Measurements of CP Violation and Mixing in Charm Decays at LHCb

Michael Alexander on behalf of the LHCb collaboration

University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-04/244

During run I, the LHCb experiment at the LHC, CERN, collected 1.0 fb⁻¹ of pp collisions at √s = 7 TeV and 2.0 fb⁻¹ at √s = 8 TeV, yielding the world’s largest sample of decays of charmed hadrons. This sample is used to search for direct and indirect CP violation in charm and to measure D⁰ mixing parameters. Recent measurements from several complementary decay modes are presented.

1 Introduction

The LHCb detector is a forward-arm spectrometer, with pseudo-rapidity coverage 2 < η < 5, specifically designed for high precision measurements of decays of b and c hadrons [1]. During run I, the experiment collected 1.0 fb⁻¹ of pp collisions at √s = 7 TeV and 2.0 fb⁻¹ at √s = 8 TeV, yielding the world’s largest sample of decays of charmed hadrons. This allows CP violation and mixing in charm to be studied with unprecedented precision in many complementary decay modes. The Standard Model (SM) predicts CP violation to be O(10⁻³) or less in charm interactions [2, 3]; observation of significantly larger CP violating effects could indicate new physics.

For a decay D → f and its CP conjugate D → f, with amplitudes A_f and A_f respectively, direct CP violation is quantified by A_d = (|A_f|^2 − |A_f|^2)/(|A_f|^2 + |A_f|^2). For D^0 mesons, the mass eigenstates |D_{1,2}⟩, with masses m_{1,2} and widths Γ_{1,2}, are defined in terms of the flavour eigenstates, |D^0⟩ and |D^0⟩, as |D_{1,2}⟩ = p|D^0⟩ ± q|D^0⟩, with p and q complex, satisfying |p|^2 + |q|^2 = 1. The rate of mixing is quantified by x ≡ (m_2 − m_1)/(Γ_1 + Γ_2) and y ≡ (Γ_2 − Γ_1)/(Γ_1 + Γ_2). CP violation in mixing is quantified by A_m ≡ (|q/p|^2 − |p/q|^2)/(|q/p|^2 + |p/q|^2) and the interference between mixing and decay (when f = f) by λ_f ≡ qA_f/pA_f = |qA_f/pA_f|e^{iφ}.

The flavour of the D^0 meson at production is determined using either D^+ → D^0π^+ decays, where the charge of the “soft pion”, π, track gives the D^0 flavour, or B → D^0μ⁻X decays, where the charge of the μ track gives the D^0 flavour.

2 Multi-body D decays

Multi-body D decays are sensitive to CP violation due to the interference of different resonances across the multi-body phase space. In D^0 → K^+K^−π^+π^- decays, triple products of final state particle momenta in the D^0 rest frame, defined as C_T ≡ ⃗p_{K^+} · (⃗p_{π^+} × ⃗p_{π^-}) and
\(\bar{C}_T \equiv \vec{p}_{K^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\pi^+}) \) for \(D^0 \) and \(\bar{D}^0 \) mesons respectively, are odd under \(T \). The decay rate asymmetries

\[
A_T \equiv (\Gamma(C_T > 0) - \Gamma(C_T < 0))/\Gamma(C_T < 0),
\]

\[
\bar{A}_T \equiv (\Gamma(-\bar{C}_T > 0) - \Gamma(-\bar{C}_T < 0))/\Gamma(-\bar{C}_T < 0),
\]

are thus sensitive to \(CP \) violation. However, final state interactions introduce significant asymmetries, and so the difference \(a_{T,0}^{\text{odd}} \equiv \frac{1}{2}(A_T - \bar{A}_T) \) is used to access the asymmetry of the \(D^0 \) meson. The observable \(a_{T,0}^{\text{odd}} \) is by definition insensitive to production and detection asymmetries, so is very robust against systematic uncertainties.

Using 3 fb\(^{-1}\) of data, the phase space integrated measurements are found to be \([4]\)

\[
A_T = (-7.18 \pm 0.41(\text{stat}) \pm 0.13(\text{syst}))\%,
\]

\[
\bar{A}_T = (-7.55 \pm 0.41(\text{stat}) \pm 0.12(\text{syst}))\%,
\]

\[
a_{T,0}^{\text{odd}} = (0.18 \pm 0.29(\text{stat}) \pm 0.04(\text{syst}))\%.
\]

This shows no evidence of \(CP \) violation but achieves a significant improvement in precision over the previous world average of \(a_{T,0}^{\text{odd}} = (0.11 \pm 0.67)\)\([5]\).

