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The LHCb experiment is entering in its upgrading phase, with its detector and read-out
system re-designed to cope with the increased LHC energy after the long shutdown of
2018. In this upgrade, a trigger-less data acquisition is being developed to read-out the
full detector at the bunch-crossing rate of 40 MHz. In particular, the High Level Trigger
(HLT) system has to be heavily revised. Since the small LHCb event size (about 100 kB),
many-core architectures such as General Purpose Graphics Processing Units (GPGPUs)
and multi-core CPUs can be used to process many events in parallel for real-time selection,
and may offer a solution for reducing the cost of the HLT farm. Track reconstruction and
vertex finding are the more time-consuming applications running in HLT and therefore
are the first to be ported on many-core. In this talk we present our implementation of
the existing tracking algorithms on GPGPU, discussing in detail the case of the VErtex
LOcator detector (VELO), and we show the achieved performances. We discuss also other
tracking algorithms that can be used in view of the LHCb upgrade.

1 Introduction

One of the most stringent restrictions upon reconstruction algorithms for the software trigger
is their throughput. Data rates require fast execution times, which eventually limit the type
of algorithms to be used. One may not count anymore on the fast development of processors
to expect a given algorithm to become faster just because the CPU clock frequency increases:
clock frequencies are frozen for more than ten years now. The trend has moved towards having
several cores, ranging from two to, likely, many-cores in the near future. For this reason,
we might expect improvements in execution times coming from a clever use of the multicore
structure and parallelization. Therefore, sensibility advises to build up a program to study
and exploit the possibilities of parallelization of the algorithms involved in the reconstruction
and also in the trigger. Among the candidate architectures to support these algorithms we
find General Purpose Graphics Processing Units (GPGPUs), specialized for compute-intensive,
highly parallel computation. GPGPUs may offer a solution for reducing the cost of the HLT
farm for the LHCb upgrade and R&D studies have started to evaluate the possible role of this
architecture in the new trigger system.

In the following section we discuss our preliminary attempt to port the existing tracking
algorithm of the VErtex LOcator (VELO) detector on GPGPU, and we show the achieved
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performances.

1.1 FastVelo

The VELO [1] is a silicon strip detector that provides precise tracking very close to the in-
teraction point. It is used to locate the position of any primary vertex within LHCb, as well
as secondary vertices due to decay of any long lived particles produced in the collisions. The
VELO detector is formed by 21 stations, each consisting of two halves of silicon-strip sensors,
which measure R and φ coordinates. Each half is made of two type of sensors: R sensors with
strips at constant radius covering 45◦ in a so called sector or zone (four zones/sensor), and φ
sensors with nearly radial strips.

“FastVelo” [2] is the algorithm developed for tracking of the current VELO and was written
to run online in the High Level Trigger (HLT) tracking sequence. For this reason, the code
was optimized to be extremely fast and efficient in order to cope with the high rate and hit
occupancy present during the 2011-2012 data collection. FastVelo is highly sequential, with
several conditions and checks introduced throughout the code to speed up execution and reduce
clone and ghost rates.

The algorithm can be divided into two well-defined parts. In the first part (RZ tracking),
all tracks in the RZ plane are found by looking at four neighbouring R-hits along the Z axis
(“quadruplet”). The quadruplets are searched for starting from the last four sensors, where
tracks are most separated. Then the quadruplets are extended towards the lower Z region as
much as possible, allowing for some inefficiency. In the second part of the algorithm (space
tracking), 3D tracks are built by adding the information of the φ hits to the RZ track. A first
processing step is to define the first and last φ sensor to use, then the algorithm starts from
the first station with hits searching for a triplet of nearby φ hits. The triplet is then added
to the RZ track to form a 3D tracklet, so that the track parameters can be estimated. These
3D segments are then extrapolated towards the interaction region by adding hits in the next
stations compatible with the tracklet. The final 3D track is re-fitted using the information of
R and φ hits, while hits with the worst χ2 are removed from the track. Hits already used in
a track are marked as used and not further considered for following iterations (“hit tagging”);
this is done to reduce the number of clones produced by the algorithm, avoiding encountering
the same track several times. The full FastVelo tracking includes additional algorithms for
searching R-hit triplets and unused φ hits; these algorithms ran only at HLT2 during 2012.
However, the GPU implementation of FastVelo reported in this work refers only to the VELO
tracking running on HLT1 during the RUN1.

