
Designing and Optimizing LQCD codes using

OpenACC

Claudio Bonati1, Enrico Calore2, Simone Coscetti1, Massimo D’Elia1,3, Michele Mesiti1,3,
Francesco Negro1, Sebastiano Fabio Schifano2,4, Raffaele Tripiccione2,4

1INFN - Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
2INFN - Sezione di Ferrara, via Saragat 1, 44122 Ferrara, Italy
3Università di Pisa, Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy
4Università di Ferrara, via Saragat 1, 44122 Ferrara, Italy

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/27

An increasing number of massively parallel machines adopt heterogeneous node architec-
tures combining traditional multicore CPUs with energy-efficient and fast accelerators.
Programming heterogeneous systems can be cumbersome and designing efficient codes of-
ten becomes a hard task. The lack of standard programming frameworks for accelerator
based machines makes it even more complex; in fact, in most cases satisfactory performance
implies rewriting the code, usually written in C or C++, using proprietary programming
languages such as CUDA. OpenACC offers a different approach based on directives. Port-
ing applications to run on hybrid architectures “only” requires to annotate existing codes
with specific “pragma” instructions, that identify functions to be executed on accelerators,
and instruct the compiler on how to structure and generate code for specific target device.
In this talk we present our experience in designing and optimizing a LQCD code tar-
geted for multi-GPU cluster machines, giving details of its implementation and presenting
preliminary results.

1 Introduction

Lattice Quantum Chromodynamics (LQCD) simulations enable us to investigate aspects of
the Quantum Chromodynamics (QCD) physics that would be impossible to systematically
investigate in perturbation theory.

The computation time for LQCD simulations is a strong limiting factor, bounding for exam-
ple the usable lattice size. Fortunately enough, the most time consuming kernels of the LQCD
algorithms are embarassingly parallel, however the challenge of designing and running efficient
codes is not easy to met.

In the past years commodity processors were not able to provide the required computational
power for LQCD simulations, and several generations of parallel machines have been specifically
designed and optimized for this purpose [1, 2]. Today, multi-core architecture processors are
able to deliver several levels of parallelism providing high computing power that allow to tackle
larger and larger lattices, and computations are commonly performed using large computer
clusters of commodity multi- and many-core CPUs. Moreover, the use of accelerators such as
GPUs has been successfully explored to boost performamces of LQCD codes [3].

GPUHEP2014 1GPUHEP2014 151



More generally, massively-parallel machines based on heterogeneous nodes combining tra-
ditional powerful multicore CPUs with energy-efficient and fast accelerators are ideal targets
for LQCD simulations and are indeed commonly used. Programming these heterogeneous sys-
tems can be cumbersome, mainly because of the lack of standard programming frameworks for
accelerator based machines. In most of the cases, reasonable efficiency requires that the code
is re-written targeting a specific accelerator, using proprietary programming languages such as
CUDA for nVIDIA GPUs.

OpenACC offers a different approach based on directives, allowing to port applications
onto hybrid architectures by annotating existing codes with specific “pragma” directives. A
perspective OpenACC implementation of an LQCD simulation code would grant its portability
across different heterogeneous machines without the need of producing multiple versions using
different languages. However the price to pay for code portability may be in terms of code
efficiency.

In this work we explore the possible usage of OpenACC for LQCD codes targeting het-
erogeneous architectures, estimating the performance loss that could arise with respect to an
architecture-specific optimized code. To pursue this goal, we wrote the functions accounting
for most of the execution time in an LQCD simulation using plain C and OpenACC directives.
As well known, the most compute intensive computational kernel is the repeated application of
the Dirac operator (the so called D slash operator /D). We wrote and optimized the correspond-
ing routines and then compared the obtained performance of our C/OpenACC implementation
with an already existing state-of-the-art CUDA program [4].

In Sec. 2 and Sec. 3 we briefly review the OpenACC programming standard and the LQCD
methods respectively, while in Sec. 4 we provide the details of our implementation. In Sec. 5
we present our performance results.