The same measurements are also performed in 32 bins of Cabibbo-Maksimowicz phase space variables, defined as the invariant mass squared of the \(\pi^+\pi^- \) (\(K^+K^- \)) pair, \(m_{\pi^+\pi^-}^2 / m_{K^+K^-}^2 \); the cosine of the angle of the \(\pi^+ \) (\(K^+ \)) with respect to the direction opposite to the \(D^0 \) momentum in the \(\pi^+\pi^- \) (\(K^+K^- \)) rest frame, \(\cos(\theta_{\pi^+}) (\cos(\theta_{K^+})) \); and the angle between the \(K^+K^- \) and \(\pi^+\pi^- \) planes in the \(D^0 \) rest frame, \(\phi \). The asymmetries are extracted in each bin of phase space and \(a_{T,0}^{\text{odd}} \) calculated. A \(\chi^2 \) test for consistency across the phase space is performed, yielding a p-value of 74 \%. Similarly, binning in the decay time of the \(D^0 \) candidates and performing the same test gives sensitivity to indirect \(CP \) violation. This yields a p-value of 72 \%, so there is no evidence for direct or indirect \(CP \) violation.

A complementary method for studying \(CP \) violation in multi-body \(D \) meson decays is to examine \(CP \) asymmetries across the multi-body phase space directly. Signal yields are obtained in bins of the multi-body phase space, and the test statistic

\[
S_{CP}^i \equiv (N_i(D^0) - \alpha N_i(\bar{D}^0))/\sqrt{\alpha (N_i(D^0) + N_i(\bar{D}^0))},
\]

where \(\alpha \equiv \frac{N(D^0)}{N(\bar{D}^0)} \) cancels any global production and detection asymmetries. A \(\chi^2 \) test for consistency with zero \(CP \) violation is performed using \(\chi^2 = \sum_i S_{CP}^i \) and \(N_{\text{bins}} - 1 \) degrees of freedom. This analysis has been performed on \(D^0 \rightarrow K^+K^-\pi^+\pi^- \) and \(D^0 \rightarrow \pi^+\pi^-\pi^+\pi^- \) candidates, using 1 fb\(^{-1}\) of data, for which the nominal binning scheme yields a p-value of 9.1 \%(41 \%) for \(D^0 \rightarrow K^+K^-\pi^+\pi^- \) and \(D^0 \rightarrow \pi^+\pi^-\pi^+\pi^- \) \([6]\). The decay \(D^+ \rightarrow \pi^+\pi^+\pi^- \) has also been studied in this way, using 1 fb\(^{-1}\) of data \([7]\). Various binning scheme are used, as well as an unbinned method to measure \(CP \) asymmetries, all of which yield p-values of more than 20 \%. Thus, no evidence for \(CP \) violation is found in these decay modes.

3 \(CP \) violation in \(D^\pm \rightarrow K^0_S\pi^\pm \)

The singly-Cabibbo-suppressed (SCS) decays \(D^\pm \rightarrow K^0_S\pi^\pm \) and \(D^\pm \rightarrow K^0_SK^\pm \) offer a means of measuring direct \(CP \) violation with high precision. The \(CP \) asymmetry is defined as
Measurements of CP violation and mixing in charm decays at LHCb

\[\mathcal{A}_{CP}^{D^+_s \to K^0 h^\pm} \equiv \frac{\Gamma(D^+_s \to K^0 h^+) - \Gamma(D^+_s \to K^0 h^-)}{\Gamma(D^+_s \to K^0 h^+) + \Gamma(D^+_s \to K^0 h^-)}, \]

while the measured asymmetry is

\[\mathcal{A}_{\text{meas}}^{D^+_s \to K^0 h^\pm} \equiv \frac{N_{\text{meas}}^{D^+_s \to K^0 h^+} - N_{\text{meas}}^{D^+_s \to K^0 h^-}}{N_{\text{meas}}^{D^+_s \to K^0 h^+} + N_{\text{meas}}^{D^+_s \to K^0 h^-}}. \]

\[\mathcal{A}_{CP}^{D^+_s \to K^0 h^\pm} \equiv \mathcal{A}_{\text{meas}}^{D^+_s \to K^0 h^\pm} \pm \mathcal{A}_{\text{prod}}^{D^+_s \to K^0 h^\pm} + \mathcal{A}_{\text{det}}^{D^+_s \to K^0 h^\pm}. \]

