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Lattice Quantum Chromodynamics simulations typically spend most of the runtime in
inversions of the Fermion Matrix. This part is therefore frequently optimized for various
HPC architectures. Here we compare the performance of the Intel

R©
Xeon Phi

TM

to current
Kepler-based NVIDIA

R©
Tesla

TM

GPUs running a conjugate gradient solver. By exposing
more parallelism to the accelerator through inverting multiple vectors at the same time,
we obtain a performance greater than 300 GFlop/s on both architectures. This more than
doubles the performance of the inversions. We also give a short overview of the Knights
Corner architecture, discuss some details of the implementation and the effort required to
obtain the achieved performance.

1 Introduction

In finite temperature Quantum Chromodynamics (QCD) fluctuations of conserved charges,
baryon number (B), electric charge (Q) and strangeness (S), are particular interesting observ-
ables. They can be measured in experiments at the Relativistic Heavy Ion Collider (RHIC) and
the Large Hadron Collider (LHC) and have also been calculated in Lattice QCD (LQCD) with
increasing precision [1]. They are derived from generalized susceptibilities
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where Z denotes the partition function of the medium at temperature T and volume V .

In LQCD the required derivatives of Z w.r.t. the chemical potentials µ can be obtained by
stochastically estimating traces over combinations of the inverse and derivatives of the Fermion
Matrix M with a sufficiently large number of random vectors η, e.g.
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To control the errors we use 500-1500 random vectors on each gauge configuration. Depending
on the desired highest derivative degree this involves several inversion of the Fermion Matrix
for each random vector.
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#rhs 1 2 3 4 5 6 8

Flop/byte (full) 0.73 1.16 1.45 1.65 1.80 1.91 2.08
Flop/byte (r14) 0.80 1.25 1.53 1.73 1.87 1.98 2.14

Table 1: The arithmetic intensity of the HISQ Dslash for different number of right-hand sides
(rhs) using full or reduced 14 float storage (r14) for the Naik links.

For reasons of the numerical costs, staggered fermions are the most common type of fermions
for thermodynamic calculations on the lattice. We use the highly improved staggered fermion
(HISQ) action [2]. In terms of the smeared links U and Naik links N the Dslash operator reads

wx = Dx,x′vx′ =

4∑

µ=0

[(
Ux,µvx+µ − U†x−µ,µvx−µ

)
+
(
Nx,µvx+3µ −N†x−3µ,µvx−3µ

)]
. (3)

Here N and U are complex 3×3 matrices and v, w are complex 3-dimensional vectors. Within
the inversion the application of the Dslash operator typically consumes more than 80% of
the runtime. This part already has a low arithmetic intensity (see Tab. 1) and the average
arithmetic intensity (Flop/byte) is further decreased by the linear algebra operation in the
conjugate gradient. Thus, the achievable performance is clearly bound by the available memory
bandwidth. Given its massively parallel nature and the bandwidth hunger it is well suitable for
accelerators. Lattice QCD simulations make extensive use of GPUs for several years now [3].
The MIC architecture is also gaining more attraction and codes are being optimized [4]. A
common optimization to reduce memory accesses in LQCD is to exploit available symmetries
and reconstruct the gauge links from 8 or 12 floats instead of loading all 18 floats. For improved
actions these symmetries are often broken and thus we can only reconstruct the Naik links from
9 or 13/14 floats.

For our and many other applications a large number of inversions are performed on a single
gauge configuration. In this case, one can exploit the constant gauge field by grouping the
random vectors in small bundles, thus applying the Dslash for multiple right-hand sides (rhs)
at once: (
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This increases the arithmetic intensity of the HISQ Dslash as the load of the gauge field occurs
only once for the n rhs. Increasing the number of rhs from 1 to 4 already results in an improve-
ment by a factor of more than 2. In the limiting case of assuming the gauge fields do not have
to be loaded at all, the highest arithmetic intensity that can be reached is ∼ 2.75. At n = 8
we have reached already ∼ 75% of the limiting peak intensity, while for 1 rhs we only obtain
25−30%. For an increasing number of rhs the memory transfers caused by loading the gauge
fields are no longer dominating and thus also the impact of reconstructing the Naik links is less
pronounced. Note that all numbers given here, as well as the performance data in the following,
are for single-precision computations. However, the arguments work also for double-precision
and the arithmetic intensity, in this case, is just half of the one in the single-precision case. For
the full inverter the linear algebra operations in the conjugate gradient do not allow for the
reuse of any constant fields. They therefore limit the achievable speedup.

