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We study the implications of using the gradient of a scalar field instead of a standard gauge
field at various points: a) in minimal coupling and b) in coupling electromagnetism to a
global charge. The implications in a) can be surprising, leading to possible mixing of this
gauge field with Goldstone bosons, leading to low mass weakly coupled particles, C and
CP violation and in case b) we arrive to a new scalar QED that reproduces features of
axion photon physics.

1 Generalizing minimal coupling using scalar gauge fields

We introduce [1] a complex scalar field φ and consider the local phase symmetry of φ by
introducing a real, scalar B(xµ) in addition to a normal vector gauge field and two types of
covariant derivatives as

DA
µ = ∂µ + ieAµ ; DB

µ = ∂µ + ie∂µB . (1)

The gauge transformation of the complex scalar, vector gauge field and scalar gauge field have
the following gauge transformation

φ→ eieΛφ ; Aµ → Aµ − ∂µΛ ; B → B − Λ . (2)

It is easy to see that terms like DA
µ φ and DB

µ φ, as well as their complex conjugates will be

covariant under (2). Thus one can generate kinetic energy type terms like (DA
µ φ)(DAµφ)∗,

(DB
µ φ)(DBµφ)∗, (DA

µ φ)(DBµφ)∗, and (DB
µ φ)(DAµφ)∗. Unlike Aµ where one can add a gauge

invariant kinetic term involving only Aµ (i.e. FµνF
µν) this is apparently not possible to do for

the scalar gauge field B. However note that the term Aµ − ∂µB is invariant under the gauge
field transformation alone (i.e. Aµ → Aµ−∂µΛ and B → B−Λ). Thus one can add a term like
(Aµ−∂µB)(Aµ−∂µB) to the Lagrangian which is invariant with respect to the gauge field part
only of the gauge transformation in (2). This gauge invariant term will lead to both mass-like
terms for the vector gauge field and kinetic energy-like terms for the scalar gauge field. In total
a general Lagrangian which respects the new gauge transformation, has the form

L = c1D
A
µ φ(DAµφ)∗ + c2D

B
µ φ(DBµφ)∗ + c3D

A
µ φ(DBµφ)∗ + c4D

B
µ φ(DAµφ)∗ − V (φ)

− 1

4
FµνF

µν + c5(Aµ − ∂µB)(Aµ − ∂µB) , (3)
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where ci’s are constants. The Maxwell field strength tensor appears in the equation above and
is defined as

Fµν = ∂µAν − ∂νAµ . (4)

One can see that Fµν is invariant under Aµ → Aµ − ∂µΛ.Later we will show that it is possible
to add non-derivative , polynomial interaction terms for the B field. An interesting point to
remark upon is that the last term in (3) will have a term of the form AµA

µ which is a mass
term for the vector gauge field. This term (contrary to the usual gauge transformation given
in the introduction) does not violate the expanded gauge symmetry of (2).

2 Particle content, the generalized unitary gauge, C and
CP violation

We devote this section to the discussion of the physical reality of the newly introduced scalar
gauge field B(x) and to discuss the particle content of the theory when we have spontaneous
symmetry breaking i.e. when the scalar field φ develops a vacuum expectation value due to the
form of the potential V (φ) in (3). At first glance one might conclude that B(x) is not a physical
field – it appears that one could “gauge” it away by taking Λ = B(x) in (2). However one must
be careful since this would imply that the gauge transformation of the field φ would be of the
form φ → eieBφ i.e. the phase factor would be fixed by the gauge transformation of B(x). In
this situation one would no longer to able to use the usual unitary gauge transformation to
eliminate the Goldstone boson in the case when one has spontaneous symmetry breaking.

