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The strong force is one of the four fundamental interactions of nature (along with gravity,
electromagnetism and the weak nuclear force). It is the force that holds together protons and
neutrons in the atomic nucleus. The strong interaction is described by Quantum Chromody-
namics (QCD) [1], a quantum field theory with local gauge invariance, given by the SU(3)
group symmetry. A unique feature of the strong force is that the particles that feel it directly
(quarks and gluons) are completely hidden from us, i.e. they are never observed as free particles.
This property is known as color confinement and makes QCD much harder to handle than
the theories describing the weak and electromagnetic forces. Indeed, it is not possible to study
QCD analytically in the limit of small energies, or large spatial separations, which corresponds
to several processes of interest, including the mechanism of color confinement. To gain insight
into these issues, physicists must rely on numerical simulations performed on supercomputers.
These studies are carried out using the lattice formulation of QCD [2, 3, 4, 5, 6]. Similar
studies are done also for other non-Abelian SU(N) gauge theories.

A propagator of a field is a two-point function, i.e. a correlation function between values
of the field at two different points in space-time [7]. In quantum mechanics, the propagator
determines the evolution of the wave function of a system and, for a particle, it gives the
probability amplitude of propagating from a point in space-time to another [8]. More generally,
Green’s functions (i.e. n-point functions) carry all the information about the physical and
mathematical structure of a quantum field theory. Thus, the study of the long-range —or
infrared (IR)— behavior of propagators and vertices is an important step in our understanding
of QCD. In particular, the confinement mechanism for color charges could manifest itself in the
IR behavior of (some of) these Green’s functions.

For gauge theories, such as QCD, the local gauge invariance implies that Green’s functions
are usually gauge-dependent quantities and can be evaluated only after a specific gauge condi-
tion is imposed. Among the possible choices, the so-called Landau (or Lorenz) gauge condition
is particularly interesting, since it preserves the relativistic covariance of the theory. The status
of lattice studies of IR propagators in Landau gauge has been reviewed in [9)].

On the lattice, the minimal Landau gauge condition is usually implemented by (numer-
ically) finding local minima of a functional [10]. As a consequence, in this gauge, the path
integral over gauge-field configurations is restricted to the set of transverse configurations for
which the so-called Landau-gauge Faddeev-Popov matrix (FP) is semi-positive-definite [11].
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Thus, this matrix should encode all the relevant (non-perturbative) aspects of the theory, re-
lated to the color-confinement mechanism.

For a given (thermalized and gauge-fixed) lattice gauge-field configuration U, (z) € SU(N),
with 4 =0,1,2 and 3, the FP matrix My in minimal Landau gauge is defined by its action on
a function v¢(x) as (see, for example, [12] and [13])
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Here, b,c,d =1,...,N? —1 are color indices, f**? are the (anti-symmetric) structure constants
of the SU(N) gauge group, Aﬁ(z) are the gauge fields defined by the relation

Uy(z) = Uj(x)
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where A% are the generators of the SU(N) group, go is the bare coupling constant, a is the
lattice spacing and

Fff(x) = % Tr ({)\b,/\c} [Uu(ac) + U):(:c)]) .

We note that, in the SU(2) case, one finds I'%¢(2) = 6° Tr U, (2)/2 and f*¢=e"*?, where €"*¢ is
the completely anti-symmetric tensor. Also, note that the FP matrix My becomes the lattice
Laplacian if [ (x) = 6*° and A% (z) = 0.

The inverse of the FP matrix enters the evaluation of several fundamental Green’s functions
of the theory, such as the ghost propagator, the ghost-gluon vertex, the Bose-ghost propagator,
etc. These functions can be computed on the lattice through Monte Carlo simulations
[14]. However, the numerical inversion of the FP matrix is rather time consuming, since it
is a very large (sparse) matrix with an extremely small (positive) eigenvalue, thus requiring
the use of a parallel preconditioned conjugate-gradient (CG) algorithm [15]. Moreover,
this inversion has to be done in double precision and, for each lattice configuration, one has
to consider hundreds of different sources, corresponding to different kinematic combinations.
One should also stress that, in a lattice simulation, one cannot study momenta smaller than
27 /L, where L is the lattice side. Thus, numerical studies of Green’s functions in the IR limit
(small momenta) require very large lattice volumes and a careful extrapolation of the data to
the infinite-volume limit. In fact, inversion of the FP matrix is the performance bottleneck for
these numerical studies.

In this study we considered four preconditioned conjugate-gradient algorithms. In particular,
for the preconditioner matrix P we used:

i) the diagonal elements (with respect to color and space-time indices) of the FP matrix,
ii) the diagonal elements (with respect to space-time indices only) of the FP matrix,

iii) the usual lattice Laplacian [16, 17],
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iv) the FP matrix with AZ(;E) =0.

In the former two cases described above, the inversion of P can be done exactly and it does not
require inter-GPU communication. On the other hand, for the latter two choices, we employed
a (non-preconditioned) CG algorithm. We tested the above choices for the preconditioning step
using double and single precision. For the last two cases (choices iii and iv) we also considered
two different stopping criteria for the CG algorithm used to invert the preconditioner matrix
P. The code has been written using CUDA and MPI and tested on multiple GPUs (Tesla S1070
and Tesla K20) interconnected by InfiniBand.
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Figure 1: Weak scaling using lattice volumes V = L* = 16* and 32* with 1 and 16 Tesla S1070
GPUs, respectively. The data correspond to the CG algorithm without preconditioning (+),
with preconditioning iii (x), iv (*), iii in single precision () and iv in single precision (H).

Our results can be seen in the three plots in Figs. 1 and 2. In particular, we show the
processing time for one CG iteration as a function of the lattice side for a fixed lattice vol-
ume/number of GPUs ratio (weak scaling, Fig. 1) and as a function of the number of GPUs
at a fixed lattice size L (strong scaling, Fig. 2). One clearly sees that the overhead due to
the inversion of the preconditioner matrix P is quite large for the cases iii and iv (see Fig. 1).
However, this overhead can be drastically reduced by applying the preconditioner step in single
precision (see again Fig. 1). Moreover, this reduction in the processing time for one CG itera-
tion does not affect the convergence properties of the method, i.e. the number of CG iterations
necessary to satisfy a given convergence criterion is essentially unchanged when moving from
double to single precision. From Fig. 2 we also see that the overhead due to inter-GPU com-
munication is not particularly critical for the algorithms considered, even when the inversion of
the preconditioner matrix P requires inter-GPU communication and for a rather small lattice
volume, at least when going from 1 to 4 GPUs.

Of the four preconditioners considered here, the last two are quite effective in reducing the
number of CG iterations, typically by a factor of 3-4. We plan to study other precondition-
ers for the FP matrix, including the so-called even-odd preconditioning, and to fine-tune the
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Figure 2: Strong scaling using lattice volume V' = 324 with, respectively, 1,2,4,8,16 Tesla GPUs
(left plot) and 1,24 Kepler GPUs (right plot). The data correspond to the CG algorithm
with preconditioning i (+), with preconditioning iv (x) and with preconditioning iii in single
precision (k).

implementation of the various algorithms.
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