We summarized some technical data of the accelerators we use for our comparison in Table 2.
In the following we will only discuss our implementation for the Intel

R©
Xeon Phi

TM

. Information
about our GPU implementation can be found in [5].
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5110P 7120P K20 K40

Cores / SMX 60 61 13 15
(Threads/Core) / (Cores/SMX) 4 4 192 192
Clock Speed [MHz] 1053 1238/1333 706 745/810/875
L1 Cache / Core [KB] 32 32 16-48 16-48
L2 Cache [MB] 30 30.5 1.5 1.5
Memory Size [GB] 8 16 5 12
peak fp32/64 [TFlop/s] 2.02/1.01 2.42/1.21 3.52/1.17 4.29/1.43
Memory Bandwidth [GB/s] 320 352 208 288

Table 2: The important technical data of the accelerators we have used in our benchmarks.

2 MIC

The Intel
R©

Xeon Phi
TM

is an in-order x86 based many-core processor [6]. The coprocessor runs a
Linux µOS and can have up to 61 cores combined via a bidirectional ring (see Fig. 1). Therefore,
the memory transfers are limited by concurrency reaching only 149 GB/s on a 7120P running
a stream triad benchmark [7]. Each core has a private L1 data and instruction cache and a
globally visible L2 cache. In the case of a local L2 cache miss, a core can cross-snoop another’s
core L2 cache and if the data is present avoid a direct memory access. Each core has thirty-
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Figure 1: Visualization of the bidirectional ring on the die and the microarchitecture of one
core showing the Scalar Processing Unit (SPU), Vector Processing Unit (VPU) and the cache
hierarchy. The latter is kept fully coherent through global distributed tag directories (TD).

two 512 bit zmm vector registers and 4 hardware context threads. To fully utilize the Many
Integrated Core (MIC) it is, especially for memory-bound applications, necessary to run with
four threads per core. This offers more flexibility to the processor to swap the context of a
thread, which is currently stalled by a cache miss. The MIC has its own SIMD instruction
set extension IMIC with support for fused multiply-add and masked instructions. The latter
allows to conditionally execute vector instructions on single elements of a vector register. The
coprocessor can stream data directly into memory without reading the original content of an
entire cache line, thus bypassing the cache and increasing the performance of algorithms where
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the memory footprint is too large for the cache.

Implementation: We have parallelized our program with OpenMP and vectorized it using
low-level compiler functions called intrinsics. These are expanded inline and do not require
explicit register management or instruction scheduling through the programmer as in pure
assembly code. There are 512 bit intrinsics data types for single- and double-precision accuracy
as well as for integer values. More than 32 variables of a 512 bit data type can be used
simultaneously. With only 32 zmm registers available in hardware, the compiler is, in this case,
forced to use “spills”, i.e. temporarily storing the contents of a register into L1 cache, and
reloading the register when the data is required later, thereby increasing memory bandwidth
pressure and cache pollution. When using intrinsics the software has to be designed in a register
aware manner; only the explicit management of the registers is taken over by the compiler. We
found that the compiler is only able to optimize code over small regions. Thus, the order of
intrinsics can have an influence on the achieved performance, thereby making optimizations
more difficult. Nonetheless, the use of intrinsics for the Dslash kernel is lightweight requiring
only a subset of 9 instructions. Due to the different links needed for the nearest and third-nearest
neighbor term we implemented both in separate kernels, thereby reducing cache pollution and
simplifying cache reuse for the vectors. For the global sums inside the linear algebra kernels we
use the OpenMP reduction clause. In order to avoid explicit barriers, each thread repeats the
calculation of the coefficients necessary for the CG in a thread local variable.

