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It is well-known that in extreme conditions the behavior of a system is different than in
standard ones, see for example [1]. The presence of external (chromo)magnetic field is a par-
ticular case of these nonstandard conditions. One of the most powerful methods to investigate
quantum field theory (also in extreme conditions) is the lattice Monte Carlo (MC) approach,
which allows to investigate problems which cannot be solved analytically. Lattice methods be-
came popular with the increase in performance of computers and the use of GPUs significantly
increases the computing performance.

Major research collaborations develop software for MC simulations (see, for example, [2] for
a review) that is adopted for their tasks and hardware. However, due to the severe competition
between hardware manufacturers, cross-platform principles have to be considered while creating
such type of programs.

The open-source package QCDGPU is a package that enables to perform MC lattice simula-
tions of SU(N) gauge theories and O(N) models on AMD and nVidia GPUs. The main feature
of the package is the possibility of investigating physical phenomena in presence of an external
chromomagnetic field. All functions needed for MC simulations are performed on GPU. The
CPU part of the program computes averages of measured quantities over the MC run, prepares
the computational device, provides input/output functions, etc. The GPU kernels are imple-
mented in OpenCL to enable execution on devices by various vendors. The host part of the
code is written in C++. The package is optimized for execution on GPUs, but can also run on
CPUs.

QCDGPU performs gauge configuration production as well as the measurements of the
lattice observables. In particular, the package allows to measure the most common lattice
observables: mean values of plaquette and action, the Wilson loop, the Polyakov loop, its square
and 4-th power. Also some nonconventional measurements are implemented: measurement of
components of the Fµν tensor, spatial distribution of the Polyakov loop and action. The last
quantities are useful for the investigation of phenomena in presence of external chromomagnetic
fields.

The QCDGPU package allows to investigate SU(N) gluodynamics in n-dimensional space.
By default the 4D hypercubic lattice is considered but the number n can be changed through
the run parameters.

The standard Wilson action for lattice SU(N) theories is considered,

SW = β
∑

x,ν>µ

(
1− 1

N
Re TrUµν(x)

)
,
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The aim of the GAP project is the deployment of Graphic Processing Units in real-time
applications, ranging from the online event selection (trigger) in High-Energy Physics to
medical imaging reconstruction. The final goal of the project is to demonstrate that GPUs
can have a positive impact in sectors different for rate, bandwidth, and computational
intensity. Most crucial aspects currently under study are the analysis of the total latency
of the system, the algorithms optimisations, and the integration with the data acquisition
systems. In this paper we focus on the application of GPUs in asynchronous trigger
systems, employed for the high level trigger of LHC experiments. The benefit obtained
from the GPU deployement is particularly relevant for the foreseen LHC luminosity upgrade
where highly selective algorithms will be crucial to maintain a sustainable trigger rates with
very high pileup. As a study case, we will consider the ATLAS experimental environment
and propose a GPU implementation for a typical muon selection in a high-level trigger
system.

1 Introduction

The Graphic Processing Units (GPU) are commercial devices optimized for parallel computa-
tion, which, given their rapidly increasing performances, are being deployed in many general
purpose application. The GAP project is investigating GPU applications in real-time environ-
ments, with particular interest in High Energy Physics (HEP) trigger systems, which will be
discussed in this paper, but also Medical Imaging reconstruction (CT, PET, NMR) discussed in
[1]. The different areas of interest span several orders of magnitude in terms of data processing,
bandwidth and computational intensity of the executed algorithms, but can all benefit from
the implementation of the massively parallel architecture of GPUs, optimizing different aspects,
in terms of execution speed and complexity of the analyzed events. The trigger system of a
typical HEP experiment has a crucial role deciding, based on limited and partial information,
whether a particular event observed in a detector is interesting enough to be recorded. Every
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experiment is characterised by a limited Data Acquisition (DAQ) bandwidth and disk space for
storage hence needs real-time selections to reduce data throughput selectively. The rejection of
uninteresting events only, is crucial to make an experiment affordable, preserving at the same
time its discovery potential. In this paper we report some results obtained from the inclusion of
GPU in the ATLAS High Level Trigger (HLT); we will focus on the main challenges to deploy
such parallel computing devices in a typical HLT environment and on possible improvements.

