
Use of hardware accelerators for ATLAS

computing

Matteo Bauce 2, Rene Boeing 3 4, Maik Dankel 3 4, Jacob Howard 1, Sami Kama 5 for the
ATLAS Collaboration

1Department of Physics Oxford University, Oxford, United Kingdom
2Dipartimento di Fisica Sapienza Universit di Roma and INFN Sezione di Roma, Roma, Italy
3Fachbereich C Physik, Bergische Universitaet Wuppertal, Wuppertal, Germany
4Fachhochschule Muenster - University of Applied Sciences, Muenster, Germany
5Southern Methodist University, Dallas TX, US

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/10

Modern HEP experiments produce tremendous amounts of data. This data is processed
by in-house built software frameworks which have lifetimes longer than the detector it-
self. Such frameworks were traditionally based on serial code and relied on advances in
CPU technologies, mainly clock frequency, to cope with increasing data volumes. With
the advent of many-core architectures and GPGPUs this paradigm has to shift to parallel
processing and has to include the use of co-processors. However, since the design of most
of the existing frameworks is based on the assumption of frequency scaling and predate
co-processors, parallelisation and integration of co-processors are not an easy task. The
ATLAS experiment is an example of such a big experiment with a big software frame-
work called Athena. In this proceedings we will present studies on parallelisation and
co-processor (GPGPU) use in data preparation and tracking for trigger and offline recon-
struction as well as their integration into the multiple process based Athena framework
using the Accelerator Process Extension APE.

1 Introduction

Figure 1: Peak interactions per bunch-crossing
per time. LHC exceeded design value in 2012. [1]

The Large Hadron Collider (LHC) is a
27km long circular particle accelerator near
Geneva, situated about 100m below the
Swiss and French border [2]. It is designed
to collide proton bunches with a center-of-
mass energy of 14TeV every 25ns. It is
equipped with 4 detectors namely ALICE
and LHCb, two relatively small special pur-
pose detectors, and CMS and ATLAS two
larger general purpose detectors. The AT-
LAS detector is the biggest of them and
composed of concentric cylindrical detec-
tors with end-caps [3]. The inner Detec-

GPUHEP2014 148 GPUHEP2014



tor(ID) is the closest to the beam and it is composed of Pixel, SCT and TRT trackers. Calorime-
ters are located around the ID. Calorimeters have electromagnetic and hadronic components
comprised of Liquid Argon and Tile calorimeters. Muon detectors form the outermost shells
of the detector. Toroidal and solenoid magnets provide the magnetic field for momentum and
charge determination.

During the Run-1 period, LHC operated below its design energy, at 7TeV and 8TeV with
a bunch spacing of 50ns. However the single bunch luminosity was increased which led to a
higher number of collisions at each bunch crossing(pile-up) than design expectations as shown
in Figure 1. Towards the end of Run-1, average pile-up at ATLAS exceeded 40 interactions per
crossing, creating more than 1200 tracks. Since the end of 2012, LHC is being upgraded and will
operate at full design energy and bunch crossing period in the Run-2 phase, starting in 2015.
Pile-up is expected to increase up to 80 interactions per bunch crossing leading to many more
tracks. Predictions for Run-3 with a peak luminosity of 1035cm−2s−1 and a pile-up of up to 140
interactions per bunch crossing are even higher. Since track finding is a combinatorial problem,
total processing time will also increase exponentially. The estimated pile-up dependency of
average reconstruction time is given in Figure 2.

Figure 2: Average event reconstruction time
versus pile-up at different bunch crossing
rates. [4]

Up until a few years ago, the com-
puting capacity of CPUs increased mostly
due to increases in clock frequency. This
increase usually compensated the increase
in data rates with no changes in the
code. However due to physical con-
straints, clock frequency of the CPUs has
plateaued and the increase in comput-
ing capacity is provided by adding more
cores and vector units to processors or
in the form of co-processors. Unlike
CPUs, co-processors tend to work effec-
tively on certain types of highly paral-
lel problems. However, they have a
higher computing capacity per watt at
a lower cost than CPUs. These prop-
erties make them attractive solutions for
highly parallelizable workloads such as track-
ing.

