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Ubiquitous ultra-light scalar fields may make a partial contribution to the dark matter
and affect the large scale structure of the Universe. While their properties are heavily
model dependent, we develop a model-independent analysis to forecast the constraints
on their mass and abundance using futuristic 21 cm observation as well as CMB lensing
measurements. We demonstrate that the 21 cm power spectrum are most sensitive to the
ultra-light dark matter with mass m ∼ 10−26 eV for which the precision attainable on
mass and abundance bounds can be of the order of a few percent.

1 Introduction

The existence of light scalar fields has been explored from both particle phenomenology and
cosmological aspects. As an astrophysical example, the ultra-light particles (ULPs) with mass
of the order of the current Hubble scale H0 ≈ 2×10−33 eV 1 may contribute to a small fraction
of the total matter in our Universe. Those ultra-light scalar fields can have an imprint on the
matter power spectrum due to free-streaming, similar to that due to massive neutrinos. Since
the range of possible mass is wide, so is the range of the suppression scale in the matter power
spectrum. In this proceeding paper, we forecast cosmological constraints on two free parameters
of the ULPs, their mass and abundance, with CMB lensing and futuristic 21 cm observations.
We aim to clarify the range of the mass and abundance of ULPs which 21 cm observations will
be most sensitive to.

In what follows, §2 outlines the effect of the ULPs on the matter power spectrum. §3 gives
a brief review of the Fisher forecast formalism, followed by the results in §4. The main results

1Throughout this paper, the mass is in units of H0 ≈ 2× 10−33 eV.
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Figure 1: (Left) The evolution of perturbations for ULPs (mu = 105H0, fu = 0.05) and for
CDM only. (Right) The ratio of the power spectrum P (k) with ULPs (fu = 0.05) to that with
CDM only. Figures are reused from [1].

of this proceeding have been published in [1].

2 Suppression in the Matter Power Spectrum

For the leading order perturbation equation, δ̈k + 2Hδ̇k +
(
c2sk

2

a2 − 4πGρm

)
δk = 0, there exists

a gravitationally stable solution for short wave-length mode k � kJ and an unstable (growing)
one for k � kJ , with the Jeans wave number kJ = (a/cs)

√
4πGρm. For the ULPs, its effective

sound speed is cs ≈ k/2mua for a� k/2mu, and cs ≈ 1 below the Compton scale a� k/2mu,

where mu is the ULP mass [2, 3]. Therefore, kJ(a) = 2a(πGρm(a))1/4m
1/2
u for a� k/2mu. We

consider scenarios in this paper where the ULP behaves like dark energy due to the large Hubble
friction for H > mu, and starts oscillations like dark matter, once H ≤ mu. We implement
ULPs into CAMB [4] accordingly. The evolution of the ULP fluctuations δu = δρu/ρu is shown
in the left panel of Fig. 1 for the ULP mass and fraction mu = 105H0, fu = Ωu/Ωm = 0.05.
The fluctuations δ(k) cannot grow when they behave like a cosmological constant and can
start growing once the ULPs start to oscillate. The perturbation growth however is suppressed
inside the Jeans scale and the perturbation growth has to wait till it goes outside the Jeans
scale for a large enough value of a. We also plotted the CDM perturbation evolution which
illustrates that the ULP perturbations can catch up with the CDM perturbations for small k but
not for large k, analogously to the well-known behavior of the baryon perturbation evolution.
The nonlinearity becomes important when k3P (k)/(2π2) becomes of order unity. We estimate
that mu ∼ 105H0 leads to the oscillation starting around the matter-radiation equality epoch
zosc ∼ 3200(∼ zeq). For the modes which enter the horizon during matter domination, the
suppression in the matter power spectrum starts around the scale corresponding to the Jeans

scale when the ULP starts oscillating k ∼
(
H2

0 Ωm
)1/3

m
1/3
u . Similarly, when the oscillations

start during radiation domination, the suppression is expected to occur for scales smaller than
the Jeans scale at matter-radiation equality k ∼ (m2

uH
2
0 Ωmaeq)

