
The GAP project: GPU applications for High

Level Trigger and Medical Imaging

Matteo Bauce1,2, Andrea Messina1,2,3, Marco Rescigno3, Stefano Giagu1,3, Gianluca Lamanna4,6,
Massimiliano Fiorini5

1Sapienza Università di Roma, Italy
2INFN - Sezione di Roma 1, Italy
3CERN, Geneve, Switzerland
4INFN - Sezione di Frascati, Italy
5Università di Ferrara, Italy
6INFN - Sezione di Pisa, Italy

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/1

The aim of the GAP project is the deployment of Graphic Processing Units in real-time
applications, ranging from the online event selection (trigger) in High-Energy Physics to
medical imaging reconstruction. The final goal of the project is to demonstrate that GPUs
can have a positive impact in sectors different for rate, bandwidth, and computational
intensity. Most crucial aspects currently under study are the analysis of the total latency
of the system, the algorithms optimisations, and the integration with the data acquisition
systems. In this paper we focus on the application of GPUs in asynchronous trigger
systems, employed for the high level trigger of LHC experiments. The benefit obtained
from the GPU deployement is particularly relevant for the foreseen LHC luminosity upgrade
where highly selective algorithms will be crucial to maintain a sustainable trigger rates with
very high pileup. As a study case, we will consider the ATLAS experimental environment
and propose a GPU implementation for a typical muon selection in a high-level trigger
system.

1 Introduction

The Graphic Processing Units (GPU) are commercial devices optimized for parallel computa-
tion, which, given their rapidly increasing performances, are being deployed in many general
purpose application. The GAP project is investigating GPU applications in real-time environ-
ments, with particular interest in High Energy Physics (HEP) trigger systems, which will be
discussed in this paper, but also Medical Imaging reconstruction (CT, PET, NMR) discussed in
[1]. The different areas of interest span several orders of magnitude in terms of data processing,
bandwidth and computational intensity of the executed algorithms, but can all benefit from
the implementation of the massively parallel architecture of GPUs, optimizing different aspects,
in terms of execution speed and complexity of the analyzed events. The trigger system of a
typical HEP experiment has a crucial role deciding, based on limited and partial information,
whether a particular event observed in a detector is interesting enough to be recorded. Every

GPUHEP2014 1GPUHEP2014 3



experiment is characterised by a limited Data Acquisition (DAQ) bandwidth and disk space for
storage hence needs real-time selections to reduce data throughput selectively. The rejection of
uninteresting events only, is crucial to make an experiment affordable, preserving at the same
time its discovery potential. In this paper we report some results obtained from the inclusion of
GPU in the ATLAS High Level Trigger (HLT); we will focus on the main challenges to deploy
such parallel computing devices in a typical HLT environment and on possible improvements.

2 ATLAS trigger system

The LHC proton-proton accelerator provides collisions at a rate of 40 MHz, which corre-
sponds, for events of a typical size of 1-2 MByte, to an input data rate of the order of
tens of TB/s. The reduction of this input rate to a sustainable rate to be stored on disk,
of the order of ∼100 kHz, is achieved through a hybrid multi-level event selection system.
Lower selection stages (Lower Level Triggers) are usually implemented on customized elec-
tronics, while HLT are nowadays implemented as software algorithms executed on farms of
commodity PCs. HLT systems, in particular those of LHC experiments, offer a very chal-
lenging environment to test cutting-edge technology for realtime event selection. The LHC
upgrade with the consequent increase of instantaneous luminosity and collision pile-up, poses
new challenges for the HLT systems in terms of rates, bandwidth and signal selectivity. To
exploit more complex algorithms aimed at better performances, higher computing capabili-
ties and new strategies are required. Moreover, given the tendency of the computing indus-
try to move away from the current CPU model towards architectures with high numbers of
small cores well suited for vectorial computation, it is becoming urgent to investigate the

Figure 1: A scheme of the ATLAS trigger system; values in red
are indicating the data-taking conditions during the first run of
the LHC (’10-’12) while values in black represents the design con-
ditions, expected to be reached during the upcoming run (starting
in 2015).

possibility to implement a
higher level of parallelism
in the HLT software.

The GAP project is
investigating the deploy-
ment of GPUs for the HLT
in LHC experiments, us-
ing as a study case the
ATLAS muon HLT. The
ATLAS trigger system is
organized in 3 levels [2],
as shown in Figure 1.
The first trigger level is
built on custom electron-
ics, while the second level
(L2) and the event filter
(EF) are implemented in
software algorithms exe-
cuted by a farm of about
1600 PCs with different
Xeon processors each with
8 to 12 cores. During the
Run II of the LHC (ex-

2 GPUHEP2014

MATTEO BAUCE, ANDREA MESSINA, MARCO RESCIGNO, STEFANO GIAGU, . . .