2 ATLAS Software Framework

The ATLAS software framework, Athena, is composed of more than 4 million lines of C++ and
about 1 million lines of python code written by hundreds of developers [5, 6]. The code is spread
over more than 4000 shared libraries in about 2000 packages. Its design and implementation
predates multi-core CPUs and thus was designed to run serially in a single process. Multi-core
CPUs are exploited by running multiple independent processes at the expense of increased
memory usage. Because of the design and complexity of the existing code, porting it to co-
processors is not feasible if not impossible. However it is still possible to utilize co-processors

2 GPUHEP2014

USE OF HARDWARE ACCELERATORS FOR ATLAS COMPUTING

GPUHEP2014 49



such as GPUs for some self contained parts of the software, yet it is still a challenge due to the
multi-process nature of the framework.

2.1 Accelerator Process Extension (APE)

The Accelerator Process Extension (APE) is a framework designed for managing and sharing
co-processors between different processes. It is based on a Server-Client model and its working
diagram is given in Figure 3. Algorithms that are running in Athena have to prepare and
serialize the input data and issue a processing request to the Offload Service. The Offload Service
manages the communication between the APE Server and algorithms. Processing requests are
forwarded to the APE Server via Yampl, an inter-process communication (IPC) abstraction
layer. It abstracts various IPC technologies, such as shared memory, pipes and ZeroMQ [7]
based layer for network communication. This enables running the APE server on a local host
or a dedicated server host. The APE server does bookkeeping of requests and relays them to
appropriate module which is a dynamically loaded plug-in that manages resources and contain
algorithm implementations for a given hardware like GPUs or Intel MICs. They execute the
requested operations on input data and return the results to the APE server. The APE server
passes the results back to the Offload Service which in turn returns the results to algorithms
that made the request.

Figure 3: APE flow chart. Processing requests from algorithms together with data are sent to
the server. Data are processed in appropriate module and results are sent back.

The APE framework also simplifies the development cycle and enables use of different lan-
guages and compilers which would not be possible inside the Athena framework. Since the client
is hidden from algorithms and only input data is important, it is possible to use a standalone
application to send a request with some predefined data sets without running the full recon-
struction framework. IPC time between server and client is small compared to time budgets
of the offloaded algorithms. In spite of that, it introduces a serial section and thus reduces the
scaling as per Amdahl’s Law. On the other hand, having multiple requests from different pro-
cesses increases the throughput and utilization of GPU as per Gustafson’s Law thus reducing
the effect of the overhead.

GPUHEP2014 3

MATTEO BAUCE , RENE BOEING , MAIK DANKEL , JACOB HOWARD , SAMI KAMA

50 GPUHEP2014



3 GPU studies in ATLAS

There are several ongoing studies in ATLAS to use GPU resources. The Tracking for Muon
and ID in Trigger and Reference Kalman-Filter for offline reconstruction are briefly described
below.

3.1 GPUs for track finding in ATLAS Triggers

Figure 4: Bytestream decoding and clus-
tering show a 26x speed-up on NVIDIA
C2050 GPU vs single-threaded Intel E5620
CPU. [8]

The ATLAS Trigger systems filter out more than
99.9% (in particular about 100 over 1 billion events
are retained) of the events and select only interest-
ing events. In order to decide whether an event is
interesting or not, an incremental reconstruction
is performed and a decision is produced in a few
seconds. Data preparation and track reconstruc-
tion typically consume 50%-70% of the processing
time budget. These processes contain some par-
allelization possibilities and they are implemented
as GPU algorithms composed of various steps.

Data preparation starts with decoding of de-
tector output, the Bytestream. In this step, the
compactly-encoded pixel and SCT hit information
from the detector’s readout buffers are retrieved,
and decoded into hits within individual pixel and
SCT modules. The Bytestream itself is divided
into 16/32-bit words. While the CPU implementation of decoding iterates over the words
sequentially, the GPU implementation maps each word to a GPU thread and does context
detection and value decoding in GPU threads.

