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We propose a pure four-dimensional formulation (FDF) of the d-dimensional regularization
of one-loop scattering amplitudes. In our formulation particles propagating inside the loop
are represented by massive internal states regulating the divergences. We present explicit
representations of the polarization and helicity states of the four-dimensional particles
propagating in the loop. They allow for a complete, four-dimensional, unitarity-based con-
struction of d-dimensional amplitudes. Finally we show how the FDF allows for the recur-
sive construction of d dimensional one-loop integrands, generalizing the four-dimensional
open-loop approach.

1 Introduction

The recent development of novel methods for computing one-loop scattering amplitudes in
gauge field theory has been highly stimulated by a deeper understanding of their kinematics
enforced by on-shellness [1][2] and generalized unitarity [3][4]. Analyticity and unitarity of
scattering amplitudes have then been strengthened by the complementary classification of the
mathematical structures present in the residues of singular points.

The use of unitarity cuts and complex momenta for on-shell internal particles turned unitar-
ity based methods into very efficient tools for computing scattering amplitudes. These methods
exploit two general properties of scattering amplitudes such as unitarity and analyticity: the
former granting that amplitudes can be reconstructed from the knowledge of their generalized
singularity structures; the latter granting that the residues at singular points factorize in the
product of simpler amplitudes [5][6][7].

However one-loop scattering amplitudes arising from a dimensionally regulated theory are
the sum of one part containing polylogarithms, the so called “cut constructible” part, and the
rational part, which is a rational function of the external spinors and polarizations. Contrarily
to the cut-constructible, the rational part cannot be detected in four dimensions.

Based on the paper [8] this talk addresses the possibility of fully reconstructing a one loop
amplitude in its cut-constructible and rational part in quantum chromodynamics (QCD) by
just gluing tree level amplitudes. Such trees will be obtained by extending the definition of the
helicity eigenstates entering the state sum in the propagators of quark and gluons, whithout
leaving the four space-time dimensions.

This point of view combines the generalized unitarity cuts in d = 4 − 2ε dimensions with
the Four Dimensional Helicity Scheme (FDH). The d-dimensional unitarity cuts detect also the
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rational part by generalized on-shell conditions and generalized residues [9]. The former imply
the vanishing of massive denominators, where the mass term depends both on the physical mass
(vanishing or not) of the particle across the cut and on the effective mass parameter encoding
the extra-dimensional dependence. Generalized residues computed on the cuts are generated
by tree level amplitudes, which depend on the effective mass parameter, hence from the extra
dimensions regulating the integrals, either from the generalized polarizations vectors associated
to the cut particles, or from the extended algebra of the metric tensor and of the Dirac matrices
in the definition of the Feynman rules.

In order to compute the constituting blocks of tree level amplitudes by using the helicity
spinor formalism the FDH scheme will be used [10], in which the external particles are described
by four dimensional Lorentz labels (momenta and helicities) and the internal particles (the so
called “unobserved”) have still the same numbers of helicity states like in four dimensions. In
FDH scheme the momenta of the unobserved particles are kept in d dimensions as well as the
metric tensor and the Dirac matrices, therefore in diagrammatic computations the algebraic
manipulations are implemented by separating the four dimensional algebra from the extra-
dimensional one.

In this talk we show that dimensionally regularized one-loop QCD amplitudes in FDH
scheme can be simply calculated by generalizing the helicity eigenstates of the unobserved
particles, by including an effective mass parameter in a pure four-dimensional formalism. The
generalized four dimensional polarizations and propagators should be used for tree level and
one loop computations avoiding any special decomposition of the particle running around the
loop. We want to demonstrate that by an appropriate generalization of the cutted internal legs
no supersymmetric decomposition [11] will be needed neither the introduction of new particles
and new interactions [12] to afford separately the computation of the cut constructible and the
rational part of a scattering amplitude.