2 ATLAS trigger system

The LHC proton-proton accelerator provides collisions at a rate of 40 MHz, which corre-
sponds, for events of a typical size of 1-2 MByte, to an input data rate of the order of
tens of TB/s. The reduction of this input rate to a sustainable rate to be stored on disk,
of the order of ∼100 kHz, is achieved through a hybrid multi-level event selection system.
Lower selection stages (Lower Level Triggers) are usually implemented on customized elec-
tronics, while HLT are nowadays implemented as software algorithms executed on farms of
commodity PCs. HLT systems, in particular those of LHC experiments, offer a very chal-
lenging environment to test cutting-edge technology for realtime event selection. The LHC
upgrade with the consequent increase of instantaneous luminosity and collision pile-up, poses
new challenges for the HLT systems in terms of rates, bandwidth and signal selectivity. To
exploit more complex algorithms aimed at better performances, higher computing capabili-
ties and new strategies are required. Moreover, given the tendency of the computing indus-
try to move away from the current CPU model towards architectures with high numbers of
small cores well suited for vectorial computation, it is becoming urgent to investigate the

Figure 1: A scheme of the ATLAS trigger system; values in red
are indicating the data-taking conditions during the first run of
the LHC (’10-’12) while values in black represents the design con-
ditions, expected to be reached during the upcoming run (starting
in 2015).

possibility to implement a
higher level of parallelism
in the HLT software.

The GAP project is
investigating the deploy-
ment of GPUs for the HLT
in LHC experiments, us-
ing as a study case the
ATLAS muon HLT. The
ATLAS trigger system is
organized in 3 levels [2],
as shown in Figure 1.
The first trigger level is
built on custom electron-
ics, while the second level
(L2) and the event filter
(EF) are implemented in
software algorithms exe-
cuted by a farm of about
1600 PCs with different
Xeon processors each with
8 to 12 cores. During the
Run II of the LHC (ex-
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pected to start in 2015) the L2 and EF will be merged in a single software trigger level.
Currently, a first upgrade is foreseen in 2018 [3], when real-time tracking capabilities will also
be available, followed by a complete renovation of the trigger and detector systems in 2022.
We intend to explore the potential improvements attainable in the near future by deploying
GPUs in the ATLAS LVL2 muon trigger algorithms. Such algorithms are now implemented
as simplified versions and are based on the execution for a large number of times of the same
algorithms that reconstruct and match segments of particle trajectories in the detector. The
high computing capabilities of GPUs would allow the use of refined algorithms with higher
selection efficiency, and thus to maintain the sensitivity to interesting physics signals even at
higher luminosity.

In the current ATLAS data acquisition framework it is not possible to include directly a
parallel computing device; the integration of the GPU in this environment is done through a
server-client structure (Accelerator Process Experiment - APE [4]) that can manage different
tasks and their execution on an external coprocessor, such as the GPU. This implementation
is flexible, able to deal with different devices having optimized architecture, with a reduced
overhead. With the help of this structure it is possible to isolate any trigger algorithm and
optimize it for the execution on a GPU (or other parallel architecture device).

This will imply the translation into a parallel computing programming language (CUDA1

[7]) of the original algorithm and the optimization of the different tasks that can be naturally
parallelized. In such a way the dependency of the execution time on the complexity of the
processed events will be reduced. A similar approach has been investigated in the past for the
deployment of GPUs in different ATLAS algorithms with promising results [5]. The evolution
of the foreseen ATLAS trigger system, that will merge the higher level trigger layers in a unique
software processing stage, can take even more advantage from the use of a GPU since a more
complex algorithm, with offline-like resolution can be implemented on a thousand-core device
with significant speedup factors. The timing comparison between the serial and the parallel
implementation of the trigger algorithm is done on the data collected in the past year.

3 Muon reconstruction isolation algorithm

Figure 2: Scheme of the cone
used in the muon isolation
algorithm.

The benchmark measurements that has been carried out has
focused on one of the algorithms developed for muon reconstruc-
tion in ATLAS. In the L2 trigger a candidate muon particle is re-
constructed combining three different and sequential algorithms:
the first one reconstructs a charged particle track segment in
the muon spectrometer [6], a second algorithm matches in space
such track segment to a charged particle track reconstructed in
the ATLAS Inner Detector (ID) [6], the third evaluates the en-
ergy deposits in the electromagnetic and hadronic calorimeters
(ECAL, HCAL) [6], as well as the track density in the detector
region around the candidate muon trajectory, to check the con-
sistency with a muon crossing the whole ATLAS detector. This
third step of the muon reconstruction has been considered for
our first test deploying a GPU in the ATLAS trigger system.