Figure 5: Track formation and clone re-
moval show a 12x speed-up on NVIDIA
C2050 GPU vs single-threaded Intel E5620
CPU. [8]

After the Bytestream is decoded, clusterization
of neighboring hits in each module is done in order
to take the activation of multiple adjacent detector
cells by a single traversing particle. In the CPU,
the pixel clustering is done in two nested loops
and the SCT clustering is done in a single loop.
In the GPU, a special cellular automaton-based
algorithm is used to parallelize the comparisons
done between hits. This approach allows paral-
lelization in a module as well as across modules
by assigning modules to different thread blocks.
These clusters then converted to Space Points by
using their locations in space and calculating their
centers. A comparison of timings for CPU and
GPU based data preparation implementations for
different Bytestream sizes is given in Figure 4.

After data preparation is completed, track for-
mation starts. The first step in track formation
is the creation of track candidates. In this step,

4 GPUHEP2014

USE OF HARDWARE ACCELERATORS FOR ATLAS COMPUTING

GPUHEP2014 51



space points in different layers are paired to create seeds. These seeds are then extended into
outer silicon layers by looking for tertiary hits. This is a combinatoric algorithm which does
not scale well with hit multiplicity. The CPU version is implemented as a series of nested loops
while the GPU version essentially takes the Cartesian product of different detector layers by
using a 2-dimensional block of GPU threads.

Once track candidates are formed, clone removal is done. During the clone removal step,
track candidates which are formed by the same outer layer hits but different inner layer seeds
are merged and copies are removed. Due to nature of the task, the GPU implementation splits
the task in to identification and merging/removal while on the CPU it is done in a single step.
Timing results of the track formation steps are shown in Figure 5.

Figure 6: Muon regions of in-
terest. Data around expected
muon track at different detec-
tors is taken into account.

Another place in the Trigger where GPUs are being stud-
ied is the Muon triggers. The ATLAS Muon trigger tries to
select online events with relevant physics properties, based on
the presence of a muon in the event. A muon is expected to
leave hits in the inner tracking systems of ATLAS, as well as in
the outer Muon Spectrometers while traversing the detector.
On the other hand it is expected to leave a very small amount
of energy in the calorimeter. To achieve best-possible muon
reconstruction, all these have to be taken in account within
allowed time budget. Initial implementation is aimed to cal-
culate energy deposition in calorimeter cells around expected
muon trajectory, which involves looping over several hundreds
of calorimeter cells. However, flattening data structures for
GPU utilization was found to be a limiting factor.

3.2 GPU Based Reference Kalman-Filter for Offline Reconstruction

Figure 7: relative speedup of OpenMP, CUDA and
OpenCL implementations compared to serial C++
code

To allow a fair performance compari-
son between different systems, a refer-
ence Kalman- Filter[9] was implemented
in four independent versions. A se-
rial C++ version of the Kalman-Filter
is used to generate a base performance
index for further comparison. Then
we implemented three different paral-
lelized Kalman-Filter algorithms using
OpenMP, OpenCL[10] and CUDA[11].
Each of these uses the same flat data
structures and produces the same re-
sults. To measure the performance of
each implementation a set of test data
is used which consists of 96 events containing 19500 tracks and a total of 220000 hits. The test
system uses an Intel XEON E5-1620 processor with 8 GB RAM and a nVidia GeForce GTX
Titan 6 GB graphics card.
To achieve the results shown in Figure 7, we improved the code base of both the OpenCL
and CUDA implementation so that the whole Kalman-Filter chain is processed on the GPU.
This includes forward and backward filtering and the smoothing step. All tracks per event are

GPUHEP2014 5

MATTEO BAUCE , RENE BOEING , MAIK DANKEL , JACOB HOWARD , SAMI KAMA

52 GPUHEP2014



processed in parallel using 5x5 GPU threads (corresponding to co-variance matrix entries). For
an even higher performance, we use GPU-side matrix inversion which is done completely in
Shared Memory of the GPU. With the used hardware we were able to invert up to 224 matrices
in parallel on the GPU.
To simulate a higher load we ran the implementation in a benchmark fashion by calculating
the same dataset several times in a loop (up to 500 times) as shown in Figure 7. The GPU im-
plementations (CUDA and OpenCL) then achieved a relative speedup of about 15x compared
to the serial C++ implementation.

