
GPUs for Higgs boson data analysis at the LHC

using the Matrix Element Method

Doug Schouten1, Adam DeAbreu2, Bernd Stelzer2

1TRIUMF, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada
2Department of Physics, Simon Fraser University, 8888 University Dr, Burnaby, BC, Canada

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/20

The matrix element method utilizes ab initio calculations of probability densities as power-
ful discriminants to extract small signals from large backgrounds at hadron collider exper-
iments. The computational complexity of this method for final states with many particles
and degrees of freedom sets it at a disadvantage compared to supervised classification
methods such as decision trees, k nearest-neighbour, or neural networks. We will present
a concrete implementation of the matrix element technique in the context of Higgs boson
analysis at the LHC employing graphics processing units. Due to the intrinsic paral-
lelizability of multidimensional phase space integration, dramatic speedups can be readily
achieved, which makes the matrix element technique viable for general usage at collider
experiments.

1 Introduction

The matrix element method (MEM) in experimental particle physics is a unique analysis tech-
nique for characterizing collision events. When used to define a discriminant for event classifi-
cation, it differs from supervised multivariate methods such as neural networks, decision trees,
k-NN, and support vector machines in that it employs unsupervised ab initio calculations of
the probability density Pi that an observed collision event with a particular final state arises
from 2 → N scattering process i. Furthermore, the strong connection of this technique to the
underlying particle physics theory provides key benefits compared to more generic methods:

1. the probability density Pi directly depends on the physical parameters of interest;

2. it provides a most powerful test statistic for discriminating between alternative hypothe-
ses, namely Pi/Pj for hypotheses i and j, by the Neyman-Pearson lemma;

3. it avoids tuning on unphysical parameters for analysis optimization1;

4. it requires no training, thereby mitigating dependence on large samples of simulated
events.

The MEM was first studied in [1] and was heavily utilized by experiments at the Tevatron for
W helicity [2] and top mass [3, 4] measurements, and in the observation of single top production

1Rather, optimization is determined by theoretical physics considerations, such as inclusion of higher order
terms in the matrix element, or improved modeling of detector resolution.

GPUHEP2014 1GPUHEP2014 109

[5], for example. It has also been used in Higgs searches at the Tevatron [6] and at the Large
Hadron Collider (LHC) by both CMS [7] and ATLAS [8] collaborations. The MEM has also
been extended in a general framework known as MadWeight [11].

The MEM derives its name from the evaluation of Pi:

Pi =
1

σi

∑

flavor

∫

Vn

M2
i (Y)

f1(x1, Q
2) f2(x2, Q

2)

|~q1| · |~q2|
dΦn(q1 + q2; y1, .., yn), (1)

where Mi is the the Lorentz invariant matrix element for the 2→ n process i, Y is shorthand
notation for all the momenta ~y of each of the n initial and final state particles, f1 and f2 are the
parton distribution functions (PDF’s) for the colliding partons, σ is the overall normalization
(cross-section), and

dΦn(q1 + q2; y1, .., yn) = (2π)4δ4(q1 + q2 −
n∑

i=1

yi)

n∏

i=1

d3yi
(2π)32Ei

(2)

is the n-body phase space term. The momenta of the colliding partons are given by q1 and q2,
and the fractions of the proton beam energy are x1 and x2, respectively. The sum in Equation
(1) indicates a sum over all relevant flavor combinations for the colliding partons.

The association of the partonic momenta Y with the measured momenta X is given by a
transfer function (TF), T (~x; ~y) for each final state particle. The TF provides the conditional
probability density function for measuring ~x given parton momentum ~y. Thus,

p̂i =

∫
Pi T (X;Y) dY, (3)

is the MEM probability density for an observed event to arise from process i assuming the
parton → observable evolution provided by the TF’s. For well-measured objects like photons,
muons and electrons, the TF is typically taken to be a δ-function. For unobserved particles
such as neutrinos, the TF is a uniform distribution. The TF for jet energies is often modeled
with a double Gaussian function, which accounts for detector response (Gaussian core) and
also for parton fragmentation outside of the jet definition (non-Gaussian tail). To reduce the
number of integration dimensions, the jet directions are assumed to be well-modeled so that
T (θx, φx; θy, φy) = δ(θx − θy)δ(φx − φy).