1/4. The suppression scales for
different masses are illustrated in the right panel of Fig. 1 which shows the transfer function
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T 2(k) = P (k)ULPs/P (k)no ULPs representing the ratio of the power spectrum including the
ULPs to that without ULPs. We are particularly interested in the ULP masses which affect the
matter power at the 21 cm-observable scales of 0.055 . k . 0.15 Mpc−1. We can see that the
baryon acoustic oscillation effects are more prominent in the nonlinear matter power spectrum
than in the linear one and mu ∼ 107H0 lets the suppression start right in the 21 cm observable
range.

3 Forecast Formalism

To forecast the constraints on the cosmological parameters including those relevant to the ULPs,
we perform the Fisher likelihood analysis for future 21 cm experiments. We also use the CMB
observables including CMB lensing which help remove the parameter degeneracies that the
21 cm signals would otherwise suffer from. We briefly outline the formalism of the likelihood
analysis here, and present the results in the next section.

The 21 cm radiation comes from the atomic transition between the two hyperfine levels of
the hydrogen 1s ground state. In the linear regime, the power spectrum of 21 cm brightness

temperature fluctuations can be written as P∆T (k, z) = δ̃Tb
2
x2
HI

[bHI (z) +µ2
k]2 Pδδ(k, z), where

δ̃Tb(z) = (23.88mK)
(

Ωbh
2

0.02

)√
0.15

Ωmh2
1+z
10 . Here we consider z . 10 when the spin temperature

TS � TCMB . We define the neutral and ionized density bias, bHI (z) and bHII (z), as bHI ≡
δρHI (k)/δρ(k), bHII ≡ δρHII (k)/δρ(k). They are related by bHI = (1− xHII bHII )/xHI . We use
the excursion set model of reionization [5] to obtain the fiducial values of ionized density bias
bHII (z) and the mean ionized fraction xHII (z). The Fisher matrix for 21 cm power spectrum

measurements is [6, 7] F 21cm
αβ =

∑
u

1
[δP∆T (u)]2

(
∂P∆T (u)
∂pα

)(
∂P∆T (u)
∂pβ

)
, where {pα} represents the

free parameters in our model. We assume a logarithmic pixelization du⊥/u⊥ = du‖/u‖ = 0.1.

The error in power spectrum measurement is δP∆T (u) = [P∆T (u)+PN (u⊥)]/
√
Nc, where Nc =

u⊥du⊥du‖ΩB/(2π2) is the number of independent modes in each pixel (Ω is a field of view solid
angle and B is the bandwidth of a redshift bin). PN is the noise power spectrum PN (u⊥, z) =
(λTsys/Ae)

2/(t0n(u⊥)), where Tsys ≈ (280K)[(1 + z)/7.4]2.3 is the system temperature [8], Ae
is the effective collecting area of each antenna tile, and t0 is the total observation time. We
assume an Omniscope-like instrument [9] consisting of a million 1m × 1m dipole antennae
with a field of view of 2π steradians and we assume t0 = 4000 hours for each redshift bin
of bandwidth B = 6MHz. We also assume the residual foregrounds can be neglected for
k‖ ≥ k‖,min = 2π/(yB) [6], and the minimum baseline Lmin sets k⊥,min = 2πLmin/(λdA)

(for example, for an Omniscope-like array, kmin ≈ k‖,min = 0.055 Mpc−1 at z = 10.1). We

conservatively restrict our studies to large scale k ≤ 0.15 Mpc−1 for the sake of the linear
treatment of 21 cm observables, to avoid any scale-dependent bias at the nonlinear regime and
the nonlinear effects due to reionization patchiness at the scale of the typical size of ionized
regions [10].