Here \(N_{\text{meas}} \) is the number of signal candidates of the given decay, \(\mathcal{A}_{\text{prod}}^{D^+_s \to K^0 h^\pm} \) is the production asymmetry of the \(D^+_s \) meson, \(\mathcal{A}_{\text{det}}^{D^+_s \to K^0 h^\pm} \) is the detection asymmetry of the \(h^\pm \) meson, and \(\mathcal{A}_{CP}^{D^+_s \to K^0 h^\pm} \) is the combined detection and \(CP \) asymmetry of the \(K^0_s \) meson. Assuming negligible \(CP \) violation in the Cabibbo-favoured (CF) decays \(D^+_s \to K^0 S \), \(D^+_s \to K^0 \pi^+ \) and \(D^+_s \to \phi \pi^\pm \), the production and detection asymmetries cancel in the double difference

\[\mathcal{A}_{CP}^{D^+_s \to K^0 S} = \mathcal{A}_{\text{det}}^{D^+_s \to K^0 S} + \mathcal{A}_{\text{prod}}^{D^+_s \to K^0 S}, \]

while the \(K^0_s \) asymmetry is calculable, so the sum of the \(CP \) asymmetries can be measured. Similarly the individual \(CP \) asymmetries can be accessed using

\[\mathcal{A}_{CP}^{D^+_s \to K^0 \pi^\pm} = \mathcal{A}_{\text{det}}^{D^+_s \to K^0 \pi^\pm} + \mathcal{A}_{\text{prod}}^{D^+_s \to K^0 \pi^\pm}. \]

Using 3 fb^{-1} of data the results thus obtained are [8]

\[\mathcal{A}_{CP}^{D^+_s \to K^0 S} = (0.41 \pm 0.49(\text{stat}) \pm 0.26(\text{syst}))\%, \]
\[\mathcal{A}_{CP}^{D^+_s \to K^0 \pi^\pm} = (0.03 \pm 0.17(\text{stat}) \pm 0.14(\text{syst}))\%, \]
\[\mathcal{A}_{CP}^{D^+_s \to K^0 \pi^\pm} = (0.38 \pm 0.46(\text{stat}) \pm 0.17(\text{syst}))\%. \]

These are the most precise measurements of their kind to date and show no evidence of \(CP \) violation.

4 Mixing and \(CP \) violation in \(D^0 \to h^+ h^<(l)^- \) decays

Decays of \(D^0 \to h^+ h^<(l)^- \) provide a means of measuring direct and indirect \(CP \) violation, as well as mixing, in the \(D^0 \) system. The measured \(CP \) asymmetry in \(D^0 \to K^- \pi^+ \) and \(D^0 \to \pi^+ \pi^- \) decays, flavour tagged using B \(\to D^0 \mu^- X \) decays, is \(\mathcal{A}_{CP}^{D^0 \to h^+ h^-} = \mathcal{A}_{\text{meas}}^{D^0 \to h^+ h^-} + \mathcal{A}_{\text{det}}^{D^0 \to h^+ h^-} + \mathcal{A}_{\text{prod}}^{D^0 \to h^+ h^-} \), while the \(\pi^+ \pi^- \) and \(K^- \pi^+ \) final states are \(CP \) eigenstates, so have no detection asymmetry. Defining \(\Delta \mathcal{A}_{CP} = \mathcal{A}_{\text{meas}}^{D^0 \to h^+ h^-} - \mathcal{A}_{\text{meas}}^{D^0 \to \pi^+ \pi^-} \), the \(CP \) asymmetries cancel. Similarly to the analysis described in Sec. 3, \(CP \) decays can be used to cancel nuisance asymmetries as \(\mathcal{A}_{CP}^{D^0 \to K^- \pi^+} - \mathcal{A}_{\text{meas}}^{D^0 \to K^- \pi^+} + \mathcal{A}_{\text{det}}^{D^0 \to K^- \pi^+} + \mathcal{A}_{\text{prod}}^{D^0 \to K^- \pi^+} \), and the known \(\mathcal{A}_{CP}^{K^- \pi^+} \). The asymmetry \(\mathcal{A}_{CP}^{D^0 \to \pi^+ \pi^-} \) can then be determined using \(\mathcal{A}_{CP}^{D^0 \to \pi^+ \pi^-} = \mathcal{A}_{CP}^{D^0 \to K^- \pi^+} - \Delta \mathcal{A}_{CP}. \)
Using 3 fb$^{-1}$ of data yields [9]