4 GPUHEP2014



pected to start in 2015) the L2 and EF will be merged in a single software trigger level.
Currently, a first upgrade is foreseen in 2018 [3], when real-time tracking capabilities will also
be available, followed by a complete renovation of the trigger and detector systems in 2022.
We intend to explore the potential improvements attainable in the near future by deploying
GPUs in the ATLAS LVL2 muon trigger algorithms. Such algorithms are now implemented
as simplified versions and are based on the execution for a large number of times of the same
algorithms that reconstruct and match segments of particle trajectories in the detector. The
high computing capabilities of GPUs would allow the use of refined algorithms with higher
selection efficiency, and thus to maintain the sensitivity to interesting physics signals even at
higher luminosity.

In the current ATLAS data acquisition framework it is not possible to include directly a
parallel computing device; the integration of the GPU in this environment is done through a
server-client structure (Accelerator Process Experiment - APE [4]) that can manage different
tasks and their execution on an external coprocessor, such as the GPU. This implementation
is flexible, able to deal with different devices having optimized architecture, with a reduced
overhead. With the help of this structure it is possible to isolate any trigger algorithm and
optimize it for the execution on a GPU (or other parallel architecture device).

This will imply the translation into a parallel computing programming language (CUDA1

[7]) of the original algorithm and the optimization of the different tasks that can be naturally
parallelized. In such a way the dependency of the execution time on the complexity of the
processed events will be reduced. A similar approach has been investigated in the past for the
deployment of GPUs in different ATLAS algorithms with promising results [5]. The evolution
of the foreseen ATLAS trigger system, that will merge the higher level trigger layers in a unique
software processing stage, can take even more advantage from the use of a GPU since a more
complex algorithm, with offline-like resolution can be implemented on a thousand-core device
with significant speedup factors. The timing comparison between the serial and the parallel
implementation of the trigger algorithm is done on the data collected in the past year.

3 Muon reconstruction isolation algorithm

Figure 2: Scheme of the cone
used in the muon isolation
algorithm.

The benchmark measurements that has been carried out has
focused on one of the algorithms developed for muon reconstruc-
tion in ATLAS. In the L2 trigger a candidate muon particle is re-
constructed combining three different and sequential algorithms:
the first one reconstructs a charged particle track segment in
the muon spectrometer [6], a second algorithm matches in space
such track segment to a charged particle track reconstructed in
the ATLAS Inner Detector (ID) [6], the third evaluates the en-
ergy deposits in the electromagnetic and hadronic calorimeters
(ECAL, HCAL) [6], as well as the track density in the detector
region around the candidate muon trajectory, to check the con-
sistency with a muon crossing the whole ATLAS detector. This
third step of the muon reconstruction has been considered for
our first test deploying a GPU in the ATLAS trigger system.

1We perform the tests described in this article on a server set up for this purpose including an NVIDIA
graphic accelerator, hence the GPU code has been developed in CUDA.

GPUHEP2014 3

THE GAP PROJECT: GPU APPLICATIONS FOR HIGH LEVEL TRIGGER AND MEDICAL . . .

GPUHEP2014 5



The muon isolation algorithm starts from the spatial coordinates of the candidate muon tra-
jectory and consider a cone of fixed width ∆R =

√
∆φ2 + ∆η2 in the (η,φ) ([6]) space around

such trajectory. In order to pass the muon track isolation requirement there should be only a
limited number of tracks in the considered cone, and these must be consistent with background
in the inner ATLAS tracking system. The calorimeter isolation is applied summing the energy
deposits in the electromagnetic and hadronic calorimeter cells lying within the considered cone,
and requiring this is only a small fraction of the estimated candidate muon energy2. Figure 2
shows the definition of the cone used to evaluate the muon isolation in the calorimeter and in
the inner detector.

The integration of the GPU and the execution of such algorithm within the ATLAS trigger
framework can be summarized in the following steps:

1. retrieve information from the detector: access to the calorimeter cells information;

2. format information needed by the algorithm, namely the cell content, data-taking condi-
tions, and calorimeter configuration information, into a memory buffer;

3. transfer the prepared buffer to the server (APE) which handles the algorithm execution
and transfer the buffer to the GPU;

4. algorithm execution on the GPU (or on a CPU in the serial version of the algorithm);

5. transfer of the algorithm results through the APE server back into the ATLAS trigger
framework;

Figure 3: Measurement of the muon isolation
algorithm execution time using a Nvidia GTX
Titan GPU.

Step 1 is the same also in the current im-
plementation of the muon isolation algorithm;
in the standard ATLAS trigger implementa-
tion (serial) this step is followed directly by
the algorithm execution (step 4) on the CPU.
Step 2 is needed to optimize the data-transfer
toward the GPU; it is important at this stage
to convert the object-oriented structures to a
plain buffer containing the minimum amount
of information needed by the algorithm to
minimize the CPU→GPU communication la-
tency. Step 3 is implemented through li-
braries dedicated to the client-server com-
munication, as a part of the APE server.
Such server manages the assignement of the
task to the GPU for the execution and waits
to retrieve the results. To accomplish step
4, the simple algorithm which evaluates the
calorimeter isolation has been translated into
the cuda language optimizing the manage-
ment of the GPU resources in terms of com-
puting cuda cores and memory usage. Step

2The requirement on this energy fraction varies depending on the region of the detector and the desired
quality of the reconstructed muon, but this aspect is not relevant for the purpose of these tests.

