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In this work, we carry out ring-diagram calculationsfor 4He using the chiral N3LO two-
nucleon potential V2Nwith and without the inclusion of an in-medium three-nucleon (NNN)
force V̄3N , derived from the leading-order chiral NNN force V3N .

The ring-diagram method [1] is based on the the linked-diagram expansion [2] where the

ground-state energy shift ∆E0 is given by ∆E0 = E0 − Efree
0 = limt′→−∞[ 〈Φ0|V U(0,t′)|Φ0〉

〈Φ0|U(0,t′)|Φ0〉 ]linked

with U(0, t′) the time-evolution operator, and E0 and Efree
0 respectively the true and non-

interacting ground-state energies of the nuclear system with the nuclear hamiltonian H =
T + V , Φ0 the system’s unperturbed shell-model ground-state wave function. Here we take
V = V2N + V̄3N .

In calculating ∆E0, we include only all-order sum of the pphh ring diagrams as illustrated in
Fig. 1. As shown, diagrams (b), (c) and (d) are respectively the 1st-, 4th- and 8th-order pphh
diagrams. It may be noted that our ring-diagram calculation reduces to the usual Hartree-Fock
(HF) one if only the first order ring diagram (b) is included. A main purpose of our present
work is to study the effect of the particle-hole excitations, which are not included in the HF
case, to the binding energies of finite nuclei. Indicated by (a) of the Figure is the mean field
single particle (s.p.) propagators where the HF one-bubble insertions are included to all orders.
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Figure 1: The pphh ring-diagrams for the ground state energy shift of closed-shell nuclei; (a)
self-energy insertions on the single-particle propagator, and (b) to (d) all-order ring diagrams.
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Summing up these ring diagrams to all orders, one has the ground-state energy shift from
V as [1]

∆E0 =

∫ 1

0

dλ
∑

m

∑

ijkl∈P
Ym(ij, λ)Y ∗m(kl, λ)× 〈ij|V |kl〉, (1)

where (i,j,k,l) are each a shell-model s. p. wave function, and P denotes a chosen shell-model
space composed of a set of hole (h) and particle (p) orbits.

The amplitudes Y above are calculated from an RPA-type equation, namely

∑

ef

[(εi + εj)δij,ef + λ(1− ni − nj)〈ij|V |ef〉]× Ym(ef, λ) = ωm(λ)Ym(ij, λ); (i, j, e, f) ∈ P, (2)

where λ is a strength parameter, to be integrated from 0 to 1 as in Eq. 2. The occupation
factors are na = 1 for a = h, and = 0 otherwise. Thus the amplitudes Ym(ij) has only either hh
(i = h, j = h′) or pp (i = p, j = p′) components. The transition amplitudes Y can be classified
into two types, one dominated by hh and the other by pp components. We include only the
former, denoted by Ym, for the calculation of the all-order sum of the pphh ring diagrams.

We use HF s.p. spectrum εj in the above RPA equation, as indicated earlier in Fig. 1,
namely εj = 〈j|Ksp|j〉 +

∑
h〈jh|V |jh〉 where Ksp denotes the s. p. kinetic energy operator.

Note that j and h are each oscillator s. p. wave function.
To carry on, we need first describe the V3N to be employed. The leading contribution to

V3N occurs at N2LO in the chiral power counting and is composed of a long-range two-pion
exchange V 2π

3N , a medium-range one-pion exchange V 1π
3N , and a pure contact interaction V ct3N :

V
(2π)
3N =

∑

i 6=j 6=k

g2
A

8f4
π

~σi · ~qi ~σj · ~qj
(~qi

2 +m2
π)(~qj

2 +m2
π)
Fαβijkτ

α
i τ

β
j , (3)

V
(1π)
3N = −

∑

i 6=j 6=k

gAcD
8f4
πΛχ

~σj · ~qj
~qj

2 +m2
π

~σi · ~qj ~τi · ~τj , V
(ct)
3N =

∑

i6=j 6=k

cE
2f4
πΛχ

~τi · ~τj , (4)

with gA = 1.29, fπ = 92.4 MeV, Λχ = 700 MeV, and mπ = 138.04 MeV/c2 the average
pion mass, ~qi = ~pi

′ − ~pi is the difference between the final and initial momentum of nucleon
i and Fαβijk = δαβ

(
−4c1m

2
π + 2c3~qi · ~qj

)
+ c4ε

αβγτγk ~σk · (~qi × ~qj) . The low-energy constants

c1 = −0.76 GeV−1, c3 = −4.78 GeV−1, and c4 = 3.96 GeV−1 appear already in the N2LO two-
nucleon potential and are thus constrained by low-energy NN phase shifts [3]. The constants
cD and cE are typically fit to reproduce the properties of light nuclei [4, 5].

As mentioned earlier, the interaction V = (V2N + V̄3N ) will be employed in our calculations.
V2N is the NN interaction obtained from a N3LO chiral two-body potential [6] and V̄3N is a
density-dependent two-body interaction obtained from the chiral three nucleon force by closing
one pair of external lines and summing over the filled Fermi sea (kF ) of nucleons [7]. V̄3N

and V3N are related by 〈ab|V̄3N |cd〉 =
∑
h≤kF 〈abh|V3N |cdh〉, where the matrix elements are

anti-symmetrized. Possible over-counts are carefully treated. V̄3N is dependent of kF or its
corresponding density n.

