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In a recent paper [1] we studied the behavior of the pairing gaps ∆F as a function of the
Fermi momentum kF for neutron and nuclear matter in all relevant angular momentum
channels where superfluidity is believed to naturally emerge. The calculations employed
realistic chiral nucleon-nucleon potentials [2, 3] with the inclusion of three-body forces
and self-energy effects. In this contribution we perform a numerical analysis of Khodel’s
method [6] for the singlet case.

1 Khodel’s method

In this section we explain the method employed to solve the BCS equations by partial-wave
decomposition. The BCS equation reads in terms of the NN potential V (k,k′) = 〈k |V |k′〉 as
follows

∆ (k) = −
∑

k′

〈k |V |k′〉 ∆
(
k′
)

2E
(
k′
) , (1)

with E(k)2 = ξ(k)2 +|∆(k)|2 and where ξ(k) = ε(k)−µ, ε(k) denotes the single-particle energy
and µ is the chemical potential. We can decompose both the interaction and the gap function

〈k |V |k′〉 = 4π
∑

l

(2l + 1)Pl(k̂ · k̂
′
)Vl(k, k

′) (2)

∆(k) =
∑

lm

√
4π

2l + 1
Ylm(k̂)∆lm(k) , (3)

where Ylm(k̂) denotes the spherical harmonics, l and m are the quantum numbers associated

with the orbital angular momentum and its projection along the z axis and Pl(k̂ · k̂
′
) refers

to the Legendre polynomials. After performing an angle-average approximation we have the
following equation for any value of l

∆j
l (k) =

∑

l′

(−1)Λ

π

∫
dk′ V jll′(k, k

′)
∆j
l′(k
′)

E(k′)
k′

2
, (4)
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where Λ = 1 + (l− l′)/2, j refers to the total angular momentum (J = l+S) quantum number
including spin S and now E(k)2 = ξ(k)2 +

∑
jl ∆

j
l (k)2. Gaps with different l and j are coupled

due to the energy denominator but we assume that different components of the interaction
mainly act on non-overlapping intervals in density. To solve Eq. (4), we follow the approach
suggested by Khodel et al. [6] that has been proven to be stable even for small values of the
gap and to require only the initial assumption of a scale factor δ (results will be δ-independent,
as will be shown in Sect. 2). We define an auxiliary potential W according to

Wll′(k, k
′) = Vll′(k, k

′)− vll′φll′(k)φll′(k
′) , (5)

where φll′(k) = Vll′(k, kF )/Vll′(kF , kF ) and vll′ = Vll′(kF , kF ) so that Wll′(k, k
′) vanishes on

the Fermi surface. The coupled gap equations can be rewritten as

∆l(k)−
∑

l′

(−1)Λ

∫
dτ ′ Wll′(k, k

′)
∆l′(k

′)
E(k′)

=
∑

l′

Dll′φll′(k) , (6)

where dτ = k2dk/π and the coefficients Dll′ satisfy

Dll′ = (−1)Λvll′

∫
dτ φll′(k)

∆l′(k)

E(k)
. (7)

The gap is defined as follows

∆l(k) =
∑

l1l2

Dl1l2χ
l1l2
l (k) , (8)

where

χl1l2l (k)−
∑

l′

(−1)Λ

∫
dτ ′ Wll′(k, k

′)
χl1l2l′ (k′)

E(k′)
= δll1φl1l2(k) , (9)

and δll′ is the scale factor. The property that Wll′(k, k
′) vanishes on the Fermi surface ensures

a very weak dependence of χl1l2l (k) on the exact value of the gap so that, in first approximation,
it is possible to rewrite the previous equation (9) as

χl1l2l (k)−
∑

l′

(−1)Λ

∫
dτ ′ Wll′(k, k

′)
χl1l2l′ (k′)√
ξ2(k′) + δ2

= δll1φl1l2(k) . (10)

We use this equation to evaluate χl1l2l (k) initially by matrix inversion, then we use this function
to self-consistently evaluate Dll′ . Finally, we solve the system given by Eqs. (7)–(9) in a self-
consistent procedure as shown in Fig. 1 (left panel). We always assumed µ = εF and adopted
the relativistic version of the single-particle energy ε (k) =

√
k2 +M2

N , where MN is the nucleon
mass. For the pairing potential V (p, k) we introduce the following ansatz:

V (p, k) = V2B(p, k) +
∑

m

V3B(p, k,m) ' V2B(p, k) + V eff
2B (kF , p, k) , (11)

where V2B is the NN potential [2] at N3LO order in the chiral expansion and the three-body
potential is approximated by an effective two-body density-dependent potential V eff

2B derived
by Holt et al. in Refs. [4, 5]. When considering self-energy effects, we simply perform the
transformation MN →M∗N using the effective mass obtained by Holt et al. in Ref. [7] using a
density matrix expansion technique.
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Figure 1: Left: Self-consistent procedure (Eqs. 7–9) for the solution of the gap equation
according to Khodel’s prescription [6]. Right: Numerical analysis of Khodel’s procedure for
the singlet channel in neutron matter: a) cutoff, b) Gaussian integration points and c) δ
dependence. This method is a very stable procedure if satisfactory values of ngauss and Λk are
employed.

2 Results and Numerical analysis

In the neutron matter case, at the two-body level, there is good agreement with the gap com-
puted from well known realistic potentials like the CD-Bonn or Nijmegen interactions [9], except
for larger densities where the N3LO gap exhibits a higher value (phase shifts from the chiral
N3LO potential exhibit more attraction than the CD-Bonn potential for high momenta [8]).
We tested Khodel’s method [6] against the variation of the following three parameters: ngauss
(number of Gauss integration points), Λk (cutoff for integrals in the momentum space, see Eq.
(4)) and δ (the scale factor). In Fig. 1 (right side) we summarise our results. In the upper
panel (a) we calculated ∆F for different values of the momentum cutoff (using ngauss = 200
and δ = 1 × 10−10 MeV) where in the second panel (b) we varied ngauss (keeping Λk = 4.5
fm−1 and δ = 1 × 10−10 MeV) and in the lower panel (c) we changed δ (with ngauss = 200
and Λk = 4.5 fm−1) by orders of magnitude. Our conclusion is that the method proposed by
Khodel [6] is a very stable procedure to study nuclear superfluidity if a reasonable number of
Gaussian points (≥ 100) and a realistic momentum cutoff (≥ 4 fm−1) are employed. In Fig. 2
we compare our full calculation for the gap, i.e., with the complete potential in Eq. (11) and the
density-dependent effective mass, with recent results by Hebeler et al. [8], where the authors
started from a chiral N3LO interaction and evolved to a sharp low-momentum interaction. Also
presented for comparison are ab-initio results obtained in the last several years: Auxiliary Field
Diffusion Monte Carlo (AFDMC) [10] with AV8’ + UIX potentials, Quantum Monte Carlo
(QMC) [11], where the authors have retained the S-wave part of the AV18 interaction, and
Correlated Basis Functions (CBF) [12] still with AV8’ plus UIX. We observe that at low densi-
ties the gap behaviors are very similar, with the exception of QMC, but beyond Fermi momenta
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Figure 2: The 1S0 gap for neutron matter computed with the realistic chiral potential of [2] at
N3LO plus the three-body contribution of Eq. (11) and the inclusion of the effective mass in
comparison with ab-initio simulations.

of kF ≈ 0.6 fm−1 the gaps computed with the Argonne potentials decrease rapidly in contrast
to those from chiral interactions. At the present time, it is hard to assess if disagreement is due
to different choices in the nuclear Hamiltonian or different many-body methods.
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