Despite the advantages provided by the MEM enumerated above, an important obstacle to
overcome is the computational overhead in evaluating ≥ 1 multi-dimensional integrals for each
collision event. For complex final states with many degrees of freedom (eg., many particles
with broad measurement resolution, or unobserved particles), the time needed to evaluate p̂i
can exceed many minutes. In realistic use cases, the calculations must be performed multiple
times for each event, such as in the context of a parameter estimation analysis where p̂i is
maximized with respect to a parameter of interest, or for samples of simulated events used
to study systematic biases with varied detector calibrations or theoretical parameters. For
large samples of events, the computing time can be prohibitive, even with access to powerful
computer clusters. Therefore, overcoming the computation hurdle is a relevant goal.

This paper presents an implementation of the MEM using graphics processing units (GPU’s).
The notion of using GPU’s for evaluating matrix elements in a multidimensional phase space
has been investigated previously [12], although not in the context of the MEM. In order to
ascertain the improvements in computing time when utilizing GPU’s, the MEM was applied

2 GPUHEP2014

DOUG SCHOUTEN, ADAM DEABREU, BERND STELZER

110 GPUHEP2014

in the context of a simplified tt̄H(→ bb̄) search in LHC Run II. Studying the tt̄H process is
important in its own right [13, 14, 15, 16, 17]. Due to the complexity of the final state for this
process, it is also an interesting use case in which to study the feasibility of the MEM with the
improvements from highly parellelized multi-dimensional integration.

The note is organized as follows: in Section 2, the applicability of GPU architectures to the
computational problem at hand is briefly outlined. In Section 3 a simplified tt̄H analysis is
presented, which will be used to benchmark the improved computational performance afforded
by modern GPU’s. In Section 3.1 the specific implementation is outlined together with a
summary of the results obtained from a number of GPU and CPU architectures.

2 Parallelized Integrand Evaluation

For dimensions ≥ 3, evaluation of multidimensional integrals is typically only feasible using
Monte Carlo methods. In these methods, the integrand

I =

∫

Vm

f(~x) d~x (4)

is approximated by a sum over randomly sampled points in the m-dimensional integration
volume Vm

SN ≡ Vm
1

N

N∑

i=1

f(~xi)

︸ ︷︷ ︸
≡ f

, (5)

which converges to I by the law of large numbers. For all Monte Carlo integration algorithms,
there is a trivial parallelization that can be achieved by evaluating the integrand f(xi) at points
{xi}i=1,..,N simultaneously, since the evaluation of the integrand at each point xi is independent
of all other points {xj}j 6=i.

This mode of parallel evaluation is known as data parallelism, which is achieved by concur-
rently applying the same set of instructions to each data element. In practice, evaluating the
functions used in the MEM involves conditional branching, so that the integrand calculation at
each xi does not follow an identical control flow. Nevertheless, it is instructive to proceed with
the ansatz of strict data parallelism.

Data parallelism maps very well to the single instruction, multiple data (SIMD) architecture
of graphics processing units (GPU’s). Modern GPU’s contain many individual compute units
organized in thread units. Within each thread unit, all threads follow the same instruction
sequence2, and have access to a small shared memory cache in addition to the global GPU
memory.

The advent of general purpose programming on GPU’s (GPGPU) has vastly increased the
computing capability available on a single workstation, especially for data parallel calculations
such as in the MEM. Two languages have gained traction for GPGPU, namely CUDA [20]
(restricted to GPU’s manufactured by NVidia) and OpenCL [21]. Both languages are based on
C/C++3.

2This has implications for code with complicated control flow, since threads will be locked waiting for other
threads in the same unit to be syncronized in the instruction sequence. Careful tuning of the MEM function
control flow and the thread unit sizes may improve the performance.

3In this work, the AMD Static C++ extensions to OpenCL [22] are used.

GPUHEP2014 3

GPUS FOR HIGGS BOSON DATA ANALYSIS AT THE LHC USING THE MATRIX . . .