We then calculate effective low momentum Vlow−k matrix elements [8] from V2N and V3N

for the use in the ring diagram calculations. Starting from the half-on-shell T-matrix in the
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Lippmann-Schwinger equation, one defines the effective low-momentum T-matrix as

Tlow−k(p′, p, p2) = Vlow−k(p′, p) +

∫ Λ

0

q2dqVlow−k(p′, q)
Tlow−k(q, p, p2)

p2 − q2 + i0+
(5)

where Λ denotes a momentum space cut-off and (p′, p) ≤ Λ. The T-matrix in Eq.(5) is required
to satisfy the condition T (p′, p, p2) = Tlow−k(p′, p, p2); (p′, p) ≤ Λ. Earlier studies shew nuclear
properties obtained from Vlow−k being rather insensitive on Λ in the vicinity of 2.1 fm−1 [8].
Hence we set the cut-off in Eq. (5) Λ ≈ 2.1 fm−1.

To calculate the Vlow−k matrix with V3N included, we have used the Bertsch formula ~ω =
45.0A−1/3 − 25.0A−2/3. we adopt the magnitudes of parameters cD, cE in Eqs. (4) from the
cE vs. cD curve in [5] where the authors determined values of these two parameters from fitting
binding energies of A = 3 nuclei. The nucleon density arising from the contact term [7] of Eq.
(4) for the nucleus is chosen from the experimental charge density profile ρ(r) vs. r from [9] as
that approximately at the nucleus’ RMS radius. The RMS radius for 4He is 1.6757 fm [10] In
this way, we set the density around the RMS radius to be 0.3ρ0 for 4He, with ρ0 = 0.17/fm3.

The empirical Coulomb energy Ecoul/A = 0.717×Z2/A4/3 is added to the nuclear system’s

ground state energy. Note that the non-interaction ground state energy Efree0 already takes
care of the center of mass motion part. Hence our ring diagram expansion of ∆E0 involves no
CM excitation problems.

Shown in Fig. 2 is the dependence of ground state energy per nucleon (or -BE/A) for 4He
on the 3N force constant cD appearing in Eq. (4). In the figure, results from the first order
ring diagram (”HF”), up to the second order one(”Up to 2nd”), and all order ring diagrams
(”Ring(all)”) are all calculated with V3N included. Experimental data [11] are displayed for
comparison. Although the contribution from diagrams up to the second order one improves
quite significantly comparing to that from the first order one alone, contribution from higher
order diagrams is needed to fill the discrepancy so that the experimental binding energy can be
obtained.
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Figure 2: Dependence of −BE/A of 4He on the parameter cD of V3N .

As shown in Table I, our results from V2N + V̄3N with parameter cD= 8.5 and its corre-
sponding cE from [5] at density ρ/ρ0= 0.3 for 4He fits the experimental data [11] quite well. In
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the Table we also examine the importance of V3N to the nuclear binding energy. As expected,
the binding energy obtained from V2N alone is too weak. The deviation between results with
and without V3N gets wider when all ring diagrams are included.

Table 1: Ground-state energy E0/A (or -BE/A)(in MeV) of 4He calculated with 1st-, (1st+2nd)-
and all-order ring diagrams. The parameter cD = 8.5 of V̄3N is employed.

ρ/ρ0 1st 1st+2nd all rings Expt
4He V2N – -3.46 -5.36 -5.39

V2N+V̄3N 0.3 -3.96 -6.77 -7.05 -7.073

In conclusion, our calculated ground state energy per nucleon fits the experimental data
quite well when V3N is added in and all orders of ring diagrams are included. Contributions
from ring diagrams with orders higher than 2 can not be ignored. As expected, binding energy
obtained with V2N alone is too weak. This study shows that the three-nucleon force is important
in nuclear systems. We have found that the above results are also true for several other closed-
shell nuclei. This will appear in other separate publications.

References
[1] H. Q. Song, S. D. Yang and T.T.S. Kuo, Nucl. Phys. A462, 491 (1987); Yiharn Tzeng, T. T. S. Kuo,Nucl.

Phys. A485, 85 (1988).

[2] T. T. S. Kuo and E. Osnes, Lecture Notes in Physics (Springer-Verlag, New York), Vol. 364 (1990) p.1.

[3] M. C. M. Rentmeester, R. G. E. Timmermans, and J. J. de Swart, Phys. Rev. C 67 (2003) 044001.

[4] A. Nogga, H. Kamada and W. Glockle, Phys. Rev. Lett. 94, 944 (2000); S.C. Peiper, K. Varga and R. B.
Waringa, Phys. Rev. C66, 044310 (2002).

[5] P. Navratil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).

[6] D. R. Entem, R. Machleidt, and H. Witala, Phys. Rev. C 65, 064005 (2002).

[7] J. W. Holt, N. Kaiser and W. Weise, Phys. Rev. C79, 054331 (2009); J. W. Holt, N. Kaiser and W. Weise,
Phys. Rev. C81, 024002 (2010).

[8] S. K. Bogner, T. T. S. Kuo and L. Coraggio, Nucl. Phys. A684, (2001) 432; S. K. Bogner, T. T. S. Kuo,
L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65, 051301(R) (2002); S. K. Bogner, T. T. S. Kuo,
and A. Schwenk, Phys. Rep. 386, 1 (2003).

[9] J.S.Mccarthy, I. Sick, and R.R. Whitney, Phys. Rev. C 15, 1396 (1977); H. de Vries, C.W. de Jager, and
C. de Vries, At. Data Nucl. data Tables, 36, 495 (1987)

[10] I. Angeli, K.P. Marinova, Atomic and Nucl. Data Tables 99 69 (2013).

[11] B.Pfeiffer,K.Venkataramaniaih,U.Czok,C.Scheidenberger, Atomic and Nucl. Data Tables 100 403-535
(2014); Nuclear data from Brookhaven National Laboratory, http://www.nndc.bnl.gov/chart/

4 PANIC14

CHIRAL TWO- AND THREE-NUCLEON INTERACTIONS USED IN RING DIAGRAM . . .

PANIC2014 727