2 OpenACC

OpenACC is a programming framework for parallel computing aimed to facilitate code devel-
opment on heterogeneous computing systems, and in particular to simplify porting of existing
codes. Its support for different architectures relies on compilers; although at this stage the
few available ones target mainly GPU devices, thanks to the OpenACC generality the same
code can be compiled for different architectures when the corresponding compilers and run-time
supports become available.

OpenACC, like OpenCL, provides a widely applicable abstraction of actual hardware, mak-
ing it possible to run the same code across different architectures. Contrary to OpenCL, where
specific functions (called kernels) have to be explicitly programmed to run in a parallel fashion
(e.g. as GPU threads), OpenACC is based on pragma directives that help the compiler identify
those parts of the source code that can be implemented as parallel functions. Following pragma
instructions the compiler generates one or more kernel functions – in the OpenCL sense – that
run in parallel as a set of threads.

OpenACC is similar to the OpenMP (Open Multi-Processing) language in several ways [5];
both environments are directive based, but OpenACC targets accelerators in general, while at
this stage OpenMP targets mainly multi-core CPUs.

Regular C/C++ or Fortran code, already developed and tested on traditional CPU archi-
tectures, can be annotated with OpenACC pragma directives (e.g. parallel or kernels clauses)
to instruct the compiler to transform loop iterations into distinct threads, belonging to one or

2 GPUHEP2014

CLAUDIO BONATI, ENRICO CALORE, SIMONE COSCETTI, MASSIMO D’ELIA, . . .

152 GPUHEP2014



more functions to run on an accelerator.
Various directives are available, allowing fine tuning of the application. As an example, the

number of threads launched by each device function and their grouping can be fine tuned by the
vector, worker and gang directives, in a similar fashion as setting the number of work-items and
work-groups in OpenCL. Data transfers between host and device memories are automatically
generated, when needed, entering and exiting the annotated code regions. Even in this case
data directives are available to allow the programmer to obtain a finer tuning, e.g. increasing
performance by an appropriate ordering of the transfers. For more details on OpenACC see [6].

3 Lattice QCD

Lattice QCD (LQCD) is a nonperturbative regularization of Quantum Chromodynamics (QCD)
which enables us to tackle some aspects of the QCD physics that would be impossible to sys-
tematically investigate by using standard perturbation theory, like for instance the confinement
problem or chiral symmetry breaking.

The basic idea of LQCD is to discretize the continuum QCD on a four dimensional lattice,
in such a way that continuum physics is recovered as the lattice spacing goes to zero. Fermions
are problematic in this respect: a famous no-go theorem by Nielsen and Ninomiya can be
vulgarized by saying that in the discretization procedure some of the properties of the fermions
will be lost; they will be recovered only after the continuum limit is performed. Several ways to
circumvent this difficulty exist and this is the reason for the current lattice fermions zoology:
Wilson, staggered, domain-wall and overlap fermions (see e.g. [7]). In the following we will
specifically refer to the staggered formulation, which is commonly adopted for the investigation
of QCD thermodynamics.

The discretized problem can be studied by means of Monte-Carlo techniques and, in order
to generate configurations with the appropriate statistical weight, the standard procedure is the
Hybrid Monte Carlo algorithm (HMC, see e.g. [7]). HMC consists of the numerical integration
of the equations of motion, followed by an accept/reject step. The computationally more
intensive step of this algorithm is the solution of linear systems of the form /Dψ = η, where η
is a vector of Gaussian random numbers and /D is the discretized version of the Dirac matrix,
whose dimension is given by the total lattice size, which is typically O(105− 106). By using an
even-odd sorting of the lattice sites, the matrix /D can be written in block form

/D =

(
m Doe

Deo m

)
, D†

oe = −Deo ,

where m is the fermion mass. The even-odd preconditioned form of the linear system is (m2 −
DeoDoe)ψe = ηe, where now ψe and ηe are defined on even sites only.