4 GPUHEP2014

MATTEO BAUCE, ANDREA MESSINA, MARCO RESCIGNO, STEFANO GIAGU, . . .

6 GPUHEP2014



5 is implemented within the APE server, sim-
ilarly to step 3, and completes the CPU-GPU communication, reporting the algorithm results
in the original framework.

The measurement of the trigger algorithm execution latency has been performed using a
server machine containing an Intel Xeon E5-2620 CPU and a Nvidia GTX Titan GPU, re-
processing a sample of ATLAS recorded data with no dedicated optimization of the machine.
Figure 3 shows the execution latency measured for the several steps and their sum. The overall
execution time resulted in being ∆ttotGPU ≈1.2±0.2 ms when using the GPU, with respect to
∆ttotCPU ≈0.95±0.15 ms, obtained with the standard execution on CPU. As it is shown in Figure
3 the largest fraction of the time (∼ 900 µs) is spent to extract the detector data and convert
them from the object-oriented structure to a flat format which is suitable for the transfer
to the GPU. This contribution to the latency is independent from the the serial or parallel
implementation of the algorithm, since it’s related to data structure decoding; the current
version of the ATLAS framework heavily relies on object-oriented structures, which are not
the ideal input for GPUs. The contribution due to the CPU-GPU communication through the
client-server structure is found to be ∆ttrans.GPU ∼250 µs, which is within the typical time budget
of the ATLAS HLT (O(10 ms)). This result confirms the possibility to include GPUs into a
HLT system for the execution of parallel algorithms, hence motivates further studies in this
direction.

4 Conclusions and Perspectives

Figure 4: Isolated single muon trig-
ger observed rate as a function of
the muon transverse momentum (pT ),
compared to simulations for the differ-
ent expected contributions.

From this first study we succesfully deployed a GPU
within the ATLAS pre-existing trigger and DAQ frame-
work through a flexible client-server scheme. We ob-
served that the CPU-GPU communication does not
introduce a dramatic overhead, which is indeed well
within the typical execution latencies of software trig-
ger algorithms, O(10 ms). This result shows that is
feasible to consider the GPUs as extremely powerful
computing devices for the evolution of the current asyn-
chronous trigger systems. Most of the execution time
is devoted to the data extraction from object-oriented
structures, which is currently an external constraint
from the ATLAS trigger framework. This observation,
confirmed by similar studies in the ATLAS experiment,
focused the attention on this topic; a common effort is
ongoing to overcome this problem and benefit at most
from the GPU computing power. At the moment two
viable approaches are being considered: on one hand
it’s interesting to consider more complex algorithms
that can reduce the time spent for data structure han-
dling to a negligible fraction; on the other hand it is
possible to handle simpler data structures (raw byte
streams from the detector), bypassing most of the currently existing framework. As an exam-
ple of the first approach the possibility to execute at the trigger level, a refined evaluation of

GPUHEP2014 5

THE GAP PROJECT: GPU APPLICATIONS FOR HIGH LEVEL TRIGGER AND MEDICAL . . .

GPUHEP2014 7



the muon isolation, which would be not sustainable in single-threaded execution on a CPU,
is currently under investigation. The muon isolation evaluated in the offline data reprocess-
ing takes into account also environmental corrections due to multiple interactions leading to
additional noise in the calorimeter and tracking system. Figure 4 shows the trigger rate as a
function of the muon transverse momentum, pT , for the isolated muon trigger in a data-taking
period during 2012. One can see that a relevant fraction of the trigger rate is due to spurious
events (multi-jet production). A refined calculation of the muon isolation would reduce such
trigger rate, maintaining the efficiency for prompt muon reconstruction high .

As a typical scenario for the second approach, it is possible to decode and process simple
data from the muon spectrometer (position and time information) [6] to reconstruct the muon
track segment. A similar strategy has been developed in a standalone test considering track
reconstruction in the ATLAS Inner Detector, with interesting results [5].

5 Acknowledgements

The GAP project and all the authors of this article are partially supported by MIUR under
grant RBFR12JF2Z Futuro in ricerca 2012.

References
[1] Proceeding of Estimated speed-up from GPU computation for application to realtime medical imaging from

this same workshop (2014).

[2] ATLAS Collaboration, JINST 3 P08003 (2008).

[3] ATLAS Collaboration, -CERN-LHCC-2011-012 (2012).

[4] The client-server structure is obtained using APE, an ATLAS tool developed independently from this
project.

[5] D. Emeliyanov, J. Howard, J. Phys.: Conf. Ser. 396 012018 (2012).

[6] ATLAS Collaboration, JINST 3 S08003 (2008).

[7] http://docs.nvidia.com/cuda/cuda-c-programming-guide

6 GPUHEP2014

MATTEO BAUCE, ANDREA MESSINA, MARCO RESCIGNO, STEFANO GIAGU, . . .

8 GPUHEP2014


