
CL2QCD - Lattice QCD based on OpenCL

Owe Philipsen1, Christopher Pinke1, Alessandro Sciarra1, Matthias Bach2

1ITP, Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main
2FIAS, Goethe-Universität, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/30

We present the Lattice QCD application CL2QCD, which is based on OpenCL and can

be utilized to run on Graphic Processing Units as well as on common CPUs. We focus

on implementation details as well as performance results of selected features. CL2QCD

has been successfully applied in LQCD studies at �nite temperature and density and is

available at http://code.compeng.uni-frankfurt.de/projects/clhmc.

1 Lattice QCD at Finite Temperature

Lattice QCD (LQCD) successfully describes many aspects of the strong interactions and is the
only method available to study QCD from �rst principles. The idea is to discretize space-time
on a N3

σ ×Nτ hypercube with lattice spacing a and treat this system with numerical methods.
State-of-the-art lattice simulations require high-performance computing and constitute one of
the most compute intensive problems in science. The discretization procedure is not unique
and several di�erent lattice theories of QCD have been developed. It is important, in general,
to cross check each result using di�erent formulations.

The QCD phase diagram is of great interest both theoretically and experimentally, e.g. at
the dedicated programs at RHIC at Brookhaven, LHC at CERN or at the future FAIR facility
in Darmstadt1. On the lattice, studies at �nite temperature T are possible via the identi�cation
T = (a(β)Nτ )

−1. Thus, scans in T require simulations at multiple values of the lattice coupling
β. In addition, to employ a scaling analysis, simulations on various spatial volumes N3

σ are
needed (to avoid �nite size e�ects one typically uses Nσ/Nτ ≈ 3). Hence, studies at �nite T
naturally constitute a parallel simulation setup. Currently, these investigations are restricted
to zero chemical potential µ, as the sign-problem prevents direct simulations at µ > 0. To
circumvent this issue one can use reweighting, a Taylor series approach or one can employ a
purely imaginary chemical potential µI .

On the lattice, observables are evaluated by means of importance sampling methods by
generating ensembles of gauge con�gurations {Um} using as probability measure the Boltzmann-
weight p[U, φ] = exp {−Se�[U, φ]}. Expectation values are then

〈K〉 ≈ 1

N

∑

m

K[Um] .

These ensembles are commonly generated using the Hybrid-Monte-Carlo (HMC) algorithm [1],
which does not depend on any particular lattice formulation of QCD.

1See http://www.bnl.gov/rhic/, http://home.web.cern.ch/, and http://www.fair-center.de .

GPUHEP2014 1GPUHEP2014 169



LOEWE -CSC SANAM
GPU nodes 600 40 304
GPUs/node 1 × AMD 5870 2 × AMD S10000 2 × AMD S10000
CPUs/node 2 × Opteron 6172 2 × Intel Xeon E5-2630 v2 2 × Xeon E5-2650

Table 1: AMD based clusters where CL2QCD was used for production runs.

The fermions enter in the e�ective action Se� via the fermion determinant detD, which
is evaluated using pseudo-fermions φ, requiring the inverse of the fermion matrix, D−1. The
fermion matrix D is speci�c to the chosen discretization. The most expensive ingredient to
current LQCD simulations is the inversion of the fermion-matrix

Dφ = ψ ⇒ φ = D−1 ψ ,

which is carried out with Krylov subspace methods, e.g. conjugate gradient (CG). During the
inversion, the matrix-vector product Dφ has to be carried out multiple times. The performance
of this operation, like almost all LQCD operations, is limited by the memory bandwidth. For
example, in the Wilson formulation, the derivative part of D, the so-called 6D, requires to read
and write 2880 Bytes per lattice site in each call, while it performs only 1632 FLOPs per site,
giving a rather low numerical density ρ (FLOPs per Byte) of ∼ 0.57. In the standard staggered
formulation, the situation is even more bandwidth-dominated. To apply the discretization of
the Dirac operator on a fermionic �eld (DKS φ) 570 FLOPs per each lattice site are performed
and 1584 Bytes are read or written, with a consequent smaller ρ of ∼ 0.35. This emphasizes
that LQCD requires hardware with a high memory-bandwidth to run e�ectively, and that a
meaningful measure for the e�ciency is the achieved bandwidth. In addition, LQCD functions
are local, i.e. they depend on a number of nearest neighbours only. Hence, they are very well
suited for parallelization.

