GPU-based Online Tracking for the PANDA Ex-

periment

Andreas Herten' on behalf of the PANDA collaboration
!Forschungszentrum Jiilich, Wilhelm-Johnen-Strafle, 52428 Jiilich

DOT: http://dx.doi.org/10.3204/DESY-PROC-2014-05/11

The PANDA experiment is a new hadron physics experiment currently being built at
FAIR, Darmstadt (Germany). PANDA will study fixed-target collisions of antiprotons of
1.5GeV/c to 15 GeV/c momentum with protons and nuclei at a rate of 20 million events
per second. To distinguish between background and signal events, PANDA will utilize a
novel data acquisition technique. The experiment uses a sophisticated software-based event
filtering scheme involving the reconstruction of the whole incoming data stream in real-
time to trigger its data taking. Algorithms for online track reconstruction are essential
for this task. We investigate algorithms running on GPUs to solve PANDA’s real-time
computing challenges.

1 The PANDA experiment

PANDA, short for Antiproton Annihilation at Darmstadt, is a new hadron physics experiment
currently being built for FAIR, the Facility for Antiproton and Ion Research in Darmstadt,
Germany. PANDA will deliver unprecedented insight into current topics of hadron physics. The
experimental program includes meson spectroscopy in the charm energy region (charmonium;
open charm), baryon production, nucleon structure, charm in nuclei, and searches for exotic
states.

PANDA is an internal experiment at the High Energy Storage Ring (HESR) of FAIR. An-
tiprotons of 1.5GeV/c to 15GeV/c momentum collide with protons inside of PANDA in a
fixed-target fashion. The resulting physical events are detected by PANDA’s target spectrome-
ter, located around the interaction region, and the forward spectrometer, dedicated to precision
measurements of the forward-boosted event structure. [1]

Tracking detectors The innermost sub-detector of PANDA is the Micro Vertex Detector
(MVD), a silicon-based detector directly around the interaction point. 10 million pixel and
200000 strip channels enable vertex reconstruction with a resolution of < 100 pm. The Straw
Tube Tracker (STT), PANDA'’s central tracking detector, surrounds the MVD. The detector
consists of 4636 small drift tubes of 1cm diameter, aligned into 26 layers (18 parallel to the
beam axis, 8 tilted by £1.5° with respect to the beam axis). Both the STT and MVD are
located within the field of PANDA’s 2T solenoid. A third tracking detector covers forward
angles around the beam line with gas electron multiplying (GEM) foils. Three GEM stations
with two tracking planes each will be installed.

GPUHEP2014 57

ANDREAS HERTEN

Online trigger In the investigated energy region, [Rawbatarsimuiation | [Physics Crannels |
background and signal events have similar signatures L3
and can not be distinguished easily. A conventional | Tz @D

hgrdware—_based triggering mechanisn} would .not be effi-
cient for PANDA. Instead, the experiment will use a so- {
phisticated software-based online event trigger for event

Event Building Software Trigger
PID = o

selection in realtime [1]. This process needs to reduce the —

raw data rate of 200 GB/s (= 2 x 107 event/second) by L dmmm—

three orders of magnitude to match the imposed limits

by the storage facility (~ 3 PB/year) for further in-depth

offline analysis. Figure 1: PANDA’s online trigger-

The online trigger of PANDA is structured as in Fig- ing system.
ure 1. In particular, online track reconstruction is a chal-
lenging part in terms of performance and efficiency, as a large number of computations are
performed on a combinatorial complex datastream.

In this work, different tracking algorithms are investigated for their suitability to match
the performance needed for PANDA'’s online reconstruction. The algorithms are implemented
on GPUs, exploiting the low-cost, high-performance computing infrastructure offered by these
devices. In addition to GPU-based tracking, event reconstruction using FPGAs is also investi-
gated for PANDA [2], but not part of this report.

2 Online tracking algorithms

We are currently investigating three different algorithms for GPU-based track reconstruction.
They are presented in the following.

2.1 Hough Transform

Hough Transforming is a method used in image processing to detect edges in images. It was first
used for digitalization of images from bubble chamber experiments at CERN in the 1960s [3].
Adapting it for track finding and fitting means, to stay in computer vision terminology, to find
edges (tracks) in images with a small number of pixels (hit points).