2 Generalized internal legs

In this section we are going to provide the explicit expression of the cut legs of a one-loop
amplitude involving fermion or vector particles in the loop. Those wave functions will be needed
to compute the tree amplitudes to be merged in the reconstruction of the S-matrix elements by
unitarity. Their dynamics is described by a pure four dimensional quantum field theory dual
to the dimensionally regularised one. The following explicit construction of generalized spinors
for fermions and polarization vectors for gluons is suitable for a numerical implementation of
such an on-shell procedure of computation. In the following discussion we will decompose a
d-dimensional momentum ¯̀ as follows

¯̀α = `α + µα ¯̀2 = `2 − µ2 = m2, (1)

while its four-dimensional component ` will be expressed in terms of the massless momenta `[

and q` as

` = `[ + q̂` , q̂` ≡
m2 + µ2

2 ` · q`
q` . (2)
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Spinors – The legs of the cut fermion propagtors in the loop have to fulfill the following
completness relation [8] ∑

λ=±
uλ (`) ūλ (`) = `+ iµγ5 +m (3)

which is satisfied by the following four dimensional spinors

u+ (`) =
∣∣∣`[
〉
− (m− iµ)[

`[ q`
] |q`] , u− (`) =

∣∣∣`[
]
− (m+ iµ)〈

`[ q`
〉 |q`〉 . (4)

Polarization vectors – In the light-cone gauge the d-dimensional polarization vectors fulfill
the following relation

d−2∑

i=1

εαi (d)
(
¯̀, η̄
)
ε∗βi (d)

(
¯̀, η̄
)

= −ḡαβ +
¯̀α η̄β + ¯̀α η̄β

¯̀· η̄ − η̄2 ¯̀α ¯̀β

(η̄ · ¯̀)2 , (5)

where η̄ is an arbitrary d-dimensional momentum such that ¯̀ · η̄ 6= 0. Gauge invariance in d
dimensions guarantees that the unitarity cuts are independent of η̄. Assuming a four dimen-
sional description we can take the vector µ fixed. The choice η̄α = µα allows for disentangling
the four-dimensional contribution from the d-dimensional one:

d−2∑

i=1

εαi (d)
(
¯̀, η̄
)
ε∗βi (d)

(
¯̀, η̄
)

=

(
−gαβ +

`α`β

µ2

)
−
(
g̃µν +

µαµβ

µ2

)
. (6)

The first term is related to the cut propagator of a massive gluon whose polarization vectors
are

εµ+ (`) = −
[
`[ |γµ| q̂`

〉
√

2µ
εµ− (`) = −

〈
`[ |γµ| q̂`

]
√

2µ
εµ0 (`) =

`[µ − q̂µ`
µ

. (7)

3 Open loop

The FDF of d-dimensional one-loop amplitudes is compatible with methods generating re-
cursively the integrands of one-loop amplitudes and leads to the complete reconstruction of
the numerator of Feynman integrands as a polynomial in `ν and µ. Our scheme allows for a
generalization of the current implementations of these techniques, reconstructing only the four-
dimensional part of the numerator of the integrands, which is polynomial in `. In the following
we describe how the open-loop technique [13] has to be generalized within the FDF scheme.
The subtrees wβ(i) recursively merged by connecting their cut lines to vertices and propagators
have the following form

wβ(i) =
Xβ
γδ(i, j, k)wγ(j)wδ(k)

p2i −m2
i + iε

, (8)

where
Xβγδ

p2i−m2
i+iε

describes a vertex connecting i, j, k to a propagator attached to i. For one loop

amplitudes the numerators of Feynman integrals can be computed by tree-level techniques.
For the open loop with indices α and β where a single propagator has been cutted and the
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denominator stripped out, the numerator of the amplitude’s integrand satisfies the recursive
relation

N β
α (In, `, µ) = Xβ

γδ (In, in, In−1)N γ
α (In−1, `, µ)wδ (in) (9)

where wδ is the expression related to the tree-level topology in. To achieve the Feynman
diagrams expressions in FDH scheme by our FDF formulation the vertices Xβ

γδ are obtained by
the Feynman rules in [8]

Xβ
γδ = Y βγδ + `ν Zβν; γδ + µW β

γδ . (10)

Therefore the tensor coefficients of the covariant decomposition of the numerator in a given
topology are obtained by the recursive relation

N [a] β
ν1···νj ;α (In) =

[
Y βγδN

[a] γ
ν1···νj ;α (In−1)+Zβν1; γδN

[a] γ
ν2···νj ;α (In−1)+W β

γδN
[a−1] γ
ν1···νj ;α (In−1)

]
wδ(in).

The recursive generation of integrands within the FDF can be suitably combined with public
codes like Samurai and Ninja.

4 Conclusions and outlook

A four-dimensional formulation (FDF ) of dimensional regularization of one-loop scattering am-
plitudes has been applied to generalized unitarity techniques. At one loop the cut-constructible
part and the rational part of scattering amplitudes have been computed by the same on-shell
methods. The inclusion of the fermion mass and the two loop case will be analysed elsewhere.
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