4 Conclusion

ATLAS is continuously producing a tremendous amount of data that has to be processed.
The possibility of compensating this rising amount of data just by the increase of CPU clock
frequency will be no longer an option due to physical constraints. CPU clock frequencies are
nearly at their maximum and therefore simply more cores and vector units are added so that one
now has to make use of parallel programming. Co-processors such as GPUs have a relatively
higher computing power per watt at a lower cost compared to CPUs, such that the use of
co-processors looks like a promising solution.

We introduced the APE framework, an approach for integrating co-processors into the ex-
isting ATLAS software framework Athena. This study allows us to use GPUs within Athena
with as little changes in the existing code as possible. We therefore have a working solution for
short- to medium-term software framework integration.

We also have first implementations for online computing tasks in the ATLAS Trigger as
well as a Kalman-Filter approach for offline computing. We are still evaluating other possible
parallelizable problems from which we could gain reasonable speedups in computation time.
Especially because of its combinatorial nature, track reconstruction seems to be promising.

We already achieved several encouraging results. Performing the data preparation steps of
the ATLAS trigger on a GPU reached a relative speedup of up to 26x compared to a serial
version run on a CPU. Parallelizing a Reference Kalman-Filter implementation achieved a
speedup of 16x also compared to a single threaded CPU version.

References

[1] ATLAS Collaboration. Atlas experiment luminosity public results. https://twiki.cern.ch/twiki/bin/

view/AtlasPublic/LuminosityPublicResults.

[2] Lyndon Evans and Philip Bryant. LHC Machine. JINST, 3:S08001, 2008.

[3] The Atlas Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:S08003,
2008.

[4] M Elsing. Online and Offline Tracking for High Pileup. (ATL-SOFT-SLIDE-2014-513), Aug 2014.

[5] Marco Clemencic, Hubert Degaudenzi, Pere Mato, Sebastian Binet, Wim Lavrijsen, et al. Recent develop-
ments in the LHCb software framework Gaudi. J.Phys.Conf.Ser., 219:042006, 2010.

[6] S Binet, P Calafiura, M K Jha, W Lavrijsen, C Leggett, D Lesny, H Severini, D Smith, S Snyder,
M Tatarkhanov, V Tsulaia, P VanGemmeren, and A Washbrook. Multicore in production: advantages
and limits of the multiprocess approach in the atlas experiment. Journal of Physics: Conference Series,
368(1):012018, 2012.

[7] iMatix Corporation. ZeroMQ web page. http://zeromq.org/.

6 GPUHEP2014

USE OF HARDWARE ACCELERATORS FOR ATLAS COMPUTING

GPUHEP2014 53



[8] JTM Baines, TM Bristow, D Emeliyanov, JR Howard, S Kama, AJ Washbrook, and BM Wynne. An
evaluation of the potential of GPUs to accelerate tracking algorithms for the ATLAS trigger. Technical
Report ATL-COM-DAQ-2014-094, CERN, Geneva, Sep 2014.

[9] R. Fruehwirth, M. Regler, R.K. Bock, H. Grote, and D. Notz. Data Analysis Techniques for High-Energy
Physics, chapter 3.2.5, pages 244 – 252. Cambridge Univerity Press, 2nd edition, 2000.

[10] Maik Dankel. Implementierung eines GPU-beschleunigten Kalman-Filters mittels OpenCL. Master’s thesis,
Fachhochschule Muenster, 2013.

[11] Rene Böing. Implementation eines CUDA basierten Kalman-Filters zur Spurrekonstruktion des ATLAS-
Detektors am LHC. Master’s thesis, Fachhochschule Muenster, 2013.

GPUHEP2014 7

MATTEO BAUCE , RENE BOEING , MAIK DANKEL , JACOB HOWARD , SAMI KAMA

54 GPUHEP2014