Method The method centers around transforming a point into a set of values in a parameter
space (Hough space) and then extracting the most frequently generated parameters.
For every hit point (z;,y;), the equation

Tij = T; COS aj + y; sin oy (1)

is solved for a number of «; € [0°,180°). r;; is an equation of a line going through (z;,y;)
avoiding possible poles. Every parameter pair (r;;, «;) is filled into a histogram. As more and
more hit points of the same track are evaluated, a bin with the highest multiplicity emerges.
This is the parameter pair equivalent to the line best connecting all hit points — the desired
track parameter. See Figure 2.

58 GPUHEP2014

GPU-BASED ONLINE TRACKING FOR THE PANDA EXPERIMENT

y/tgrn

05

05~ \ AN £

0'5uwhu\w'w\wu\wu\wu\uw\wm\wu\wu}\wu\ A0 L b e b b Lo b L

15.2 154 156 158 16 16.2 16.4 16.6 16.8 17 17.2 0 20 40 60 80 100 120 140 160 180
x/cm ol

Figure 2: Schematic visualizations of Hough Transforms with coarse step sizes « for illustration.
Left: Different lines going through a hit point (center) are sampled in 10° steps with Equation 1.
Right: Hough space for a set of STT hit points, the o granularity is 2°.

Conformal map pre-step Since PANDA’s central tracking detectors are enclosed in
a solenoid magnet, the trajectories of particles are bent. A conformal mapping as a Hough
Transform pre-step is used to convert curved tracks with hit points (z;,y;) into straight lines

with hit points (a7, y}):
x; 1 X
<y> BECRR: (y> | .

While conformal mapping involves only two computations per hit point, the actual Hough
Transform calculates a large set of transformed points per hit — all independent from each other
and hence very suitable to compute on a GPU. For example, an average event with 80 STT
hits, evaluated every 0.2°, leads to 72 000 computations, all independent from each other. The
a granularity is here the main source for parallelism and subject to tuning. Its value is limited
by detector measurement uncertainties on the one side and by available computing resources
on the other.

Implementations Currently, two implementations are available for the Hough Transform.
The first uses Thrust [6], the template library for CUDA, offering a big set of standard com-
puting functions. No explicit CUDA kernel has been written for this implementation, only
specialized operators were used. The benefit of this method is the ability to make use of the
pre-programed sophisticated algorithms, optimized for high GPU performance. The drawback
is an overhead of converting the data into Thrust-compatible data types, and the inflexibil-
ity when customizing the algorithms. With 3 ms/event, this implementation is also not at its
performance maximum.

The second implementation is a plain CUDA implementation, built completely for this
task. Its performance is six times better (0.5ms/event) than the Thrust version. It is fitted
for PANDA’s exact task and is completely customizable, since it uses plain kernels throughout.
Since this version is both faster and more flexible, we consider the plain CUDA implementation
the better approach for Hough Transforms at PANDA.

The Hough Transform implementations give the expected results and fill the Hough space
reliably with the data of possible tracks. (Figure 3, left). A further challenge, though, is peak

GPUHEP2014 59

ANDREAS HERTEN

r/cm
1)
=

/)
«

-0.4

_|"'|"'|"'J

-0.6

25
20
15
10
5

180 °

P RN RN BN RN R AVRTA APRrEr
20 40 60 80 100 120 140 160 1 .
al® Interaction

Point

Figure 3: Left: Hough Transform of 68 hit points (STT, MVD). « is evaluated every 0.1°.
Thrust is used for computation, ROOT [4] for displaying, and CUSP [5] for providing fast,
templated methods to interface between both using the GPU. Right: Sketch of Triplet genera-
tion of the Triplet Finder.

finding in the Hough space: Large sets of hits create overlapping bands of parameter values in
the Hough space. A complicated picture emerges to find peaks in — a simple threshold cut is
not feasible. This part is currently under study.

2.2 Riemann Track Finder

The Riemann Track Finder is a track reconstruction algorithm already in use in PandaRoot,
PANDA'’s software framework, since several years [7]. The basic principle of the method is
a projection of two-dimensional hit points onto a Riemann surface (paraboloid) in a three
dimensional space. There, a plane going through the mapped hit points can easily be fitted.
The parameters of the plane are re-mapped into the two-dimensional and, with this, converted
into track parameters. The method is based on [8].