The unitary gauge is the standard procedure to find the particle content of a spontaneously
broken theory. Let us recall how the unitary gauge works: One writes the complex scalar field
as an amplitude and phase – φ(x) = ρ(x)eiθ(x). The two fields ρ(x) and θ(x) represent the
initial fields of the system. If φ(x) develops a VEV due to the form of the potential, V (φ), then
one can transform to the unitary gauge φ → eieΛ(x)φ(x) with Λ = −θ(x)/e. In this way one
removes the field θ(x) (which is “eaten” by the gauge boson) and is left with only the ρ(x) field.
With the introduction of the scalar gauge field, B(x), one no longer can gauge away both θ(x)
and B(x), and in the end one is left with some real, physical field which is some combination
of the original B(x) and θ(x).

We now fix, as far as possible, the character of the ci’s in (3). First c1, c2 and c5 must be real
since DA

µ φ(DAµφ)∗, DB
µ φ(DBµφ)∗ and (Aµ − ∂µB)(Aµ − ∂µB) are real. Next c3 and c4 must

be complex conjugates (i.e. c3 = c∗4) in order that the combination of the two crossed covariant
derivative terms in (3) (i.e. the terms DA

µ φ(DBµφ)∗ and DB
µ φ(DAµφ)∗) be real. Finally we

require that (c1 + c2 + c3 + c4) = (c1 + c2 + Re[c3 + c4]) = 1. This condition ensures that the
kinetic energy term for the scalar field φ has the standard form ∂µφ∂

µφ∗. One could accomplish
this as well by rescaling φ, but here we chose to accomplish this by placing conditions on the
ci’s. Taking into account these conditions (and in particular writing out c3 and c4 in terms of
their real and imaginary parts c3 = a+ ib and c4 = a− ib) the Lagrangian in (3) becomes

L = ∂µφ∂
µφ∗ − V (φ)− 1

4
FµνF

µν + c5AµA
µ + c5∂µB∂

µB − 2c5Aµ∂
µB

+ ie[φ∂µφ
∗ − φ∗∂µφ] ((c1 + a)Aµ + (c2 + a)∂µB) (5)

+ e2φφ∗ (c1AµA
µ + c2∂µB∂

µB + 2a∂µBA
µ)− eb∂µ(φ∗φ)(Aµ − ∂µB) .
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There are several interesting features of the Lagrangian in (5). First, the vector gauge field, Aµ,
has a mass term (i.e. c5AµA

µ) which is allowed by the extended gauge symmetry (2). Thus
in addition to the vector gauge field developing a mass through the term e2c1φφ

∗AµAµ if φ
develops a vacuum expectation value (i.e. if 〈φφ∗〉 = ρ2

0 with ρ0 a constant), there is now an
additional potential mass term for the vector gauge field, even in the absence of spontaneous
symmetry breaking via φ. Second, the scalar gauge field appears to be a dynamical field through
the presence of two possible kinetic energy terms. The term c5∂µB∂

µB is the standard kinetic
energy term for a scalar field. Also, the term c2e

2φφ∗∂µB∂µB takes the form of a kinetic
energy term if φ develops a vacuum expectation value. Third, the term −eb∂µ(φ∗φ)(Aµ−∂µB)
will lead to C and CP violation. Let us now define exactly what will be the generalization of
the unitary gauge appropriate to the situation here. In the presence of spontaneous symmetry
breaking and where the field φ develops a VEV the unitary gauge eliminates cross terms like
Aµ∂

µθ from the Lagrangian. In the present case the cross terms between the vector field Aµ
and the scalars (in our case B and θ) are more involved. Explicitly the relevant cross terms
that we wish to eliminate by a generalized unitary gauge are

Lcross = −2c5Aµ∂
µB + ie(c1 + a)[φ∂µφ

∗ − φ∗∂µφ]Aµ + 2ae2∂µBA
µφ∗φ . (6)

It is obvious why the first and third terms in the above equation are denoted as cross terms
since they have the form Aµ∂

µB. To see why the second term above is considered a cross term
between Aµ and θ in the presence of SSB (i.e. the scalar field develops a VEV 〈φφ∗〉 = ρ2