GPUHEP2014 111

3 tt̄H(→ bb̄) Search

The fact that the Higgs coupling to the top quark is ≈ 1 hints at a special role played by the
top quark in electroweak symmetry breaking. Analysis of tt̄H(→ bb̄) production at the LHC
can provide a powerful direct constraint on the fermionic (specifically, the top) couplings of
the Higgs boson, with minimal model-dependence. The dominant backgrounds to this process,
assuming at least one leptonic top decay, arise from the irreducible tt̄bb̄ background as well
as the tt̄cc̄ and tt̄jj backgrounds via ‘fake’ b-tagged jets. The association of observed jets to

b

b

ν

ℓ
b

b

ℓ

ν

t

t

H

t

t

b

b

b

b

ν

ℓ

ℓ

ν
t

t

Figure 1: Representative Feynman diagrams for tt̄H(→ bb̄) production (left) and the irreducible
tt̄bb̄ background (right) in the dilepton channel.

the external lines of the leading order (LO) Feynman diagrams in Figure 1 also gives rise to a
combinatoric dilution of the signal, since there is an increased probability that a random pair
of b partons in a tt̄bb̄ event will have mbb ′ ≈ mH . For the fully hadronic tt̄ decay, there are
4! × 4! / 2= 288 combinations, assuming fully efficient b-tagging. This benchmark study is
performed predominantly for the dileptonic tt̄ decay mode, to showcase the application of the
method for a very complex final state and also to reduce the large QCD backgrounds.

For the dilepton channel, the observable signature of the final state is bb̄`¯̀ + /ET , where
/ET = ~pνT + ~pν̄T . It is not possible to constrain the z components of the neutrino momenta, and
using transverse momentum balance removes only two of the remaining four degrees of freedom
from the x and y components. Due to the broad resolution of the measured jet energy, there
are also four degrees of freedom for the energy of the four b quarks in the final state, so that
the MEM evaluation implies an 8-dimensional integration:

p̂i =
1

σi

∑

jet comb.

∑

flavor

∫
M2

i (Y)
f1(x1, Q

2) f2(x2, Q
2)

|~q1| · |~q2|
Φ · (6)

δ
(
pνx − /E

x
T − pν̄x

)
δ
(
pνy − /E

y
T − pν̄y

)
d3~pν d

3~pν̄

Njet=4∏

j=1

T (Ejet
j ;Ej) · (E2

j sin θj) dEj ,

where Φ = (2π)4δ4(q1 +q2−
∑n
i=1 p

i
y)
∏n
i=1

1
(2π)32Ei

, and the integrals over the lepton momenta

are removed by assuming infinitesimal measurement resolution. The outer sum is over all
permutations of assigning measured jets to partons in the matrix element. A transformation
to spherical coordinates has been performed d3~p → p2 sin(θ) dp dθ dφ for the jets, and E is set
to |p|.

4 GPUHEP2014

DOUG SCHOUTEN, ADAM DEABREU, BERND STELZER

112 GPUHEP2014

The behaviour of the matrix element function M(Y) is strongly influenced by whether or
not the internal propagators are on shell. It is difficult for numerical integration algorithms to
efficiently map out the locations in momentum space of the external lines for which the internal
lines are on shell. Therefore, it is advantageous to transform integration over the neutrino
momenta to integrals over q2 (where q is the four momentum) of the top quark and W boson
propagators, so that the poles in the integration volume are along simple hyperplanes. This
leads to the following coupled equations:

/Ex = pνx + pν̄x
/Ey = pνy + pν̄y

q2
W+ = (E`+ + Eν)2 − (p`

+

x + pνx)2 − (p`
+

y + pνy)2 − (p`
+

z + pνz)2

q2
W− = (E`− + Eν̄)2 − (p`

−
x + pν̄x)2 − (p`

−
y + pν̄y)2 − (p`

−
z + pν̄z)2 (7)

q2
t = (Eb + E`+ + Eν)2 − (pbx + p`

+

x + pνx)2 −
(pby + p`

+

y + pνy)2 − (pbz + p`
+

z + pνz)2

q2
t̄ = (Eb̄ + E`− + Eν̄)2 − (pb̄x + p`

−
x + pν̄x)2 −

(pb̄y + p`
−
y + pν̄y)2 − (pb̄z + p`

−
z + pν̄z)2,

which have been solved analytically in [23]. For the tt̄H(→ bb̄) process, there is an additional
very narrow resonance from the Higgs propagator. For the same reasoning as above, the fol-
lowing transformation of variables for E1 and E2 are employed, which are the energies of the
b-quarks from the Higgs decay, respectively:

f = (E1 + E2)

m2
H = (E1 + E2)2 − |~p1|2 − |~p2|2 − 2 |~p1| |~p2| cos ∆θ1,2, (8)

where |~p| =
√
E2 −m2. Figure 1 highlights the internal lines which are used in the integration.

3.1 Analysis and Results

The evaluation of the integrand in Equation (6) is broken into components for the matrix
element M(Y), the PDF’s, the TF’s and the phase space factor. Each of these components is
evaluated within a single GPU “kernel” program for each phase space point. Code for evaluating
M is generated using a plugin developed for MadGraph [24]. This plugin allows one to export
code for an arbitrary 2→ N process from MadGraph to a format compatible with OpenCL,
CUDA, and standard C++. This code is based on HELAS functions [25, 26]. Compilation for
the various platforms is controlled with precompiler flags. Model parameters, PDF grids and
phase space coordinates are loaded in memory and transferred to the device4 (GPU) whereafter
the kernel is executed. The PDF’s are evaluated within the kernel using wrapper code that
interfaces with LHAPDF [27] and with the CTEQ [28] standalone PDF library. The PDF data is
queried from the external library and stored in (x,Q2) grids for each parton flavor (d, u, s, c, b),
which are passed to the kernel program. The PDF for an arbitrary point is evaluted using
bilinear interpolation within the kernel. The precision of the interpolation is within 1% of the

4In the case of CPU-only computation, the transfer step is unnecessary.

GPUHEP2014 5

GPUS FOR HIGGS BOSON DATA ANALYSIS AT THE LHC USING THE MATRIX . . .

GPUHEP2014 113

Configuration Details Peak Power Cost (USD, 2014)
CPU Intel Xeon CPU E5-2620 0 @ 2.00GHz (single core) using gcc 4.8.1 95W 400
CPU (MP) Intel Xeon CPU E5-2620 0 @ 2.00GHz (six cores + hyperthreading) using AMD SDK 2.9 / OpenCL 1.2 95W 400
GPU AMD Radeon R9 290X GPU (2,816 c.u.) using AMD SDK 2.9 / OpenCL 1.2 on Intel Xeon CPU E5-2620 295W 450
GPUx same configuration as GPU, but with minor code modifications to accomodate GPU architecture

Table 1: Details of the hardware configurations used to benchmark the MEM for GPU and
(multicore) CPU’s. The peak power is as reported by the manufacturer. The cost is listed
in USD for the CPU or GPU only. For the GPU configuration, the code was identical to
that used for the CPU configurations. For the GPUx configuration, the code was modified to
accommodate the specific GPU architecture.

values directly queried from the PDF library. An event discriminant D is constructed as

D = log10

(
p̂tt̄H
p̂tt̄bb̄

)
(9)

and evaluated for a sample of signal (tt̄H) and background (tt̄bb̄) events generated in Mad-
Graph and interfaced with Pythia for the parton shower, [29] using the so-called Perugia tune
[30]. Jets are reconstructed using the anti-kT algorithm described in [31] with width parameter
d = 0.4. Any jets overlapping with leptons within d are vetoed, and b-tagging is performed
by matching jets to the highest energy parton within ∆R =

√
∆η2 + ∆φ2 < d. A transfer

function is defined for b-jets by relating the jet energy to the energy of the matched parton
using a double Gaussian distribution.