GPU optimization As three points can always parameterize a circle, this is the minimum
number of hits required for the Riemann Track Finder. A set of three hits (seed) is grown
to a proper track candidate by subsequently testing additional hits against it and checking
for passing certain quality cuts. The algorithm works on MVD hits. The seeding three-hit
combinations are generated in the CPU version by three cascaded for loops, each one for a
different layer of the MVD, implicitly assuming a track can not have two hits in the same layer.
For running seed generation in parallel on the GPU, the serial loops are flattened out. Using
explicit indexes, a 1 : 1 relation between global kernel variables involving CUDA’s threadIdx.x
and a layer hit combination is formulated.

As this produces a considerable amount of track seeds, the rest of the core Riemann Track
Finder code is directly ported to the GPU. No further optimization has initially been done —
the parallelism based on seeds suffices for a 100x performance increase when compared to the
CPU version. Tracks of an event are found, on average, in 0.6 ms using a NVIDIA Tesla K20X
GPU. The overhead needed for copying data to and from the device comprises 7% of this time,
making the Riemann Track Finder a computing-intensive algorithm and a good candidate for
running on GPUs.

60 GPUHEP2014

GPU-BASED ONLINE TRACKING FOR THE PANDA EXPERIMENT

= Non-Bunched
Bunched

o

[0

IS

w

N

Performance / Mhits/s

.
== Host Streams (bunch size 2000 ns)

- Dynamic Parallelism (bunch size 1000 ns)
s =+ Joined Kernel (bunch size 1000 ns)

-~

Performance, Mhits/s
o - N w » w [~ o

0 L L L L L L L , N . n n L L L s
0 20000 40000 60000 80000 100000 120000 140000 160000 0 20000 40000 60000 80000 100000 120000 140000 160000
Number of Hits Number of Hits

Figure 4: Performance for different optimization aspects of the Triplet Finder. Shown: Time
needed to process a given number of hits, in million hits processed per seconds. Left: Com-
parison of Triplet Finder performance with and without bunching wrapper (optimal bunch size
(1000 ns), dynamic parallelism approach). Right: Comparison of performance of different kernel
launch strategies, invoked with respective ideal bunch sizes in bunching wrapper.

2.3 Triplet Finder

The Triplet Finder is an algorithm specifically designed for the PANDA STT [9]. It is ported
to the GPU in collaboration with the NVIDIA Application Lab of the Jiilich Supercomputing
Centre.

Method Instead of evaluating data of the whole STT all the time, the Triplet Finder initially
takes into account only a subset. Certain rows of neighboring STT drift tubes (straws) are
selected for initiating the algorithm. As soon as a hit is detected in such a so-called pivot layer,
the algorithm searches for additional hits in the directly neighboring straws. A center-of-gravity
point is formed from all the hits, called a Triplet. Combining a Triplet from a pivot layer on
the inner side of the STT with a Triplet from a pivot layer from the outer side of the STT with
the interaction point at (0,0), a circle as a track candidate is calculated. In the next step, hits
close to the track candidate are associated to it to eventually form a proper track, as shown in
Figure 3, right. [10]

The Triplet Finder is a robust algorithm with many algorithmic tuning possibilities. Track
candidates are calculated without relying on the event start time ¢o, a value usually needed by
algorithms to generate an isochronous hit circle around a straw’s anode wire. % is not known
a-priori, as PANDA is running without any trigger information and needs to be provided by
dedicated algorithms.

GPU optimizations A number of different GPU-specific optimizations are performed on
the algorithm. Two of them are highlighted in the following, for a full list see [11].

Bunching wrapper The Triplet Finder looks at a set of hits at once and computes all
possible track candidates. For a certain amount of hits, the algorithm reaches its peak perfor-
mance. On the tested graphics card (NVIDIA Tesla K20X), this point is roughly equivalent
to 25000 hits (or 1000ns STT data). To always invoke the algorithm with the number of
hits at which it is performing best, a bunching wrapper is introduced. This wrapper cuts the
continuous hit stream into sets (bunches) of sizes that maximize the occupancy of the GPU.

