
First experience with portable high-performance

geometry code on GPU

John Apostolakis1, Marilena Bandieramonte1, Georgios Bitzes1, Gabriele Cosmo1, Johannes de
Fine Licht1∗, Laurent Duhem3, Andrei Gheata1, Guilherme Lima2, Tatiana Nikitina1, Sandro
Wenzel1†

1CERN, 1211 Geneve 23, Switzerland
2Fermilab, Kirk & Pine Rd, Batavia, IL 60510, USA
3Intel, 2200 Mission College Blvd., Santa Clara, CA 95054-1549, USA

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/18

The Geant-Vector prototype is an effort to address the demand for increased performance in
HEP experiment simulation software. By reorganizing particle transport towards a vector-
centric data layout, the projects aims for efficient use of SIMD instructions on modern
CPUs, as well as co-processors such as GPUs and Xeon Phi.

The geometry is an important part of particle transport, consuming a significant fraction of
processing time during simulation. A next generation geometry library must be adaptable
to scalar, vector and accelerator/GPU platforms. To avoid the large potential effort going
into developing and maintaining distinct solutions, we seek a single code base that can be
utilized on multiple platforms and for various use cases.

We report on our solution: by employing C++ templating techniques we can adapt geom-
etry operations to SIMD processing, thus enabling the development of abstract algorithms
that compile to efficient, architecture-specific code. We introduce the concept of modu-
lar “backends”, separating architecture specific code and geometrical algorithms, thereby
allowing distinct implementation and validation. We present the templating, compila-
tion and structural architecture employed to achieve this code generality. Benchmarks of
methods for navigation in detector geometry will be shown, demonstrating abstracted al-
gorithms compiled to scalar, SSE, AVX and GPU instructions. By allowing users to choose
the most suitable type of processing unit for an application or potentially dispatch work
dynamically at runtime, we can greatly increase hardware occupancy without inflating the
code base. Finally the advantages and disadvantages of a generalized approach will be
discussed.

1 Introduction
Recent evolution of hardware has seen a reawakened focus on vector processing, a concept that
had otherwise lain dormant outside the world of video games while CPU clock speeds still
rode Moore’s law. Most notable is the surge of interest in general purpose GPU programming
(GPGPU), but vector instruction sets have existed on convential CPUs since the introduction
of 3DNow! by AMD [3] and SSE by Intel [4] in 1998 and 1999, respectively.

∗Presenting author (johannes.definelicht@cern.ch).
†Corresponding author (sandro.wenzel@cern.ch).

1GPUHEP2014 95



To improve performance on modern hardware, it is essential to make use of their vector
processing capabilities to access memory efficiently, whether this means efficient cache access
on CPU or efficient use of memory bandwidth on GPU.

1.1 GeantV

The Geant Vector prototype (GeantV) [1] was started as a feasibility study of the potential for
adding vectorization to detector simulation programs, in order to address an increasing need
for performance in HEP detector simulation software.

At the core of GeantV there is a scheduling engine orchestrating the progress of the sim-
ulation. This scheduler works on particle data packed in structure of arrays (SOA) form for
cache-efficiency and to accommodate SIMD memory access [7]; particles that require similar
treatment are grouped into baskets, which can be dispatched to the relevant components for
vectorized treatment [5]).

The GeantV R&D effort targets multiple platforms for vectorization, including SIMD in-
structions on CPUs (SSE, AVX) and accelerators such as GPUs and the Xeon Phi (AVX512).
Although sometimes limited by the state of compilers, the project pursues platform indepen-
dence to avoid vendor lock-in.

1.2 VecGeom

Navigation and particle tracking in detector geometry is responsible for up to 30%–40% of time
spent on particle transport in detector simulation (this fraction is highly experiment depen-
dent) [2], thus being an important research topic for vectorization in the GeantV prototype.
The main consumers of cycles are the four algorithms shown in Figure 1, which are implemented
separately for each geometrical shape.

VecGeom introduces vectorization techniques in the implementation of a new geometry
modeller. It is a continuation of the USolids [8] effort, a common library for geometrical
primitives, unifying and enhancing the implementations that currently exist in ROOT [9] and
Geant4 [10]. The scalar interfaces of VecGeom are therefore made to be compliant with the
ones of USolids, allowing free interchangeability between the two. VecGeom and USolids are
converging to a single code base.