2 GPU implementation

The strategy used for porting FastVelo to GPU architectures takes advantage of the small
size of the LHCb events (≈ 60kB per event, ≈ 100 kB after the upgrade) implementing two
level of parallelization: “of the algorithm” and “on the events”. With many events running
concurrently, it can be possible, in principle, to gain more in terms of time performances with
respect to the only parallelization of the algorithm. The GPU algorithm was adapted to run
on GPU using the NVIDIA Compute Unified Device Architecture (CUDA) framework [3].

One of the main problems encountered in the parallelization of FastVelo concerns hit tagging,
which explicitly spoils data independence between different concurrent tasks (or “threads”
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in CUDA language). In this respect, any implementation of a parallel version of a tracking
algorithm relying on hit tagging implies a departure from the sequential code, so that the
removal of tagging on used hits is almost unavoidable. The main drawback of this choice
is that the number of combinations of hits to be processed diverges and additional “clone
killing” algorithms (intrinsically sequential and not easy to parallelize) have to be introduced
to mitigate the increase of ghost and clone rates. Another issue encountered in the development
of the parallel version of FastVelo is due to the R-φ geometry of the current VELO that impose
a splitting of the tracking algorithm in two sequential steps (RZ tracking plus 3D tracking).

The approach described in this note follows closely the sequential algorithm; therefore, also
the tracking algorithm implemented on GPU is based on a local search (“local” method): first
seeds are formed by looking only to a restricted set of sensors (quadruplets), then the remaining
hits on the other sensors are added to build the full tracks.
The outline of the implementation chosen to parallelize FastVelo can be summarized as follows:

• The algorithm searches for long tracks first, using only the last five sensors downstream
the VELO (upstream for backward tracks). Four threads (one for each sensor zone) find all
possible quadruplets in these sensors. Then, each quadruplet is extended independently
as much as possible by adding R-hits of other sensors. The R-hits of each RZ track are
marked as used; potential race-conditions are not an issue in this case, because the aim
is to flag an hit as used for the next algorithms.

• Then the remaining sensors are processed: each thread works on a set of five contiguous
R-sensors and find all quadruplets on a zone of these sensors. A check is done on the hits
in order to avoid hits already used for the long tracks. In a sense, the algorithm gives
more priority to the long tracks with respect to the short ones.

At this stage the number of quadruplets belonging to the same tracks is huge and a first
“clone killer” algorithm is needed to protect against finding the same track several times.
All pairs of quadruplets are checked in parallel: each thread of the clone killer algorithm
takes a quadruplet and computes the number of hits in common with the others; if two
quadruplets have more than two hits in common, the one with worst χ2 is discarded (here,
the χ2 is defined as the sum of residual of the position of the R-hits of the RZ track with
respect to the predicted position given by fitted track).

• Next, each quadruplet is extended independently as much as possible by adding R-hits
of other sensors on both directions. After this step, all possible RZ tracks are built.
The number of clones generated by the algorithm is still huge, and another clone killer
algorithm similar to the one implemented in the previous step is used to reduce the fraction
of clone tracks to a tolerable value.

It should be noted that this procedure of cleaning clones follows the same lines of the one
implemented in the original FastVelo algorithm, the only difference being that in FastVelo
the clone killer algorithm is applied only to the full 3D tracks (almost at the end of the
tracking), while in the parallel implementation, without hit tagging, we are forced to
introduce it well before in the tracking sequence in order to reduce the number of tracks
in input to the next steps.

• Next step is to perform full 3D tracking by adding φ hits information. Each RZ track is
processed concurrently by assigning a space-tracking algorithm to each thread.
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This part is almost a re-writing in CUDA language of the original space-tracking algo-
rithm, with the notable exception of the removal of tag on the used φ hits. When all 3D
tracks have been found, a final cleanup is done on the tracks to kill the remaining clones
and ghosts; the clone killer algorithm is the same of the one used in the previous steps,
with the exception that now the χ2 is based on the information of both R and φ hits of
the track.

3 Preliminary results

In this section the timing performances and tracking efficiencies obtained with FastVelo on
GPU will be compared to the sequential algorithm running on 1 CPU core. Other studies will
be presented using a multi-core CPU. These preliminary results refer only to the tracking time
without including data transfer time from CPU to GPU, and vice-versa. The reason for this
choice was dictated in part by the approach of exploiting the parallelization over the events,
where each thread is assigned to an event. This strategy cannot be easily implemented using the
standard software framework, originally developed to process sequentially one event at time. A
simple offloading mechanism has been developed which is able to load data on GPU memory
decoding the information of the VELO hits from raw data. After the tracking on GPU, the
tracks are sent back to the original sequential framework.