GPUHEP2014 61

ANDREAS HERTEN

The algorithmic complexity is reduced and a performance maximum of 7Mhit/s is reached
(Figure 4, left).

Kernel launch strategies Different methods of launching the Triplet Finder processes
are evaluated.

e Dynamic Parallelism: This method was used during the GPU development of the al-
gorithm. Per bunch, one GPU-side process (thread) is called, launching itself the different
Triplet Finder stages subsequently as individual, small kernels directly from the GPU.

e Joined kernel: One CUDA block per bunch is called on the GPU. Instead of individual
kernels for the stages of the Triplet Finder (as in the previous approach), one fused kernel
takes care of all stages.

e Host streams: Similarly to the first approach, the individual stages of the algorithm
exist as individual kernels. But they are not launched by a GPU-side kernel, but by
stream running CPU-sided. One stream is initiated per bunch.

Results in Figure 4, right, show the Dynamic Parallelism approach to be the fastest, as GPU
occupancy is high and GPU-CPU communication reduced.

Optimization results The best performance in terms of computing time needed to process
an event, which was reached with the aforementioned and further optimizations, is 0.02 ms/event
(see also [11]). Employing only the Triplet Finder as a tracking algorithm, a multi-GPU system
consisting of O(100) GPUs seems sufficient for PANDA.

3 Conclusions

Different algorithms have been presented for online track reconstruction on GPUs in the
PANDA experiment. Each algorithm is in a different stage of development and has distinct
feature sets specializing on different objectives. The most optimized algorithm is the Triplet
Finder, with performance results making GPU-based online tracking a promising technique for
PANDA’s online event filter.

We are continuing tailoring the algorithms for PANDA’s needs — optimizing performance and
modifying specific aspects. All presented algorithms still need to be validated with physics
cases of PANDA and benchmarked in terms of reconstruction quality. Also, further research is
needed beyond the STT when including more sub-detectors into the different algorithms. Re-
cently, high-throughput data transfer to the GPU is also subject of our research to complement
the promising algorithmic developments towards a integrated GPU online track reconstruction
system for PANDA.

References

[1] PANDA Collaboration. Physics Performance Report for PANDA: Strong Interaction Stud-
ies with Antiprotons. arXiv:0903.3905, 2009.

62 GPUHEP2014

GPU-BASED ONLINE TRACKING FOR THE PANDA EXPERIMENT

2]

H. Xu, Z.-A. Liu, Q. Wang, J. Zhao, D. Jin, W. Kiihn, S. Lang, and M. Liu. An atca-
based high performance compute node for trigger and data acquisition in large experiments.
Physics Procedia, 37(0):1849 — 1854, 2012. Proceedings of the 2nd International Conference
on Technology and Instrumentation in Particle Physics (TIPP 2011).

Paul VC Hough. Machine analysis of bubble chamber pictures. In International Conference
on High Energy Accelerators and Instrumentation, volume 73, 1959.

Rene Brun and Fons Rademakers. Root—an object oriented data analysis framework. Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 389(1):81-86, 1997.

Webpage: http://cusplibrary.github.io/.

Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for cuda. GPU
Computing Gems, 7, 2011.

Stefano Spataro and the PANDA Collaboration. The PandaRoot framework for simulation,
reconstruction and analysis. Journal of Physics: Conference Series, 331(3):032031, 2011.

R Frithwirth, A Strandlie, and W Waltenberger. Helix fitting by an extended riemann fit.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, 490(1):366-378, 2002.

PANDA Collaboration. Technical design report for the panda (antiproton annihilations at
darmstadt) straw tube tracker. The Furopean Physical Journal A, 49(2):1-104, 2013.

M. C. Mertens for the PANDA collaboration. Triplet based online track finding in the
PANDA-STT. Journal of Physics: Conference Series, 503(1):012036, 2014.

Andrew Adinetz, Andreas Herten, Jiri Kraus, Marius C Mertens, Dirk Pleiter, Tobias
Stockmanns, and Peter Wintz. Triplet finder: On the way to triggerless online reconstruc-
tion with gpus for the panda experiment. In Procedia Computer Science, volume 29, pages
113-123. Elsevier, 2014.

GPUHEP2014 63