The analysis is performed at two levels, namely

1. parton level: using the parton momenta from MadGraph-generated events directly (by
assuming δ-function TF’s for all final state particles), and averaging over all permutations
for the assignment of the b partons in each event;

2. hadron level: using the outputs from Pythia and selecting events with four b-jets, aver-
aging over all the permutations and integrating over the full 8-dimensional phase space
as in Equation (6).

The convenient PyOpenCL and PyCUDA [32] packages are used to setup and launch
OpenCL and CUDA kernels. Using OpenCL one can also compile the MEM source for a CPU
target, and is thereby able to parallelize the MEM across multiple cores (see Table 1). In order
to perform the numerical integration, a modified Vegas implementation in Cython/Python [33]
is used. This implementation has a number of improvements compared to previous versions
and, importantly, interfaces with the provided integrand function by passing the full grid of
phase space points as a single function argument. This allows one to pass the whole integration
grid to the OpenCL or CUDA device at once, which facilitates the desired high degree of paral-
lelism. The parton and hadron level MEM is performed with various hardware configurations
specified in Table 1. In all configurations except the one labelled GPUx, the MEM code used
is identical. For the GPUx case, minor modifications were made to replace particular array
variables with sets of scalar variables.

3.1.1 Parton Level

Here, the evaluation is performed using the parton momenta, so that all the transfer functions
become δ-functions, and the evaluation of D does not involve any numberical integration. In

6 GPUHEP2014

DOUG SCHOUTEN, ADAM DEABREU, BERND STELZER

114 GPUHEP2014

this benchmark, all possible combinations of b-quarks in the final state are summed. The
distribution of D for the signal and background samples is shown in Figure 2. A comparison
of the time needed to evaluate p̂i for all events is shown in Table 2 for various CPU and GPU
configurations.

Process CPU CPU (MP) GPU GPUx CPU / GPUx

signal 255 29 1.8 0.7 364

background 661 91 12 5.4 122

Table 2: Processing time, in seconds, required to evaluate the matrix elements for 105 events
at parton level, for the various configurations detailed in Table 1. Using GPU’s reduces the
processing time by a factor greater than 120× compared to a single CPU core for the tt̄bb̄ matrix
element.

3.1.2 Hadron Level

The analysis at hadron level is closer to what can be optimally achieved in a real world collider
experiment. Only the momenta of stable, interacting particles are accessible, and the jet energy
resolution must be taken into account. The calculation of p̂i requires evaluating the eight-
dimensional integral in Equation (6). The integration variable transformation for tt̄H and tt̄bb̄
matrix element integrals presented in Section 2 are used. At each phase space point in the sum
of Equation (5), the /ET used in Equation (7) is defined as

/Ex,y = −

p`+x,y + p`

−
x,y +

∑

j ∈ jets

pjx,y

 . (10)

The processing times per event for the hadron level MEM calculation are shown in Table 3.
The relative improvement for the GPU is significantly reduced compared to the parton level
analysis. This arises from a number of differences for this scenario. First, the VEGAS stratified
sampling and adaptive integration algorithm is run on the CPU in all cases, which damps the
GPU improvements in the integrand evaluation. Second, in the evaluation of the integral of
Equation (6), significant additional complexity is demanded to solve Equations (7) and (8).
Due to the cancellation of large coefficients in these solutions, double floating point precision is
required, which reduces the GPU advantage since double precision calculations are performed
significantly slower on most GPU’s. Furthermore, the number of intermediate variables is
significantly larger, which is found to increase the number of processor registers used. Since the
number of registers available to each thread unit (or “wavefront” in the parlance of OpenCL)
is limited to at most 256 for the GPU used in this study, the overall duty factor of the GPU is
significantly reduced, to as low as 10%, since the full number of threads available in each block
could not be utilized. It is anticipated that careful tuning of the code to accommodate GPU
architecture could greatly improve the relative performance.

3.2 Further Results in the Lepton + Jets Channel

A brief summary is given on the evaluation of the GPU performance on a recent implementation
of the tt̄H(→ bb̄) search in the lepton + jets channel. The corresponding Feynman diagrams for

GPUHEP2014 7

GPUS FOR HIGGS BOSON DATA ANALYSIS AT THE LHC USING THE MATRIX . . .