1We perform the tests described in this article on a server set up for this purpose including an NVIDIA
graphic accelerator, hence the GPU code has been developed in CUDA.
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The muon isolation algorithm starts from the spatial coordinates of the candidate muon tra-
jectory and consider a cone of fixed width ∆R =

√
∆φ2 + ∆η2 in the (η,φ) ([6]) space around

such trajectory. In order to pass the muon track isolation requirement there should be only a
limited number of tracks in the considered cone, and these must be consistent with background
in the inner ATLAS tracking system. The calorimeter isolation is applied summing the energy
deposits in the electromagnetic and hadronic calorimeter cells lying within the considered cone,
and requiring this is only a small fraction of the estimated candidate muon energy2. Figure 2
shows the definition of the cone used to evaluate the muon isolation in the calorimeter and in
the inner detector.

The integration of the GPU and the execution of such algorithm within the ATLAS trigger
framework can be summarized in the following steps:

1. retrieve information from the detector: access to the calorimeter cells information;

2. format information needed by the algorithm, namely the cell content, data-taking condi-
tions, and calorimeter configuration information, into a memory buffer;

3. transfer the prepared buffer to the server (APE) which handles the algorithm execution
and transfer the buffer to the GPU;

4. algorithm execution on the GPU (or on a CPU in the serial version of the algorithm);

5. transfer of the algorithm results through the APE server back into the ATLAS trigger
framework;

Figure 3: Measurement of the muon isolation
algorithm execution time using a Nvidia GTX
Titan GPU.

Step 1 is the same also in the current im-
plementation of the muon isolation algorithm;
in the standard ATLAS trigger implementa-
tion (serial) this step is followed directly by
the algorithm execution (step 4) on the CPU.
Step 2 is needed to optimize the data-transfer
toward the GPU; it is important at this stage
to convert the object-oriented structures to a
plain buffer containing the minimum amount
of information needed by the algorithm to
minimize the CPU→GPU communication la-
tency. Step 3 is implemented through li-
braries dedicated to the client-server com-
munication, as a part of the APE server.
Such server manages the assignement of the
task to the GPU for the execution and waits
to retrieve the results. To accomplish step
4, the simple algorithm which evaluates the
calorimeter isolation has been translated into
the cuda language optimizing the manage-
ment of the GPU resources in terms of com-
puting cuda cores and memory usage. Step

2The requirement on this energy fraction varies depending on the region of the detector and the desired
quality of the reconstructed muon, but this aspect is not relevant for the purpose of these tests.
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5 is implemented within the APE server, sim-
ilarly to step 3, and completes the CPU-GPU communication, reporting the algorithm results
in the original framework.

The measurement of the trigger algorithm execution latency has been performed using a
server machine containing an Intel Xeon E5-2620 CPU and a Nvidia GTX Titan GPU, re-
processing a sample of ATLAS recorded data with no dedicated optimization of the machine.
Figure 3 shows the execution latency measured for the several steps and their sum. The overall
execution time resulted in being ∆ttotGPU ≈1.2±0.2 ms when using the GPU, with respect to
∆ttotCPU ≈0.95±0.15 ms, obtained with the standard execution on CPU. As it is shown in Figure
3 the largest fraction of the time (∼ 900 µs) is spent to extract the detector data and convert
them from the object-oriented structure to a flat format which is suitable for the transfer
to the GPU. This contribution to the latency is independent from the the serial or parallel
implementation of the algorithm, since it’s related to data structure decoding; the current
version of the ATLAS framework heavily relies on object-oriented structures, which are not
the ideal input for GPUs. The contribution due to the CPU-GPU communication through the
client-server structure is found to be ∆ttrans.GPU ∼250 µs, which is within the typical time budget
of the ATLAS HLT (O(10 ms)). This result confirms the possibility to include GPUs into a
HLT system for the execution of parallel algorithms, hence motivates further studies in this
direction.

4 Conclusions and Perspectives

Figure 4: Isolated single muon trig-
ger observed rate as a function of
the muon transverse momentum (pT ),
compared to simulations for the differ-
ent expected contributions.