To accommodate the scheduler of GeantV mentioned above, VecGeom exposes vector signa-
ture operating on baskets of particles. These signatures take SOA objects carrying information
on the particles in the basket, instead of a single set of parameters. Since these interfaces come
in addition to the scalar ones, there is an issue of signature multiplication requiring a lot of
boilerplate code, which will be addressed in Section 2.3.

VecGeom does not rely on vectorization alone to achieve performance. In the spirit of
USolids, the library employs the best available algorithms to solve the problems listed in Fig-
ure 1. This can mean picking and optimizing the best algorithm between existing ones in
ROOT, Geant4 and USolids, or it can mean writing them from scratch if deemed relevant.
When a new shape is implemented, performance is compared directly to that of the existing
libraries. Algorithms are not accepted before their scalar version (in addition to the vectorized
one) outperforms all existing implementations (more on different kernel versions follows in Sec-
tion 2.1). After algorithmic optimization, the library uses a number of additional templating
techniques for performance which are described in Section 2.1 and 2.4.

2 Templates for portability and performance
Templating is at the heart of VecGeom, being involved in every aspect of optimization. The
philosophy is that whenever the parameters of a performance-critical component can be resolved

2

JOHN APOSTOLAKIS, MARILENA BANDIERAMONTE, GEORGIOS BITZES, GABRIELE . . .

96 GPUHEP2014



A physics geometry package

Users define a geometrical hierarchy by placing daughter 
primitives in mother primitives

Primitives must provide a number of methods necessary for 
navigation in such a geometry

Existing implementations exist in ROOT and Geant4

8

?
?

(a) Determine if point is
inside a volume.

A physics geometry package

Users define a geometrical hierarchy by placing daughter 
primitives in mother primitives

Primitives must provide a number of methods necessary for 
navigation in such a geometry

Existing implementations exist in ROOT and Geant4

8

?
?

(b) Intersection check
and distance to intersec-
tion with volume.

A physics geometry package

Users define a geometrical hierarchy by placing daughter 
primitives in mother primitives

Primitives must provide a number of methods necessary for 
navigation in such a geometry

Existing implementations exist in ROOT and Geant4

8

?
?

(c) Minimum bound
on distance to volume
boundary.

A physics geometry package

Users define a geometrical hierarchy by placing daughter 
primitives in mother primitives

Primitives must provide a number of methods necessary for 
navigation in such a geometry

Existing implementations exist in ROOT and Geant4

8

?
?

(d) Distance to exit cur-
rent volume.

Figure 1: Primary problems solved by a geometry library during particle transport in simulation.

at compile-time, or even just if it has a finite set of configurations (see Section 2.4), templates
will be used to generate specialized machine code.

2.1 Thinking in kernels
The approach taken by VecGeom to achieve portability and performance through templates is to
separate performance-critical functionality into small plug-and-play kernels. Each kernel should
have a single and well-defined purpose, delegating subtasks to separate kernels, promoting the
sharing of kernels between algorithms. Kernels are built to operate on a single unit of input,
meaning no explicit vectorization is typically done in them. Instead, vectorization can be
conveyed by the types on which operations are performed (as this will often be a template
parameter), and is described in Section 3. Logical constructs such as branches have to be
abstracted to higher level functions in order to accommodate this. To ensure that kernels can
indeed be shared between different contexts, kernels can live either as free C-like functions or
as static methods of enclosing classes, but should never relate to an object. When an object-
abstraction is useful, classes can instead implement static methods and call them from within
their own methods.

2.2 Architecture abstraction
An important motivation for taking the kernel approach is architecture abstraction. VecGeom is
a performance-oriented library, and as such aims at maximizing hardware utilization by offering
to run scalar and SIMD code on CPU, and also run on accelerators. Rather than writing sep-
arate implementations for each target architecture and multiplying the required maintenance,
VecGeom has opted for a generalized approach. The difference between architectures is isolated
to memory management and the types that are operated on, with the latter being handled by
the kernels. For this, the concept of backends was introduced. Backends represent an architec-
ture to which kernels should compile, and are encapsulated in C++ trait classes. These classes
contain the relevant types to operate on, as well as some static members, such as a boolean to
toggle early returns. Backends are used as a template parameter of kernels that operate on the
provided types, and by overloading higher level functions called on these types, the architecture
specific instructions necessary to perform operations is decided. An example of a backend class
is shown in Listing 1.