GPUHEP2014 115

)ttbb / PttH(P
10

log
-20 -15 -10 -5 0 5 10

0.2

0.4

0.6

0.8

1

)ttbb / PttH(P
10

log
-20 -15 -10 -5 0 5 10

0.1

0.2

0.3

0.4

0.5

Figure 2: The event discriminant D for tt̄H (filled) and tt̄bb̄ (dashed line) events at parton level
(left) and at hadron level (right). The distributions are normalized to unit area.

Process CPU CPU (MP) GPU GPUx CPU / GPUx

signal 312 36.2 7.5 5.9 52.0

background 405 55.1 9.1 7.1 57.3

Table 3: Processing time required to evaluate the matrix elements for a single event at hadron
level, for the various configurations detailed in Table 1. Note that this includes a full 8-
dimensional integration over phase space for each event. Using GPU’s reduces the processing
time by at least 50×.

signal and background are shown in Figure 3. In this case, only a 6-dim phase space integral
has to be evaluated (instead of 8-dim in the case of the dilepton final state). The variable

q

q’

q

q’

Figure 3: Representative Feynman diagrams for tt̄H(→ bb̄) production (left) and the irreducible
tt̄bb̄ background (right) in the lepton + jets channel

transformation is much simpler. The results of the new study are summarized in Table 4.
Using GPU’s reduces the processing time by at least 100× for the lepton + jets final state. The
overall duty factor of the GPU is increased compared to the dilepton analysis to about 20%.

8 GPUHEP2014

DOUG SCHOUTEN, ADAM DEABREU, BERND STELZER

116 GPUHEP2014

Process CPU CPU (MP) GPUx CPU / GPUx

signal ≈1000 91 7.9 125

background ≈3800 347 35 109

Table 4: Processing time required to evaluate the matrix elements for a single event at hadron
level, for the various configurations detailed in Table 1. Note that this includes a full 6-
dimensional integration over phase space for each event. Using GPU’s reduces the processing
time by at least 100×.

4 Conclusions

The matrix element method can be computationally prohibitive for complex final states. The
tt̄H(→ bb̄) benchmark study in this paper has shown that by exploiting the parallel architec-
tures of modern GPU’s, computation time can be reduced by a factor ≥ 100 for the matrix
element method, at about 10-20% utilization of the GPU. It is anticipated that careful code
modifications can add significant further improvements in speed. This can be the subject of
future study. However, even with the performance gains in this benchmark study, it is clear that
for the MEM, the computing time required with O(10) GPU’s is equivalent to a medium-sized
computing cluster with O(400) cores (along with its required support and facilities infrastruc-
ture). This provides the potential to apply the method generally to searches and measurements
with complex final states in experimental particle physics.

The programs described in this work are generic in nature, such that GPU-capable MEM
code can be readily derived for an arbitrary 2 → N process with only few modifications to
accommodate transformations of variables or transfer functions. It is envisaged that future
work can automate the inclusion of NLO matrix elements and transformations of variables (as
in MadWeight) for the matrix element method, thereby providing an optimal methodology
for classification and parameter estimation in particle physics.

References
[1] Kunitaka Kondo. Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. I.

Method and Toy Models. J. Phys. Soc. Jap., 57(12):4126–4140, 1988.

[2] V.M. Abazov, et al. Helicity of the W boson in lepton + jets tt events. Phys. Lett. B, 617:1–10, 2005.

[3] Abulencia, A. et al. Precision measurement of the top-quark mass from dilepton events at cdf ii. Phys.
Rev. D, 75:031105, Feb 2007.

[4] V.M. Abazov et al. A precision measurement of the mass of the top quark. Nature, 429:638–642, 2004.

[5] Aaltonen, T., et al. Observation of single top quark production and measurement of |Vtb| with CDF. Phys.
Rev. D, 82:112005, Dec 2010.

[6] Aaltonen, T., et al. Search for a Standard Model Higgs Boson in WH → `νbb in pp Collisions at
√
s = 1.96

TeV. Phys. Rev. Lett., 103:101802, Sep 2009.

