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The LHC experiments are designed to detect large amount of physics events produced
with a very high rate. Considering the future upgrades, the data acquisition rate will be-
come even higher and new computing paradigms must be adopted for fast data-processing:
General Purpose Graphics Processing Units (GPGPU) is a novel approach based on mas-
sive parallel computing. The intense computation power provided by Graphics Processing
Units (GPU) is expected to reduce the computation time and to speed-up the low-latency
applications used for fast decision taking. In particular, this approach could be hence used
for high-level triggering in very complex environments, like the typical inner tracking sys-
tems of the multi-purpose experiments at LHC, where a large number of charged particle
tracks will be produced with the luminosity upgrade. In this article we discuss a track
pattern recognition algorithm based on the Hough Transform, where a parallel approach
is expected to reduce dramatically the execution time.

1 Introduction

Modern High Energy Physics (HEP) experiments are designed to detect large amount of data
with very high rate. In addition to that weak signatures of new physics must be searched in
complex background condition. In order to reach these achievements, new computing paradigms
must be adopted. A novel approach is based on the use of high parallel computing devices,
like Graphics Processing Units (GPU), which delivers such high performance solutions to be
used in HEP. In particular, a massive parallel computation based on General Purpose Graphics
Processing Units (GPGPU) [1] could dramatically speed up the algorithms for charged particle
tracking and fitting, allowing their use for fast decision taking and triggering. In this paper
we describe a tracking recognition algorithm based on the Hough Transform [2, 3, 4] and its
implementation on Graphics Processing Units (GPU).

2 Tracking with the Hough Transform

The Hough Transform (HT) is a pattern recognition technique for features extraction in image
processing, and in our case we will use a HT based algorithm to extract the tracks parameters
from the hits left by charged particles in the detector. A preliminary result on this study has
been already presented in [5]. Our model is based on a cylindrical multi-layer silicon detector
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installed around the interaction point of a particle collider, with the detector axis on the beam-
line. The algorithm works in two serial steps. In the first part, for each hit having coordinates
(xH , yH , zH) the algorithm computes all the circles in the x−y transverse plane passing through
that hit and the interaction point, where the circle equation is x2 + y2 − 2Ax − 2By = 0,
and A and B are the two parameters corresponding to the coordinates of the circle centre.
The circle detection is performed taking into account also the longitudinal (θ) and polar (φ)
angles. For all the θ, φ, A, B, satisfying the circle equation associated to a given hit, the
corresponding MH(A,B, θ, φ) Hough Matrix (or Vote Matrix) elements are incremented by one.
After computing all the hits, all the MH elements above a given threshold would correspond to
real tracks. Thus, the second step is a local maxima search among the MH elements.

In our test, we used a dataset of 100 simulated events (pp collisions at LHC energy, Minimum
Bias sample with tracks having transverse momentum pT > 500 MeV), each event containing
up to 5000 particle hits on a cylindrical 12-layer silicon detector centred on the nominal collision
point. The four hyper-dimensions of the Hough space have been binned in 4× 16× 1024× 1024
along the corresponding A,B, θ, φ parameters.

The algorithm performance compared to a χ2 fit method is shown in Fig. 1: the ρ =√
A2 +B2 and ϕ = tan−1(B/A) are shown together with the corresponding resolutions.
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Figure 1: Hough Transform algorithm compared to χ2 fit. (a) ρ distribution; (b) ϕ distribution;
(c) ρ resolution; (d) ϕ resolution.

3 SINGLE-GPU implementation

The HT tracking algorithm has been implemented in GPGPU splitting the code in two kernels,
for Hough Matrix filling and searching local maxima on it. Implementation has been performed
both in CUDA [1] and OpenCL [6]. GPGPU implementation schema is shown in Fig. 2.

Concerning the CUDA implementation, for the MH filling kernel, we set a 1-D grid over
all the hits, the grid size being equal to the number of hits of the event. Fixed the (θ, φ)
values, a thread-block has been assigned to the A values, and for each A, the corresponding
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B is evaluated. The MH(A,B, θ, φ) matrix element is then incremented by a unity with an
atomicAdd operation. TheMH initialisation is done once at first iteration with cudaMallocHost

(pinned memory) and initialised on device with cudaMemset. In the second kernel, the local
maxima search is carried out using a 2-D grid over the θ, φ parameters, the grid dimension
being the product of all the parameters number over the maximum number of threads per block
(Nφ×Nθ ×NA×NB)/maxThreadsPerBlock, and 2-D threadblocks, with dimXBlock=NA and
dimYBlock=MaxThreadPerBlock/NA. Each thread compares one MH(A,B, θ, φ) element to its
neighbours and, if the biggest, it is stored in the GPU shared memory and eventually transferred
back. With such big arrays the actual challenge lies in optimizing array allocation and access
and indeed for this kernel a significant speed up has been achieved by tuning matrix access
in a coalesced fashion, thus allowing to gain a crucial computational speed-up. The OpenCL

Figure 2: GPGPU implementation schema of the two Hough Transform algorithm kernels.

implementation has been done using a similar structure used for CUDA. Since in OpenCL there
is no direct pinning memory, a device buffer is mapped to an already existing memallocated
host buffer (clEnqueueMapBuffer) and dedicated kernels are used for matrices initialisation
in the device memory. The memory host-to-device buffer allocation is performed concurrently
and asynchronously, saving overall transferring time.