From this first study we succesfully deployed a GPU
within the ATLAS pre-existing trigger and DAQ frame-
work through a flexible client-server scheme. We ob-
served that the CPU-GPU communication does not
introduce a dramatic overhead, which is indeed well
within the typical execution latencies of software trig-
ger algorithms, O(10 ms). This result shows that is
feasible to consider the GPUs as extremely powerful
computing devices for the evolution of the current asyn-
chronous trigger systems. Most of the execution time
is devoted to the data extraction from object-oriented
structures, which is currently an external constraint
from the ATLAS trigger framework. This observation,
confirmed by similar studies in the ATLAS experiment,
focused the attention on this topic; a common effort is
ongoing to overcome this problem and benefit at most
from the GPU computing power. At the moment two
viable approaches are being considered: on one hand
it’s interesting to consider more complex algorithms
that can reduce the time spent for data structure han-
dling to a negligible fraction; on the other hand it is
possible to handle simpler data structures (raw byte
streams from the detector), bypassing most of the currently existing framework. As an exam-
ple of the first approach the possibility to execute at the trigger level, a refined evaluation of
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the muon isolation, which would be not sustainable in single-threaded execution on a CPU,
is currently under investigation. The muon isolation evaluated in the offline data reprocess-
ing takes into account also environmental corrections due to multiple interactions leading to
additional noise in the calorimeter and tracking system. Figure 4 shows the trigger rate as a
function of the muon transverse momentum, pT , for the isolated muon trigger in a data-taking
period during 2012. One can see that a relevant fraction of the trigger rate is due to spurious
events (multi-jet production). A refined calculation of the muon isolation would reduce such
trigger rate, maintaining the efficiency for prompt muon reconstruction high .

As a typical scenario for the second approach, it is possible to decode and process simple
data from the muon spectrometer (position and time information) [6] to reconstruct the muon
track segment. A similar strategy has been developed in a standalone test considering track
reconstruction in the ATLAS Inner Detector, with interesting results [5].
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Nuclear emulsions as tracking devices have been used by recent experiments thanks to
fast automatic microscopes for emulsion readout. Automatic systems are evolving towards
GPU-based solutions. Real-time imaging is needed to drive the motion of the microscope
axes and 3D track recognition occurs quasi-online in local GPU clusters. The algorithms
implemented in the Quick Scanning System are sketched. Most of them are very general
and might turn out useful for other detectors.

1 Nuclear emulsions as tracking detectors

Figure 1: Nuclear emulsion film.

Figure 2: Nuclear emulsion image. High-
energy tracks are orthogonal to plane.

Nuclear emulsions have a long history in high-
energy physics and recently experienced revived
interest in the CHORUS[1], DONUT, PEANUT[2]
and OPERA[3] experiments. They provide the
best spatial resolution currently available, of the
order of 0.1 µm. On the other hand, they have no
time resolution, recording all charged tracks since
the time of production until photographic develop-
ment. In common setups, a detector is made up of
one or more stacks of films, placed approximately
orthogonally to the direction of the incoming par-
ticles. Each film has two layers of emulsion coat-
ing a transparent plastic base (Fig. 1). Typical
dimensions are 50 µm for the thickness of emul-
sion layers and 200 µm for the base. A nuclear
emulsion contains AgBr crystals in a gel matrix.
Charged particles sensitise the crystals by ionisa-
tion, producing a latent image. Development of
the film produces metallic Ag grains in place of
the latent image, resulting in aligned sequences of
grains (microtracks), typically 0.3∼1 µm in diam-
eter (Fig. 2). In an optical transmission micro-
scope, grains appear as dark spots on light background. In white light, the average alignment
residuals of grains with respect to the straight line fit is of the order of 50 nm. The depth of

GPUHEP2014 1GPUHEP2014 9



field of the optics is usually below 5 µm. The full thickness of the emulsion layer is spanned
by moving the optical axis, thus producing optical tomographies with a set of equally spaced
planes (15∼31 usually). The image of a particle track in a focal plane is a single grain, not
necessarily present in each plane (ionisation is a stochastic process). Because the chemical
process of development is just faster for sensitised grains, but it occurs in general for every
crystal in a random fashion, many grains appear without having been touched by any particle.
Such so-called fog grains are overwhelming in number: as a reference, the ratio of fog grains to
microtrack grains ranges from 103 through 105. Only 3D alignment is able to single out the few
microtrack grains, but also many fake microtracks due to random alignments survive in a single
film. Stacking several films allows using coincidence methods to improve background rejection.