This is still a very large sparse linear problem, which can be conveniently solved by using
the Conjugate Gradient method or, more generally, Krylov solvers. The common strategy of
this class of solvers is the following: one starts from an initial guess solution, then iteratively
improves its accuracy by using auxiliary vectors, obtained by applying Doe and Deo to the
solution of the previous step.

From this brief description of the target algorithm it should be clear that, in order to have
good performances, a key point is the availability of very optimized routines for the Doe and
Deo operators. As a consequence these routines appear as natural candidates for a comparison
between different code implementations.

GPUHEP2014 3

DESIGNING AND OPTIMIZING LQCD CODES USING OPENACC

GPUHEP2014 153



Figure 1: Memory allocation diagrams for the data structures of vectors (left) and SU(3)
matrices (right). Each vector or matrix component is a double precision complex value.

Before going on to present some details about the code and the performances obtained, we
notice that both Doe and Deo still have a natural block structure. The basic elements of these
operators are SU(3) matrices and this structure can be used, e.g., to reduce the amount of data
that have to be transferred from the memory (the algorithm is strongly bandwidth limited).
The starting point for the development of the OpenACC code was the CUDA code described
in [4], which adopts all these specific optimizations.

4 Code Implementation

We coded the Deo and the Doe functions using plain C; OpenACC directives instruct the
compiler to generate one GPU kernel function for each of them. The function bodies of the
OpenACC version strongly resemble the corresponding CUDA kernel bodies, trying to ensure
a fair comparison between codes which perform the same operations.

For both the CUDA and OpenACC versions, each GPU thread is associated to a single
lattice site; in the Deo function all GPU threads are associated to even lattice sites, while in
the Doe function all GPU threads are associated to odd lattice sites. Consequently each kernel
function operates on half of the lattice points.

Data structures are allocated in memory following the SoA (Structure of Arrays) layout to
obtain better memory coalescing for both vectors and matrices as shown in Fig. 1. The basic
data element of both the structures is the standard C99 double complex.

Listing 1 contains a code snippet showing the beginning of the CUDA function implementing
the Deo operation. Note in particular the mechanism to reconstruct the x, y, z, t coordinates
identifying the lattice point associated to the current thread, given the CUDA 3-dimensional
thread coordinates (nt, nx, ny, nz are the lattice extents and nxh = nx/2).

Listing 1: CUDA

__global__ void Deo(const __restrict su3_soa_d * const u,
__restrict vec3_soa_d * const out,

const __restrict vec3_soa_d * const in) {

int x, y, z, t, xm, ym, zm, tm, xp, yp, zp, tp, idxh, eta;

4 GPUHEP2014

CLAUDIO BONATI, ENRICO CALORE, SIMONE COSCETTI, MASSIMO D’ELIA, . . .

154 GPUHEP2014



vec3 aux_tmp;
vec3 aux;

idxh = ((blockIdx.z * blockDim.z + threadIdx.z) * nxh * ny)
+ ((blockIdx.y * blockDim.y + threadIdx.y) * nxh)
+ (blockIdx.x * blockDim.x + threadIdx.x);

t = (blockIdx.z * blockDim.z + threadIdx.z) / nz;
z = (blockIdx.z * blockDim.z + threadIdx.z) % nz;
y = (blockIdx.y * blockDim.y + threadIdx.y);
x = 2*(blockIdx.x * blockDim.x + threadIdx.x) + ((y+z+t) & 0x1);

...

Listing 2 shows the OpenACC version of the same part of the Deo function. The four for
loops, each iterating over one of the four lattice dimensions, and the pragma directive preceding
each of them are clearly visible. In this case the explicit evaluation of the x, y, z, t coordinates
is not needed, since we use here standard loop indices; however we can still control the thread
blocks size using the vector and gang clauses. In particular, DIM BLK X, DIM BLK Y and
DIM BLK Z are the desired dimensions of the thread blocks. Since we execute the code on an
nVIDIA GPU, as for the CUDA case, also in this case, each GPU thread is actually addressed
by 3 coordinates.