3.1 SINGLE-GPU results

The test has been performed using the NVIDIA [1] GPU boards listed in table 1. The GTX770
board is mounted locally on a desktop PC, the Tesla K20 and K40 are installed in the INFN-
CNAF HPC cluster.

The measurement of the execution time of all the algorithm components has been carried
out as a function of the number of hits to be processed, and averaging the results over 100
independent runs. The result of the test is summarised in Fig. 3. The total execution time
comparison between GPUs and CPU is shown in Fig. 3a, while in Fig. 3b the details about

GPUHEP2014 3

GPGPU FOR TRACK FINDING IN HIGH ENERGY PHYSICS

GPUHEP2014 19



Device NVIDIA NVIDIA NVIDIA
specification GeForce GTX770 Tesla K20m Tesla K40m
Performance (Gflops) 3213 3542 4291
Mem. Bandwidth (GB/s) 224.2 208 288
Bus Connection PCIe3 PCIe3 PCIe3
Mem. Size (MB) 2048 5120 12228
Number of Cores 1536 2496 2880
Clock Speed (MHz) 1046 706 1502

Table 1: Computing resources setup.

the execution on different GPUs are shown. The GPU execution is up to 15 times faster with
respect to the CPU implementation, and the best result is obtained for the CUDA algorithm
version on the GTX770 device. The GPUs timing are less dependent on the number of the hits
with respect to CPU timing.

The kernels execution on GPUs is even faster with respect to CPU timing, with two orders
of magnitude GPU-CPU speed up, as shown in Figs. 3c and 3e. When comparing the kernel
execution on different GPUs (Figs. 3d) and 3f), CUDA is observed to perform slightly better
than OpenCL. Figure 3g shows the GPU-to-CPU data transfer timings for all devices together
with the CPU I/O timing, giving a clear idea of the dominant part of the execution time.

4 MULTI-GPU implementation

Assuming that the detector model we considered could have multiple readout boards working
independently, it is interesting to split the workload on multiple GPUs. We have done this by
splitting the transverse plane in four sectors to be processed separately, since the data across
sectors are assumed to be read-out independently. Hence, a single HT is executed for each sector,
assigned to a single GPU, and eventually the results are merged when each GPU finishes its
own process. The main advantage is to reduce the load on a single GPU by using lightweight
Hough Matrices and output structures. Only CUDA implementation has been tested, using the
same workload schema discussed in Sec. 3, but using four MH(A,B, θ), each matrix processing
the data of a single φ sector.

4.1 MULTI-GPU results

The multi-GPU results are shown in Fig. 4. The test has been carried out in double config-
uration, separately, with two NVIDIA Tesla K20 and two NVIDIA Tesla K40. The overall
execution time is faster with double GPUs in both cases, even if timing does not scale with
the number of GPUs. An approximate half timing is instead observed when comparing kernels
execution times. On the other hand, the transferring time is almost independent on the number
of GPUs, this leading the overall time execution.
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Figure 3: Execution timing as a function of the number of analysed hits. (a) Total execution
time for all devices; (b) Total execution time for GPU devices only; (c) MH filling time for
all devices; (d) MH filling timing for GPU devices only; (e) local maxima search timing for all
devices; (f) local maxima search timing for GPU devices only; (g) device-to-host transfer time
(GPUS) and I/O time (CPU).

5 Conclusions

A pattern recognition algorithm based on the Hough Transform has been successfully imple-
mented on CUDA and OpenCL, also using multiple devices. The results presented in this paper
show that the employment of GPUs in situations where time is critical for HEP, like triggering
at hadron colliders, can lead to significant and encouraging speed-up. Indeed the problem by
itself offers wide room for a parallel approach to computation: this is reflected in the results
shown where the speed-up is around 15 times better than what achieved with a normal CPU.
There are still many handles for optimising the performance, also taking into account the GPU
architecture and board specifications. Next steps of this work go towards an interface to actual
experimental frameworks, including the management of the experimental data structures and
testing with more graphics accelerators and coprocessor.
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Figure 4: Execution timing as a function of the number of the hits for multi-GPU configuration.
(a) Total execution time; (b) MH filling timing; (c) local maxima search timing; (d) device-to-
host transfer time.
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