2 OpenCL and Graphic Cards

Graphics Processing Units (GPUs) surpass CPUs in peak performance as well as in memory
bandwidth and can be used for general purposes. Hence, many clusters are today accelerated
by GPUs, for example LOEWE -CSC in Frankfurt [2] or SANAM [3] (see Table 1). GPUs
constitute an inherently parallel architecture. As LQCD applications are always memory-
bandwidth limited (see above) they can bene�t from GPUs tremendously. Accordingly, in
recent years the usage of GPUs in LQCD simulations has increased. These e�orts mainly rely on
CUDA as computing language, applicable to NVIDIA hardware only2. A hardware independent
approach to GPU applications is given by the Open Computing Language (OpenCL)3, which is
an open standard to perform calculations on heterogeneous computing platforms. This means
that GPUs and CPUs can be used together within the same framework, taking advantage of
their synergy and resulting in a high portability of the software. First attempts to do this in
LQCD have been reported in [4].

An OpenCL application consists of a host program coordinating the execution of the actual
functions, called kernels, on computing devices, like for instance GPUs or a CPUs. Although the

2See https://developer.nvidia.com/cuda-zone and https://github.com/lattice/quda for the QUDA library.
3See https://www.khronos.org/opencl .

2 GPUHEP2014

OWE PHILIPSEN, CHRISTOPHER PINKE, ALESSANDRO SCIARRA, MATTHIAS BACH

170 GPUHEP2014



hardware has di�erent characteristics, GPU programming shares many similarities with parallel
programming of CPUs. A computing device consists of multiple compute units. When a kernel
is executed on a computing device, actually a huge number of kernel instances is launched.
They are mapped onto work-groups consisting of work-items. The work-items are guaranteed
to be executed concurrently only on the processing elements of the compute unit (and share
processor resources on the device).

Compared to the main memory of traditional computing systems, on-board memory capac-
ities of GPUs are low, though increasing more and more4. This constitutes a clear boundary
for simulation setups. Also, communication between host system and GPU is slow, limiting
workarounds in case the available GPU memory is exceeded. Nevertheless, as �nite T studies are
usually carried out on moderate lattice sizes (in particular Nσ � Nτ ), this is less problematic
for the use cases CL2QCD was developed for.

3 CL2QCD Features

CL2QCD is a Lattice QCD application based on OpenCL, applicable to CPUs and GPUs.
Focusing on Wilson fermions, it constitutes the �rst such application for this discretization
type [5]. In particular, the so-called Twisted Mass Wilson fermions [6, 7], which ensure O(a)
improvement at maximal twist, are implemented. Recently, the (standard) formulation of stag-
gered fermions has been added. Improved gauge actions and standard inversion and integration
algorithms are available, as well as ILDG-compatible IO5 and the RANLUX Pseudo-Random
Number Generator (PRNG) [8]. More precisely, CL2QCD provides the following executables.

• HMC: Generation of gauge �eld con�gurations for Nf = 2 Twisted Mass Wilson type or
pure Wilson type fermions using the HMC algorithm [1].

• RHMC: Generation of gauge �eld con�gurations for Nf staggered type fermions using
the Rational HMC algorithm [9].

• SU3HEATBATH: Generation of gauge �eld con�gurations for SU(3) Pure Gauge The-
ory using the heatbath algorithm [10, 11, 12].

• INVERTER:Measurements of fermionic observables on given gauge �eld con�gurations.

• GAUGEOBSERVABLES: Measurements of gauge observables on given gauge �eld
con�gurations.

The host program of CL2QCD is set up in C++, which allows for independent program parts
using C++ functionalities and also naturally provides extension capabilities. Cross-platform
compilation is provided using the CMake framework.6 All parts of the simulation code are
carried out using OpenCL kernels in double precision. The OpenCL language is based on
C99. In particular, concrete implementations of basic LQCD functionality like matrix-matrix
multiplication, but also more complex operations like the 6D or the (R)HMC force calculation,
are found in the kernel �les. The kernels are in a certain way detached from the host part as
the latter can continue independently of the status of the kernel execution. This nicely shows

4For instance, the GPUs given in Table 1 have on-board memory capacities of 1, 12 and 3 GB, respectively.
5Via LIME, see http://usqcd.jlab.org/usqcd-docs/c-lime .
6See http://www.cmake.org .