\[
\Delta A_{CP} = (+0.14 \pm 0.16{\text{ (stat)}} \pm 0.08{\text{ (syst)}})\%,
\]

\[
A_{CP}^{D_0 \to K^+K^-} = (-0.06 \pm 0.15{\text{ (stat)}} \pm 0.10{\text{ (syst)}})\%.
\]

\[
A_{CP}^{D_0 \to \pi^+\pi^-} = (-0.20 \pm 0.19{\text{ (stat)}} \pm 0.10{\text{ (syst)}})\%.
\]

Indirect CP violation in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays can be measured using

\[
A_I \equiv \frac{\Gamma(D^0 \to f) - \Gamma(D^0 \to f')}{\Gamma(D^0 \to f) + \Gamma(D^0 \to f')} \approx \eta_{CP} \left[\frac{1}{2} (A_m + A_d) y \cos \phi - x \sin \phi \right].
\]

Here, Γ is the inverse of the effective lifetime of the decay and η_{CP} is the CP eigenvalue of f.

The effective lifetimes are measured directly using a data-driven, per-candidate correction for the selection efficiency on 1 fb$^{-1}$ of data, yielding [10]

\[
A_I(\pi\pi) = (+0.033 \pm 0.106{\text{ (stat)}} \pm 0.014{\text{ (syst)}})\%,
\]

\[
A_I(KK) = (-0.035 \pm 0.062{\text{ (stat)}} \pm 0.012{\text{ (syst)}})\%.
\]

Thus, no evidence for direct or indirect CP violation in $D^0 \to h^+h^-$ decays is found.

Mixing in the D^0 system is measured using the ratio of the decay rates of “wrong sign” DCS $D^0 \to K^+\pi^-$ to “right sign” CP $D^0 \to K^-\pi^+$ as a function of D^0 decay time, as

\[
R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D y^2 t + \frac{x'^2 + y'^2}{4}} t^2,
\]

where $R_D = \left| \frac{A_{CP}}{\Delta A_{CP}} \right|^2$, $x' = x \cos(\delta) + y \sin(\delta)$, $y' = -x \sin(\delta) + y \cos(\delta)$, and $\delta = \arg\left(\frac{A_{WS}}{A_{CP}} \right)$.

Using 3 fb$^{-1}$ of data yields [11]

\[
x'^2 = (5.5 \pm 4.9) \times 10^{-5},
\]

\[
y' = (4.8 \pm 1.0) \times 10^{-3},
\]

\[
R_D = (3.568 \pm 0.066) \times 10^{-3}.
\]

Allowing for CP violation yields:

\[
A_D \equiv (R_D(D^0) - R_D(D^0))/(R_D(D^0) - R_D(D^0)) = (-0.7 \pm 1.9)\%,
\]

\[
0.75 < |q/p| < 1.24, (68.3 \% \text{ CL}).
\]

These are the most precise measurements of mixing in the D^0 system and of CP violation in $D^0 \to K^+\pi^-$ decays to date.

5 Conclusions

There is a rich programme of charm physics studies at the LHCb experiment, with many complementary measurements already performed using some or all the 3 fb$^{-1}$ of data collected during run I. No evidence for CP violation has been found, though constraints of $\mathcal{O}(10^{-3})$ have been achieved in many decay modes. Mixing in the D^0 system has also been measured to unprecedented precision. With run II shortly to begin, and the LHCb upgrade in the near future, there are great prospects for future measurements with precisions of $\mathcal{O}(10^{-4})$, which will tightly constrain, or potentially discover, new physics.
MEASUREMENTS OF CP VIOLATION AND MIXING IN CHARM DECAYS AT LHCb

References