3

FIRST EXPERIENCE WITH PORTABLE HIGH-PERFORMANCE GEOMETRY CODE ON GPU

GPUHEP2014 97



class VcBackend {

public:

typedef Vc:: double_v double_t;

typedef Vc::int_v int_t;

typedef Vc:: double_m bool_t;

static constexpr bool earlyReturns

= true;

};

Listing 1: A C++ trait class
representation of a backend, providing
types to operate on and allowing other
configuration options. Vc is used to
wrap vector instruction sets.

template <class B>

typename B:: double_t DistanceToPlane(

Vector3D <typename B::double_t > const &point ,

Vector3D <typename B:: double_t const &plane) {

typename B:: double_t result;

result = point.dot(plane);

// If behind the point is considered inside

MaskedAssign(result < 0, 0, &result);

return result;

}

Listing 2: Kernel operating on a backend class, such
as the one shown in Listing 1.

2.3 Solving code multiplication

The introduction of the vector interfaces led to a multiplication of signatures necessary for
a shape to implement, as each shape has to provide both the scalar and vector signatures.
Because of the way kernels are designed, this quickly led to large amounts of boilerplate code
that simply called different instantiations of the the same family of templates. These were not
only cumbersome to write for each implemented shape, but also meant a lot of duplicate code
to maintain in the future. To improve this, the curiously recurring template pattern (named by
James Coplien [12]) is employed. This pattern allows a leaf class to inherit from a templated
auxiliary class, passing its own type as a template parameter. The auxiliary class will then
inherit from the appropriate base class and implement a number of methods calling static
methods of the class passed as a template parameter. This can be either the inheriting class
itself or a separate class entirely. Using the interface of VecGeom shapes, this meant that only a
single templated method per algorithm had to be implemented for each shape. The boilerplate
code used to call different configurations was collected in a single global auxiliary class. An
example of this technique is provided in Listing 3.

2.4 Shape specialization

VecGeom defines a set of geometrical shapes. Some parameters describing the shapes have
a significant impact on the algorithms: an angle configuration can eliminate the need for a
trigonometric function, or a tube with no inner radius can just be treated as a cylinder. Cre-
ating separate shape classes for specific configurations would cause the number of primitives
to explode. Instead, VecGeom takes advantage of this behind the scenes by using the concept
of shape specialization. By having kernels template on one or more specialization parameters,
blocks of code are tweaked or removed entirely from the implementation at compile time. This
saves branch mispredictions and register allocation as compared to performing all branches at
runtime. The concept is shown in Listing 4.

To avoid to expose end users to specialization, the instantiation of each configuration is done
by a factory method. This limits specialization to a finite phase space, but hides the specifics
through polymorphism, handing the user an optimized object behind the base primitive’s in-
terface. Specialization happens when shapes are placed into their frame of reference. Volumes
instantiated by other means are not specialized, and will instead branch at runtime.

Figure 2 shows relative benchmarks between the same kernel compiled for three different
scenarios: the unspecialized case where branches are taken at runtime, the specialized case

4

JOHN APOSTOLAKIS, MARILENA BANDIERAMONTE, GEORGIOS BITZES, GABRIELE . . .

98 GPUHEP2014



template <class B, class S>

class Helper : public B {

public:

virtual double Distance(Vector3D <double > ...) const {

// Implement virtual methods by calling the

// implementation class methods

S:: template Distance <kScalar >(...);

}

virtual void Distance(SOA3D <double > ...,

double *distance) const {

// Generate vector types from the input and loop

// over the kernel

S:: template Distance <kVector >(...);

}

};

Listing 3: Applying the curiously recurring template
pattern to eliminate boilerplate code. A shape inheriting
from the helper class only needs to provide a single kernel
per algorithm, as the helper will use it to implement all
the virtual function required by the interface.

template <bool hollow >

class TubeImplementation {

public:

void Distance (...) {

// Treat outer radius and

both ends

...

if (hollow) {

// Treat inner radius

...