GPUHEP2014 3

LATTICE QCD BASED ON OPENCL

GPUHEP2014 171



16
3

×
8

16
3

×
16

16
3

×
24

16
3

×
32

24
3

×
12

24
3

×
16

32
3

×
8

24
3

×
24

32
3

×
12

24
3

×
32

32
3

×
16

24
3

×
48

32
3

×
24

48
3

×
80

100

200

Lattice Size

GB
/s

AMD Radeon HD 7970
AMD Radeon HD 5870

NVIDIA Tesla K40
AMD FirePro S10000

0

50

100

GF
LO

PS

Figure 1: Performace of Wilson 6D kernel for various lattice sizes on di�erent devices in double
precision.

the separation into the administrative part (host) and the performance-critical calculations
(kernels).

OpenCL kernels are compiled at runtime which is mandatory as the speci�c architecture is
not known a priori. On the one hand, this introduces an overhead, but on the other hand allows
to pass runtime parameters (like the lattice size) as compile time parameters to the kernels,
saving arguments and enabling compiler optimization for speci�c parameter sets. In addition,
the compiled kernel code is saved for later reuse, e.g. when resuming an HMC chain with the
same parameters on the same architecture. This reduces the initialization time. Kernel code
is common to GPUs and CPUs, device speci�cs are incorporated using macros. It is ensured
that that memory objects are treated in a Structure of arrays (SOA) fashion on GPUs, which
there is crucial for optimal memory access as opposed to Array of structures (AOS).

In general, it is desireable to be able to test every single part of code on its own and to
have as little code duplication as possible. This is at the heart of the Test Driven Development
[13] and Clean Code [14] concepts, which we follow during the development of CL2QCD. Unit
tests are implemented utilizing the BOOST7 and CMake unit test frameworks. Regression
tests for the OpenCL parts are mandatory due to the runtime compilation. In particular, as
LQCD functions are local in the sense that they depend only on a few nearest neighbours, one
can calculate analytic results to test against and often the dependence on the lattice size is
easily predictable. Another crucial aspects to guarantee maintainability and portability of code
is to avoid dependence of the tests on speci�c environments. For example, this happens when
random numbers are used (e.g. for trial �eld con�guration). If this is the case, a test result then
depends not only on the used PRNG but also on the hardware in a multi-core architecture.

4 Performance of 6D
Our Wilson 6D implementation, which is crucial for overall performance, shows very good per-
formance on various lattice sizes (Figure 1) and outperforms performances reported in the

7See http://www.boost.org .

4 GPUHEP2014

OWE PHILIPSEN, CHRISTOPHER PINKE, ALESSANDRO SCIARRA, MATTHIAS BACH

172 GPUHEP2014



0 1000 2000 3000 4000 5000 6000 7000

A

B

C

6459

6469

2178

3458

3410

1021

1602

1592

553

Execution Time / s

AMD FirePro S10000
AMD Radeon HD 5870

tmlqcd on 2 AMD Opteron 6172

Figure 2: HMC performance for di�erent Setups A, B and C (setup A having the smallest
fermion mass) for Nτ = 8, Nσ = 24. The HMC is compared on di�erent GPUs and compared
to a reference code [15] running on one LOEWE -CSC node.

literature (see [5]). We are able to utilize ∼ 80% of the peak memory bandwidth on the AMD
Radeon HD 5870, Radeon HD 7970 and FirePro S10000. Note that the code runs also on
NVIDIA devices as shown in the �gure, however, with lower performance since AMD was the
primary development platform and no optimization was carried out here.

The staggered DKS implementation, which plays the same role as 6D regarding the overall
speed of the code, shows also good performance on various lattice sizes. We are able to utilize
∼ 70% of the peak memory bandwidth on the AMD Radeon HD 5870 and AMD Radeon HD
7970. Due to its recent development, the implementation of the staggered code can be further
optimized. So far no other benchmark for a possible comparison is present in the literature.
Again, the code runs also on NVIDIA devices, though also here the performance is lower for
the same reasons explained above regarding the Wilson 6D.

5 Algorithmic Performance

The full HMC application also performs very well compared to a reference CPU-based code
tmLQCD [15] (see Figure 2). The tmLQCD performance was taken on one LOEWE -CSC node.
Compared to tmLQCD, the older AMD Radeon HD 5870 is twice as fast. The newer AMD
FirePro S10000 again doubles this performance. This essentially means that we gain a factor
of 4 in speed, comparing a single GPU to a whole LOEWE -CSC node. In addition, it is
interesting to look at the price-per-�op, which is much lower for the GPUs used then for the
used CPUs.