Site fusion: One problem of using 512 bit registers involving SU(3) matrix-vector products
is that one matrix/vector does not fit into an integer number of zmm registers without padding.
Because of this, it is more efficient to process several matrix-vector products at the same time
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Figure 2: Visualization of a fused matrix-vector product using the 16-fold vectorization scheme.
Each lane corresponds to one zmm register, which holds the same element of all 16 sites.

using a site fusion method. A naive single-precision implementation could be to create a “Struct
of Arrays” (SoA) object for 16 matrices as well as for 16 vectors. Such a SoA vector object
requires 6 zmm registers when it is loaded from memory. One specific register then refers to the
real or imaginary part of the same color component gathered from all 16 vectors, thus each
vector register can be treated in a “scalar way” (see Fig. 2). These SoA objects are stored in
an array using a site ordering technique. Our Dslash kernel runs best with streaming through
xy-planes and is specifically adapted for inverting multiple right-hand sides. Therefore, we use
a 8-fold site fusion method, combining 8 sites of the same parity in x-direction, which makes
the matrix-vector products less trivial and requires explicit in-register align/blend operations.
By doing so, we reduce the register pressure by 50% compared to the naive 16-fold site fusion
method, leaving more space for the intermediate result of the right-hand sides for each direction
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Figure 3: Performance comparison of the 8-fold and 16-fold vectorization scheme measured on a
5110P with enabled ECC. The dashed lines correspond to kernels without software prefetching.

µ. This is why the 8-fold site fusion is 55% faster compared to the 16-fold scheme at 4 rhs (see
Fig. 3). For one right-hand side this optimization is insignificant since the 16-fold matrix-vector
product requires only 30 of the 32 in hardware available zmm registers.

Prefetching: For indirect memory access, i.e. if the array index is a non-trivial calculation
or loaded from memory, it is not possible for the compiler to insert software prefetches. The MIC
has a L2 hardware prefetcher which is able to recognize simple access pattern. We found that it
does a good job for a linear memory access. Thus, there is no need for software prefetching by
hand inside the linear algebra operations of the CG. However, the access pattern of the Dslash
kernel is too complicated for the hardware prefetcher. Therefore, it is required to insert software
prefetches using intrinsics. The inverter runs 2× faster with inserted software prefetches. We
unroll the loop over all directions and prefetch always one µ-term ahead. The first right-hand
side vector and link of the first µ-term are prefetched at the end of the previous site loop
iteration. Considering that there is no reuse of gauge links, it is more efficient to prefetch these
into the non-temporal cache. For the vectors we use temporal prefetch hints. It is important
to note that software prefeteches are dropped if they cause a page table walk and in order to
counterbalance the increased TLB pressure from the multiple right-hand sides, we store, for
each lattice site, all rhs contiguously in memory. This approach is 15% faster for large lattices
compared to an implementation which stores each right-hand side in a separate array.

3 Comparison

For the Xeon Phi
TM

we used the Intel
R©

Compiler 14.0 and MPSS 3.3 with disabled instruction
cache snooping, huge pages and a balanced processor affinity. For the GPU part we used the
NVIDIA

R©
CUDA 6.0 toolkit. For the K40 we enabled GPU boost at the highest possible clock

rate 875 MHz. In all benchmarks we left ECC enabled.

In the left panel of Fig. 4 we show the performance as a function of the number of rhs. The
maximum number of rhs is limited by memory requirements. We observe roughly the behavior
as expected from the increased arithmetic intensity. Comparing the results using four right-
hand sides to one right-hand side we find a speedup of roughly 2.05 for the full CG, very close to
the increase of 2.16 in arithmetic intensity for the Dslash. Despite the linear algebra operations
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Figure 4: Performance of the HISQ inverter on different accelerators for a 643×16 lattice as a
function of the number of rhs (left) and for 4 rhs as a function of the lattice size (right).

that limit the obtainable speedup this is still about 95% of the expected effect. Independent of
the number of rhs the ordering with decreasing performance is K40, 7120P, 5110P, K20 with
the relative performance roughly given by 1.4, 1.2, 1.1, 1.0 (normalized to K20).

In the right panel we show the performance with 4 rhs as a function of the lattice size.
Ignoring the smallest size, the K40 is always superior while the 7120P is faster than the K20.
The 323×64 lattice seems to be more expedient for the SIMT model of the GPU.
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