[7] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at
the LHC. Phys.Lett., B716:30–61, 2012.

[8] Search for the Standard Model Higgs boson in the H → WW (∗) → `ν`ν decay mode using Multivariate
Techniques with 4.7 fb-1 of ATLAS data at

√
s = 7 TeV. Technical Report ATLAS-CONF-2012-060,

CERN, Geneva, June 2012.

[9] F. Fiedler, A. Grohsjean, P. Haefner, and P. Schieferdecker. The Matrix Element Method and its Application
to Measurements of the Top Quark Mass. NIM A, 624(1):203–218, 2010.

GPUHEP2014 9

GPUS FOR HIGGS BOSON DATA ANALYSIS AT THE LHC USING THE MATRIX . . .

GPUHEP2014 117

[10] A. Grohsjean. Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element
Method. 2010.

[11] P. Artoisenet, V. Lemaitre, F. Maltoni, and O. Mattelaer. Automation of the matrix element reweighting
method. JHEP, 12(68), 2010.

[12] K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura, and T. Stelzer. Fast computation of MadGraph amplitudes
on graphics processing unit (GPU). European Physical Journal C, 73:2608, 2013.

[13] F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett.,
13:321–323, Aug 1964.

[14] Higgs, Peter W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett., 13:508–509, Oct
1964.

[15] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global conservation laws and massless particles. Phys.
Rev. Lett., 13:585–587, Nov 1964.

[16] S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, et al. Handbook of LHC Higgs Cross
Sections: 2. Differential Distributions. 2012.

[17] C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni, and G. Servant. Probing Top-Higgs Non-Standard
Interactions at the LHC. JHEP, 1207:036, 2012.

[18] G. Peter Lepage. A new algorithm for adaptive multidimensional integration. Journal of Computational
Physics, 27(2):192 – 203, 1978.

[19] G. Peter Lepage. VEGAS: An Adaptive Multi-dimensional Integration Program. Technical Report CLNS
80-447, Cornell, March 1980.

[20] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with cuda.
Queue, 6(2):40–53, March 2008.

[21] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard for heteroge-
neous computing systems. IEEE Des. Test, 12(3):66–73, May 2010.

[22] Ofer Rosenberg, Benedict R. Gaster, Bixia Zheng, Irina Lipov. OpenCL Static C++ Kernel Language
Extension, 04 edition, 2012.

[23] Lars Sonnenschein. Algebraic approach to solve tt dilepton equations. Phys. Rev. D, 72:095020, Nov 2005.

[24] Alwall, Johan and Herquet, Michel and Maltoni, Fabio and Mattelaer, Olivier and Stelzer, Tim. MadGraph
5 : Going Beyond. JHEP, 1106:128, 2011.

[25] H. Murayama, I. Watanabe, and Kaoru Hagiwara. HELAS: HELicity amplitude subroutines for Feynman
diagram evaluations. 1992.

[26] Priscila de Aquino, William Link, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. ALOHA: Automatic
Libraries Of Helicity Amplitudes for Feynman Diagram Computations. Comput.Phys.Commun., 183:2254–
2263, 2012.

[27] M.R. Whalley, D. Bourilkov, and R.C. Group. The Les Houches accord PDFs (LHAPDF) and LHAGLUE.
2005.

[28] Lai, Hung-Liang and Guzzi, Marco and Huston, Joey and Li, Zhao and Nadolsky, Pavel M. and others.
New parton distributions for collider physics. Phys.Rev., D82:074024, 2010.

[29] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP,
0605:026, 2006.

[30] Peter Zeiler Skands. Tuning Monte Carlo Generators: The Perugia Tunes. Phys.Rev., D82:074018, 2010.

[31] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual. Eur.Phys.J., C72:1896, 2012.

[32] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul Ivanov, and Ahmed Fasih. PyCUDA
and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Computing,
38(3):157–174, 2012.

[33] G. Peter Lepage. vegas Documentation, 2.1.4 edition, 2014.

10 GPUHEP2014

DOUG SCHOUTEN, ADAM DEABREU, BERND STELZER

118 GPUHEP2014