Listing 2: OpenACC

void Deo(const __restrict su3_soa * const u,
__restrict vec3_soa * const out,

const __restrict vec3_soa * const in) {

int hx, y, z, t;

#pragma acc kernels present(u) present(out) present(in)
#pragma acc loop independent gang(nt)
for(t=0; t<nt; t++) {

#pragma acc loop independent gang(nz/DIM_BLK_Z) vector(DIM_BLK_Z)
for(z=0; z<nz; z++) {

#pragma acc loop independent gang(ny/DIM_BLK_Y) vector(DIM_BLK_Y)
for(y=0; y<ny; y++) {

#pragma acc loop independent vector(DIM_BLK_X)
for(hx=0; hx < nxh; hx++) {

...

We experimented with other potentially useful optimizations, e.g. combining the Deo and
Doe routine in a single function Deoe and mapping it onto a single GPU kernel, but the per-
formance was roughly one order of magnitude lower, mainly because of overheads associated to
register spilling.

5 Results and Conclusions

We prepared a benchmark code able to repeatedly call the Deo and the Doe functions, one after
the other, using the OpenACC implementation or the CUDA one. The two implementations

GPUHEP2014 5

DESIGNING AND OPTIMIZING LQCD CODES USING OPENACC

GPUHEP2014 155



were compiled respectively with the PGI compiler, version 14.6, and the nVIDIA nvcc CUDA
compiler, version 6.0.

The benchmark code was run on a 324 lattice, using an nVIDIA K20m GPU; results are
shown in Tab. 1, where we list the sum of the execution times of the Deo and Doe operations in
nanoseconds per lattice site, for different choices of thread block sizes. All computations were
performed using double precision floating point values.

Deo + Doe Funtions

Block-size CUDA OpenACC

8,8,8 7.58 9.29
16,1,1 8.43 16.16
16,2,1 7.68 9.92
16,4,1 7.76 9.96
16,8,1 7.75 10.11
16,16,1 7.64 10.46

Table 1: Execution time in (nsec per lattice site) of the Deo + Doe functions, for the CUDA
and OpenACC implementations running on an nVIDIA K20m GPU and using floating point
double precision throughout.

Execution times have a very mild dependence on the block size and for the OpenACC
implementation are in general slightly higher; if one considers the best thread block sizes both
for CUDA and OpenACC, the latter is ' 23% slower.

A slight performance loss with respect to CUDA is expected, given the higher level of
the OpenACC language. In this respect, our results are very satisfactory, given the lower
programming efforts needed to use OpenACC and the increased code maintainability given by
the possibility to run the same code on CPUs or GPUs, by simply disabling or enabling pragma
directives. Moreover, OpenACC code performance is expected to improve in the future also
due to the rapid development of OpenACC compilers, which at the moment are yet in their
early days.

The development of a complete LQCD simulation code fully based on OpenACC is now in
progress.

References
[1] H. Baier, et al. Computer Science - Research and Development, 25(3-4):149–154, 2010. DOI:10.1007/s00450-

010-0122-4.

[2] F. Belletti, et al. Computing in Science and Engineering, 8(1):50–61, 2006. DOI:10.1109/MCSE.2006.4.

[3] G.I. Egri, et al. Computer Physics Communications, 177(8):631–639, 2007. DOI:10.1016/j.cpc.2007.06.005.

[4] C. Bonati, et al. Computer Physics Communications, 183(4):853–863, 2012. DOI:10.1016/j.cpc.2011.12.011.

[5] S. Wienke, et al. In Lecture Notes in Computer Science, volume 8632 LNCS, pages 812–823, 2014.
DOI:10.1007/978-3-319-09873-9-68.

[6] http://www.openacc-standard.org/.

[7] T. DeGrand and C. DeTar. Lattice methods for quantum chromodynamics. World Scientific, 2006.

6 GPUHEP2014

CLAUDIO BONATI, ENRICO CALORE, SIMONE COSCETTI, MASSIMO D’ELIA, . . .

156 GPUHEP2014