The measurements of the tracking time for GPU have been taken using the standard CUDA
timer (“CUDA event”), while the timing for CPU has been taken from the detailed FastVelo
profile given by the LHCb reconstruction program. Tracking efficiencies for both GPU and
CPU have been obtained from the standard tools provided by Brunel. The GPU model used
for these tests is an NVidia GTX Titan (14 Streaming multiprocessors, each equipped with
192 single-precision CUDA cores), while the CPU is an Intel(R) Core(TM) i7-3770 3.40 GHz.
A MonteCarlo (MC) sample of Bs → φφ events generated with 2012 conditions (with pile-
up of ν = 2.51) has been used to evaluate the tracking and timing performances. Timing
performances have been compared also with real data using a NoBias sample collected during
2012 (µ = 1.6). In the Bs → φφ MC sample, the average number of hits per sensor is ≈ 17,
while the average number of reconstructed VELO tracks per event is ≈ 80.

The comparison of tracking efficiencies between the GPU implementation and the original
FastVelo algorithm for different categories of tracks is shown in Tab. 1 2. The efficiencies
obtained by FastVelo on GPU are quite in agreement with the sequential FastVelo; in particular,
clones and ghosts are at the same level of the original code. Fig. 1 shows the tracking efficiency
as a function of the true track momentum Ptrue as obtained by the two algorithms; the overall
agreement is good, showing that the GPU implementation does not introduce any distortion
on the resolution of the track parameters.

The speed-up obtained by the GPU algorithm with respect to FastVelo running on a single
CPU core as a function of the number of processed events is shown in Figs. 2. The maximum
speed-up obtained by the GPU algorithm with respect to the sequential FastVelo is ≈ 3× for
the 2012 datasets. The speedup as a function of the number of events can be explained by
the fact that the GPU computing resources are more efficiently used as the number of events

1ν is the number of total elastic and inelastic proton-proton interactions per bunch crossing, while µ represents
the number of visible interactions per bunch-crossing. LHCb labels simulated event samples according to ν.

2Only the VELO tracking running on HLT1 has been implemented on GPU, so that the quoted efficiencies
and timings refer to FastVelo in the HLT1 configuration.
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Track category FastVelo on GPU FastVelo
Efficiency Clones Efficiency Clones

VELO, all long 86.6% 0.2% 88.8% 0.5%
VELO, long, p > 5 GeV 89.5% 0.1% 91.5% 0.4%

VELO, all long B daughters 87.2% 0.1% 89.4% 0.7%
VELO, long B daughters, p > 5 GeV 89.3% 0.1% 91.8% 0.6%

VELO, ghosts 7.8% 7.3%

Table 1: Tracking efficiencies obtained with FastVelo on GPU, compared with the results
obtained by original FastVelo code (only the VELO tracking running on HLT1). The efficiencies
are computed using 1000 Bs → φφ MC events, generated with 2012 conditions.

increases (there are more threads running at the same time).
The comparison of the timing performance has been done using also a multi-core CPU

(Intel Xeon E5-2600, 12 cores with hyper-threading and 32 GB of memory). A instance (job)
of FastVelo was sent to each core at the same time, with each job processing the same number
of events (for this study the number of events/job was set to 1000): the throughput of a single
core goes down the more instances are running in parallel (this is due to memory IO pressure,
the CPU scaling down its frequency when a lot of cores are running to stay within its power
budget). In the case of Bs → φφ MC events, the rate of processed events on the multi-core
CPU, using all the 24 logical cores, is ≈ 5000 events/sec, while on GPU the rate decrease down
to ≈ 2600 events/sec. However, the number of processed events per second is not a real measure
for performances, because it has no meaning when comparing different computing platforms or
even computing architectures. A better estimator for these performance studies is the rate of
events normalized to the cost of the hardware (events/sec/cost): the GPU gaming-card cost
a small fraction of the server used in the HLT farm, so also a moderate speed-up (e.g. 2×)
compared to a Xeon CPU can bring a real saving to the experiment (provided the GPU is
reasonably well used).

Next steps of this work will include a development of the full FastVelo tracking on GPU (the
part running on HLT2) and the remaining tracking algorithms, such as the Forward tracking
[4]. In addition, we plan to test FastVelo on GPU in parasitic mode during the RUNII in
2015 in order to assess the impact and the feasibility of the many-core solution on the HLT
infrastructure.
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Figure 1: Tracking performance comparisons between the sequential FastVelo and FastVelo on
GPU. Tracking efficiency as a function of the true track momentum Ptrue.

Figure 2: Tracking execution time and speedup versus number of events using a 2012 MC
sample of Bs → φφ decays (ν = 2.5). The GPU is compared to a single CPU core (Intel(R)
Core(TM) i7-3770 3.40 GHz).
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