0 where
ρ0 is a constant) we begin by approximating the scalar field as φ(x) ≈ ρ0e

iθ(x). With this the
scalar current becomes [φ∂µφ

∗ − φ∗∂µφ] ≈ 2ρ2
0∂µθ. We have used the assumption that the

amplitude of the scalar field is approximately constant – ρ(x) ≈ ρ0. Putting all this together
show that the second term in (6) is a cross term between Aµ and θ of the form Aµ∂

µθ. Thus
(6) becomes

Lcross = 2Aµ∂
µ
(
−c5B + ec1ρ

2
0θ + aeρ2

0θ + ae2ρ2
0B
)
. (7)

It is this more complex cross term that we want to eliminate via some generalized unitary
gauge. Defining F (x) = −c5B + c1eρ

2
0θ + aeρ2

0θ + ae2ρ2
0B, one can see that the cross term in

(7) takes the form ∝ Aµ∂
µF which is similar to the more common form ∝ Aµ∂

µθ . By means
of a gauge transformation ( i.e. θ → θ + eΛ, B → B − Λ) we can take some initial non-zero
value F = F0, and always arrive at a gauge F = 0. From (7) one can check this is possible by
choosing the gauge function as Λ = −F0/(c5 + c1e

2ρ2
0). In this physical gauge, with F = 0, we

can solve the θ field in terms of the B field as

θ =
c5 − ae2ρ2

0

eρ2
0(c1 + a)

B . (8)

What (8) shows is that θ and B are not independent fields – one is fixed in terms of the other.
There is therefore only one physical scalar field in this generalized unitary gauge which one can
call either θ or B. The above is different from the normal gauge procedure in the presence of
symmetry breaking where the θ(x) field completely disappears. Here there is some left over
hint of the Goldstone boson which we may call B(x) (as we do here) or θ(x). At this stage the
mixed θ/B field is massless and thus could be thought of as a true, massless Goldstone boson.
However it is possible to add to the Lagrangian from (5), non-derivative potential terms for the
B field. These terms will include a mass term and power law interaction terms. one can write
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down the following general interacting potential for φ and B

V (eieBφ) = −m2φφ∗ + λ(φφ∗)2 + λ1e
ieBφ+ λ∗1e

−ieBφ∗ + λ2e
i2eBφ2 + λ∗2e

−i2eB(φ∗)2

+λ3e
i3eBφ3 + λ∗3e

−i3eB(φ∗)3 + λ4e
i4eBφ4 + λ∗4e

−i4eB(φ∗)4 . (9)

If the λi ’s, have an imaginary part, then those terms will violate charge conjugation symmetry.
Defining a canonically normalized field, rescaling the B field, expressing the interactions and
effective potential in terms of this field, one can see that the interactions of the new B-particles
can be very weak if certain expectation values are big and they can be massive [1], a possible
candidate for dark matter?.

3 Global scalar QED and axion photon dynamics

We work here with the following lagrangian density [2]

L = gµν
∂ψ∗

∂xµ
∂ψ

∂xν
− U(ψ∗ψ)− 1

4
FµνFµν + jµ(Aµ + ∂µB) (10)

where

jµ = ie(ψ∗ ∂ψ
∂xµ

− ψ∂ψ
∗

∂xµ
) (11)

and where we have also allowed an arbitrary potential U(ψ∗ψ) to allow for the possibility
of spontaneous breaking of symmetry. The model is separately invariant under local gauge
transformations

Aµ → Aµ + ∂µΛ; B → B − Λ (12)

and the independent global phase transformations

ψ → exp(iχ)ψ (13)

A model of this type allows to couple electromagnetism to a global charge, it leads to a different
version of scalar electrodynamics, without sea gull diagrams. Here also the correspondence
between a scalar charged particle in an external electric field with the axion photon dynamics
[3] is exact in this version of scalar electrodynamics as opposed to the standard scalar QED,
where it is valid only to first order in the coupling constant.
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