}

}

};

Listing 4: Change or remove
blocks of code at compile-time.
To avoid relying on the optimizer,
an auxiliary function can also be
introduced to explicitly specialize
different cases of a template
parameter.

where unused code has been optimized away at compile time, and the vectorized case treating
four incoming rays in parallel using AVX instructions.

3 Running on multiple architectures

With the proposed kernel design, supporting multiple architecture means to provide the per-
architecture backend trait class, and to write kernels in a generic fashion, letting types lead to
the underlying instructions. Mathematical functions typically work by simple overloading on
input types. Conditional statements need to be handled more carefully, as conditions evaluated
from the input can have different values for each value in the vectors being operated on. This can
be done using masked assignments and boolean aggregation: the overloaded masked assignment
function uses an input condition to only assign input elements to a new value if the condition
evaluates to true for the instance in question; the overloaded boolean aggregation functions
reduce an input condition by aggregators all, any or none. When the input is scalar, these
functions trivially assign the variable or return the conditional variable itself, respectively. An
example of a kernel using a masked assignment is shown in Listing 2.

VecGeom uses the Vc [11] library to target CPU vector instructions. Vc provides types
stored as packed, aligned memory, which are loaded into vector registers. Depending on the
supported instruction set, this can compile to SSE, AVX or AVX512 intrinsics, operating on
2, 4 or 8 doubles at a time, respectively. Since vectorization by Vc is explicit, kernels instanti-
ated with these types are guaranteed to use appropriate vector intrinsics. Figure 2 includes a
benchmark for a kernel compiled to AVX intrinsics by operating on Vc types.

Supporting CUDA is fairly straightforward, as the VecGeom kernel architecture fits well
into a GPU design. Kernel functions are simply annotated with host and device when
compiling with nvcc, making them available to both CPU and GPU as needed. Additionally,
the mask-based coding style described above means that branching is discouraged by design,
showing how the generalized SIMD-oriented approach benefits multiple architectures.

5

FIRST EXPERIENCE WITH PORTABLE HIGH-PERFORMANCE GEOMETRY CODE ON GPU

GPUHEP2014 99



Unspecialized Specialized Vectorized
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

T
im

e
 f

o
r 

4
0
9
6
 i
n
v
o
ca

ti
o
n
s 

[s
]

Tube (cylinder) distance benchmark

Figure 2: Relative benchmarks of the distance algorithm
to a cylinder, which is the special case of a tube with no
inner radius. All configurations are compiled from the
same kernel. Vectorized kernel compiled to AVX instruc-
tions, treating four rays in parallel.

Use case: 
Brokering

19

1

4

1024

…

…

Input size
Generic kernel

Scalar 
instantiation

Vectorized 
instantiation

GPU 
instantiation

Clever brokering algorithms can 
take advantage of multiple 
architecture support

Delegation can happen at runtime

Algorithm only has to be 
designed once; various 
instantiations can easily be 
verified against each other

Figure 3: Methods targeting
different architectures are
instantiated from the same
templated kernel.

Once kernels have been instantiated with different backends, it is easy to perform bench-
marks such as the ones shown in Figure 4, comparing performance and scaling on different
architectures. This can also be used for verification purposes: once an algorithm is validated
on one architecture, other architectures can conveniently be validated against this result.

3.1 GPU support

The library support for GPUs was first implemented in CUDA. Although this opposes the desire
to avoid vendor lock-in, it was considered the more productive way forward given the current
state of CUDA and OpenCL compilers.

The support offered is two-fold: shape primitives and their respective kernels are provided
as device functions that can be run from user code, and memory synchronization capabilities
are offered to copy geometries built in main memory to GPU memory. Together this offers
full flexibility to integrate the GPU in user code, whether it be exclusively or as a target for
offloading.

An effort to investigate the use of this approach with OpenCL has been significantly ham-
pered by the lack of support for polymorphism in the current specification.

3.2 Feasibility of architecture independence

Several advantages of architecture independent kernels have been discussed, such as maintain-
ability, hardware utilization and cross-architecture benefits of SIMD data structures. There
are of course disadvantages to this approach, the most prominent being loss of important ar-
chitecture specific optimizations by restricting kernels to use higher-level abstractions. This
is recognized in VecGeom by allowing implementation of template specializations of a given
backend for kernels or overwriting methods (that are otherwise implemented by a helper as

6

JOHN APOSTOLAKIS, MARILENA BANDIERAMONTE, GEORGIOS BITZES, GABRIELE . . .

