 39 variables. The area under the ROC curve (AUC) varied between 0.62 and 0.8 depending
on the analysis channel and the testing set, see Table 1. Results of separation using ME, BNN,
BDT, MBC, and Generalized Linear Models (GLM) with probit link function are compared in
Figure 2.

NcS NcB AUCROC-TS AUCROC-STS AUCROC-YS ErrTS ErrSTS ErrYS ErrS-TS ErrS-STS ErrS-YS

1 350 61.622 67.355 58.788 5.539 5.398 6.934 99.876 99.877 99.893
350 350 70.589 80.319 66.596 19.420 14.359 23.709 59.872 50.340 59.146
450 200 70.838 78.166 67.179 20.441 17.338 25.915 57.040 49.179 54.261
20 110 65.946 68.895 62.498 8.844 8.228 10.758 89.829 89.218 89.598

290 110 71.384 76.938 67.086 25.166 22.675 30.199 47.783 41.123 47.231
350 110 71.339 78.143 67.412 27.462 25.075 32.946 44.185 34.771 42.952
20 80 62.563 63.998 59.420 5.710 5.734 7.178 99.592 99.654 99.666

290 80 71.065 76.800 67.083 29.017 26.652 34.336 42.577 35.555 41.885
170 20 69.699 73.134 65.759 43.201 42.165 49.338 26.716 22.829 26.256

1 1 70.694 70.984 66.917 11.902 11.774 14.503 80.507 80.683 80.207

Table 1: Results of the separation: signal tb vs. all background in 2-Tag 2-Jets. NcS – the
number of signal components, NcB – the number of background components, ErrS-* – the error
on the signal set, Err∗ – the error on the whole set.
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Figure 2: Comparison of the ROC curves for separating signal from background in the yield
sample (with the AUC in the brackets).
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3 Discussion

Working results show that MBC can serve as a good alternative method for the separation of
signal from background in high energy physics applications. We generally doubled the signal
to background ratio for all sub-tasks. In particular, using 290 signal and 110 background
components of the distribution mixture, we obtained the best AUC value on the testing sample
of 71.384, thereby we improved the signal tb to background ratio in 2-Tag 2-Jets from 1:18 to
1:8 with the a posteriori probability threshold Pt(signal |x) = 0.5 in (7). The MBC method has
better results for samples where signal and background correspond to different distributions.
Unfortunately, in single top channels the patterns of signal and background are nearly the same.
In addition, the implementation of cuts during the preparation of samples removes events from
the margins and change the distributions. In order to improve the quality of separation, we
will implement the transformation of input variables via combination of φ-divergences (see [9])
with particle component analysis and further, more runs of the algorithm with different initial
settings have to be performed to find the optimal number of components in each channel.

Acknowledgments

This work has been supported by the MSMT grant INGO II INFRA LG12020 and the student
grant SGS12/197/OHK4/ 3T/14.

References
[1] G. McLachlan and D. Peel, J. Wiley & Sons (2000).

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, Journal of the Royal Statistical Society 39, No. 1. (1977).

[3] J. Bilmes, Technical Report TR-97-021, ICSI (1997).
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