As on-board memory is the biggest limiting factor on GPUs, using multiple GPUs is of great
interest [16]. In CL2QCD it is possible to split the lattice in time direction [17].

6 Conclusions and Perspectives

We presented the OpenCL-based LQCD application CL2QCD. It has been successfully applied in
�nite temperature studies on LOEWE -CSC and SANAM supercomputers (e.g. [18]), providing
a well-suited basis for future applications. CL2QCD is available at

http://code.compeng.uni-frankfurt.de/projects/clhmc .

GPUHEP2014 5

LATTICE QCD BASED ON OPENCL

GPUHEP2014 173



Additional features will be added to CL2QCD according to the needs of the physical studies.
In the near future, these will cover the extension of Wilson fermions to Nf = 2+1 �avours and
the implementation of the clover discretization. Adding to that, optimizations of performances
of staggered fermions and the inclusion of improved staggered actions are planned.

7 Acknowledgments

O. P., C. P. and A.S. are supported by the Helmholtz International Center for FAIR within the
LOEWE program of the State of Hesse. C.P. is supported by the GSI Helmholtzzentrum für
Schwerionenforschung. A.S. acknowledges travel support by the Helmholtz Graduate School
HIRe for FAIR.

References

[1] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Phys. Lett., B195:216�222,
1987.

[2] Matthias Bach, Matthias Kretz, Volker Lindenstruth, and David Rohr. Optimized HPL for AMD GPU
and multi-core CPU usage. Comput. Sci., 26(3-4):153�164, June 2011.

[3] David Rohr, Sebastian Kalcher, Matthias Bach, A. Alaqeeli, H. Alzaid, Dominic Eschweiler, Volker Lin-
denstruth, A. Sakhar, A. Alharthi, A. Almubarak, I. Alqwaiz, and R. Bin Suliman. An Energy-E�cient
Multi-GPU Supercomputer. In Proceedings of the 16th IEEE International Conference on High Perfor-

mance Computing and Communications, HPCC 2014, Paris, France. IEEE, 2014.

[4] O. Philipsen, C. Pinke, C. Schäfer, L. Zeidlewicz, and M. Bach. LatticeQCD using OpenCL. PoS, LAT-
TICE2011:044, 2011.

[5] Matthias Bach, Volker Lindenstruth, Owe Philipsen, and Christopher Pinke. Lattice QCD based on
OpenCL. Comput.Phys.Commun., 184:2042�2052, 2013.

[6] A. Shindler. Twisted mass lattice QCD. Phys. Rept., 461:37�110, 2008.

[7] R. Frezzotti and G.C. Rossi. Chirally improving Wilson fermions. 1. O(a) improvement. JHEP, 0408:007,
2004.

[8] Martin Lüscher. A portable high-quality random number generator for lattice �eld theory simulations.
Computer Physics Communications, 79(1):100 � 110, 1994.

[9] M. A. Clark and A. D. Kennedy. Accelerating staggered-fermion dynamics with the rational hybrid
monte carlo algorithm. Phys. Rev. D, 75:011502, Jan 2007.

[10] M. Creutz. Monte Carlo Study of Quantized SU(2) Gauge Theory. Phys. Rev., D21:2308�2315, 1980.

[11] Nicola Cabibbo and Enzo Marinari. A new method for updating SU(N) matrices in computer simulations
of gauge theories. Physics Letters B, 119(4-6):387 � 390, 1982.

[12] A.D. Kennedy and B.J. Pendleton. Improved heatbath method for monte carlo calculations in lattice gauge
theories. Physics Letters B, 156(5-6):393 � 399, 1985.

[13] Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[14] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1 edition, 2008.

[15] K. Jansen and C. Urbach. tmLQCD: a program suite to simulate Wilson Twisted mass Lattice QCD.
Comput. Phys. Commun., 180:2717�2738, 2009.

[16] R. Babich et al. Scaling Lattice QCD beyond 100 GPUs. 2011.

[17] M. Bach, V. Lindenstruth, C. Pinke, and O. Philipsen. Twisted-Mass Lattice QCD using OpenCL. PoS,
LATTICE2013:032, 2014.

[18] Owe Philipsen and Christopher Pinke. Nature of the roberge-weiss transition in Nf = 2 qcd with wilson
fermions. Phys. Rev. D, 89:094504, May 2014.

6 GPUHEP2014

OWE PHILIPSEN, CHRISTOPHER PINKE, ALESSANDRO SCIARRA, MATTHIAS BACH

174 GPUHEP2014