100 GPUHEP2014



4 8 16 32 64 128 256 512 1024 2048 4096 8192
Input size

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p

Performance of DistanceToIn algorithm for tubes

CPU SIMD instructions
CUDA

(a) Distance algorithm, 50 floating point operations
per kernel execution.

4 8 16 32 64 128 256 512 1024 2048 4096 8192
Input size

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p

Performance of Inside algorithm for tubes

CPU SIMD instructions
CUDA

(b) Inside algorithm, 10 floating point operations
per kernel execution.

Figure 4: Relative benchmarks of generic kernels run on scalar, AVX and CUDA architectures
on consumer-grade hardware (3.4 GHz Ivy Bridge Core i7 and GeForce GTX 680). Speedup
with respect to the scalar instantiation of the same kernel shown as the black dashed line.
The GPU needs considerably more floating point operations than the CPU to efficiently hide
memory latency.

demonstrated in Section 2.3) in leaf classes. In this way, the code base can be extended to
include specific implementations without sacrificing the benefits of having general kernels.

Since kernels often template on one or more parameters, and to encourage compiler opti-
mizations in general, all kernels are implemented in header files. In performance intensive code,
function calls (virtual function calls in particular) have proven to be a significant performance
liability, amplified by the design that encourages high separation of functionality. Avoiding this
comes with at least two (correlated) penalties, being compilation time and binary file size. Al-
though this is typically an acceptable trade-off, the impact can be significant, and is monitored
as development progresses to ensure a desirable balance.

4 Summary

Through the philosophy of small, reusable and general kernels, and the creation of abstract
backends, VecGeom has achieved a small code base with a large degree of portability, support-
ing both CPU and accelerators. Architecture specific optimizations remain possible by using
template specialization and method overwriting.

Benchmarks were presented that demonstrate benefits of vectorization achieved in a general
fashion by employing the Vc library, and the gain in the performance obtain by specializing
shapes at compile time to remove unused code (all configurations instantiated from the same
templated kernel).

GPU support is offered through device instantiations of kernels and memory synchronization
API, allowing exclusive or offloading use by an external scheduler.

References
[1] J. Apostolakis et al., Rethinking particle transport in the many-core era towards GEANT 5, 2012 J. Phys.:

Conf. Ser. 396 022014, doi:10.1088/1742-6596/396/2/022014.

7

FIRST EXPERIENCE WITH PORTABLE HIGH-PERFORMANCE GEOMETRY CODE ON GPU

GPUHEP2014 101



[2] J. Apostolakis et al., Vectorising the detector geometry to optimise particle transport, 2014 J. Phys.: Conf.
Ser. 513 052038, doi:10.1088/1742-6596/513/5/052038.

[3] AMD, 3DNow! Technology Manual, 21928G/0, Rev. G, March 2000.

[4] Intel Corporation, Pentium III Processor for the PGA370 Socket at 500 MHz to 1.13 GHz, 245264-08,
Rev. 8, June 2001.

[5] A. Gheata, Adaptative track scheduling to optimize concurrency and vectorization in GeantV, Proc. ACAT
2014, forthcoming.

[6] Sandro Wenzel, Towards a generic high performance geometry library for particle transport simulation,
Proc. ACAT 2014, forthcoming.

[7] Intel Corporation, Programming Guidelines for Vectorization, 2014.

[8] Marek Gayer et al., New software library of geometrical primitives for modeling of solids used in Monte
Carlo detector simulations, 2012 J. Phys.: Conf. Ser. 396 052035, doi:10.1088/1742-6596/396/5/052035.

[9] R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A
389 (1997) 81.

[10] S. Agostinelli et al., Geant4 - a simulation toolkit, Nuclear Instruments and Methods A 506 (2003) 250-303.

[11] M. Kretz and V. Lindenstruth, Vc: A C++ library for explicit vectorization, Softw: Pract. Exper., 42:
14091430. doi: 10.1002/spe.1149, December 2011.

[12] J. Coplien, Curiously Recurring Template Patterns, C++ Report, February 1995.

8

JOHN APOSTOLAKIS, MARILENA BANDIERAMONTE, GEORGIOS BITZES, GABRIELE . . .

102 GPUHEP2014