The CMB can also be affected by light dark matter through the change in matter-radiation
equality and also via the Sachs-Wolfe effect. The CMB is also helpful in removing the degenera-
cies among the cosmological parameters. The CMB lensing is in particular helpful in removing
the so-called geometric degeneracy which the primary CMB observables would otherwise suffer
from. We consider the CMB observables T,E, d which represent the CMB temperature, polar-
ization and CMB deflection angle respectively. We assume the Planck-like specifications [11]
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Figure 2: 1σ errors in fu (left) and mu (right) for several fiducial values of mu in units of
H0 ≈ 2× 10−33 eV, with fiducial value fu = 0.05. Figures are reused from [1].

including the CMB lensing measurements covering up to the multipole lmax = 2500, three chan-
nels 100, 143, 217 GHz and the sky coverage fsky = 0.65. The Fisher matrix for CMB lensing is

FCMB
αβ =

∑lmax
l=2

fsky(2l+1)
2 Tr[C,αC

−1C,β C
−1], where ,α refers to the partial derivative with

respect to a cosmological parameter pα, and C is the covariance matrix. We assume the noise
in the auto-correlation spectra is dominated by detector noise represented by the photon shot
noise [12, 13], and the CMB lensing statistical noise is estimated using the optimal quadratic
estimator method of Hu & Okamoto [14, 15]. The total Fisher matrix was obtained by adding
the 21 cm and CMB Fisher matrix F ≈ F 21cm+FCMB . The modified version of the CAMB [4]
was used to obtain the CMB and matter power spectra where the ultra-light fluid component
was implemented in the Boltzmann equations.

4 Results

We vary 12 parameters in our Fisher analysis ΩΛ, Ωmh
2, Ωbh

2, ns, As (scalar amplitude), τ
(reionization optical depth), Neff (the effective number of relativistic neutrino species), mu

(mass of ULPs), fu (ratio of ULP abundance to total matter), fν (ratio of neutrino abundance
to total matter), xHI (z) (mean neutral fraction at redshift z), bHII (z) (H II density bias at
redshift z). For the fiducial models, unless stated otherwise, we use xHI = 0.5 at the redshift
bin of z = 10.10 and bHII = 5.43 obtained by the excursion set model of reionization [5], and
the power spectrum up to the scale kmax = 0.15 Mpc−1 was used.

Our main results are summarized in Fig. 2 which shows the 1σ uncertainties in the ULP
parameters for several representative ULP masses for fu = 0.05. The 1σ errors on the ULP
parameters fu,mu can be of order a few percent for the mass range, around mu ∼ 107H0, to
which the 21 cm signals are most sensitive. This ULP mass lets the ULPs start oscillations at
0.055 . k . 0.15Mpc−1 which, as Fig. 1 shows, is where the matter power spectrum has the
significant change with respect to that of the CDM only. On the other hand, the sensitivity
of the CMB observables to the ULPs increases up to the ULP mass of about 105H0 which
corresponds to the oscillation starting around the CMB last scattering epoch. For instance,
we found numerically 2 × 104H0 ∼ H(z = 1100) and we can indeed see that σ(mu) does not

4 Patras 2014

YI MAO

154 PATRAS 2014



improve so much by adding the 21 cm observables for the mass around mu ∼ 104∼5H0. This
implies that the CMB constraint on mu is dominant over that from the 21 cm observables for
this mass range. The CMB, however, starts losing its sensitivity to the ULPs significantly for
the larger ULP masses mu & 106H0 which initiate the oscillations well before the last scattering
epoch.

In short, we find that the CMB measurements are most sensitive to the ULP mass range of
104H0 ∼ 106H0, and the 21 cm measurements are most sensitive to mu ∼ 107H0. We forecast
that the future 21 cm can constrain the ULP density fraction and the mass with an accuracy
of the order of a few percent. Because of the complications due to nonlinearity, however, the
ULPs with mu � 107H0 would be hard to probe by the large-scale structure of the Universe,
even though these mass ranges can be well probed by other probes such as black holes and
dwarf galaxies. Further studies on the complementarity between different observables are left
for future work.
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