It is worth noticing that this resembles the situation of an electronic detector in which
background hits due to noise or pile-up overwhelm track hits. Normally, electronic detectors
use a time trigger to reduce combinatorial complexity, but in emulsion this is not possible.
It is reasonable to think that a tracking algorithm working in emulsion finds an even easier
environment if fed with data from other detectors, such as cloud chambers or planes of silicon
pads.

2 Data from nuclear emulsion

A nuclear emulsion film has typically a rectangular shape, spanning several tens of cm in both
directions. The whole surface is scanned by acquiring optical tomographies in several fields of
view with a repetitive motion. An electronic shutter ensures that images are only negligibly
affected by motion blur. In the ESS (European Scanning System [4], [5], [6], [7], [8]), developed
in the first decade of the 21st century, the XY microscope axes hold steady while the Z axis
(optical axis) moves and images are grabbed on the fly and sent to vision processors. Its
evolution, named QSS (Quick Scanning System), moves the X axis continuously. Hence, each
view (an optical tomography) of ESS is a cuboid, whereas those of QSS are skewed prisms.
Images are acquired by fast monochromatic sensors (CMOS) mounted on the optical axis,
capable of 200∼400 frames per second, each frame being 1∼4 MPixel (or more for future
sensors) using 8 bits/pixel. The resulting data rate ranges from 0.5 GB/s to 2 GB/s. The
linear size of the image stored in a pixel, with common optics, is of the order of 0.3 µm. The
full size of the field of view is 400×320 µm2 for ESS, 770×550 µm2 for QSS.

2D image processing used to be shared in the case of ESS by an industrial vision processor
(Matrox Odyssey) based on an FPGA and by the host workstation CPU. It consists of several
substeps:

1. grey level histogram computation and stretching – used to compensate for varying light
yield of the lamp;

2. FIR (Finite Impulse Response) processing with a 5×5 kernel and comparison of filter
output to a threshold – selects dark pixels on light background, producing a binary image;

3. reduction of sequences of pixels on horizontal scan lines to segments;

4. reduction of segments in contact on consecutive scan lines to clusters of dark pixels –
produces grains to be used for tracking.

In the ESS, steps 1 and 2 are performed on the FPGA-based device. Steps 3 and 4 are
executed by the host workstation CPU. For the same task, QSS uses a GPU board hosted in
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the workstation that controls the microscope: common choices are double-GPU boards such as
NVidia GeForce GTX 590 or GTX 690. A single board can do everything without intervention
of the host workstation CPU. The first 3 steps are quite natural applications for GPU’s. One
single GPU can be up to 7 times faster than the Odyssey, reducing the price by an order
of magnitude. Steps 4 and 5 require special attention in code development, because they are
reduction operations with an a priori unknown number of output objects. In step 4 each thread
takes care of a single scan line of the image. In step 5 a recursive implementation has been
chosen: at iteration n, the segments on scan line i× 2n are compared to those on line i× 2n− 1
and the related dark clusters are merged together. Indeed, steps 4 and 5 are the slowest, and
they define the total processing speed, which is 400 MB/s for GTX 590. The system is scalable,
and more GPU boards or more powerful ones can be added if needed. The output of this step is,
for each view, a set of clusters of dark pixels on light background, each one being encoded with
its X, Y, Z coordinates and size in pixels. Automatic readout uses the distribution of clusters to
continuously adjust the Z axis drive of the tomography. 60∼124 MB of image data are encoded
to 8∼16 MB cluster block, ready for local storage or to be transmitted over the network for
further processing. In the latter case, a RAM disk area is used as a buffer to distribute data to a
cluster of GPU’s. Tracking servers and the workload manager provide a command-line interface
for administration and have an embedded lightweight Web server, originally developed for the
SySal project ([7]), that provides a graphical interface for human access and is the backbone
for an HTTP-based network protocol for control messages needed for workload assignment.

Particle tracks can cross the boundary of a view, and tracking must be able to do the
same. The alignment tolerance to recognise real tracks and discard background cannot exceed
0.5 µm and is usually smaller. The motion control electronics is capable of position feedback,
but triaxial vibrations due to combined motion arise, well beyond 1 µm in a single image.
Corrections to raw data are needed before they can be used to recognise microtracks. Some
such corrections, sketched in Fig. 3, depend on optical aberrations and are systematic effects
that can be computed off-line from small data-sets and then applied on each incoming cluster
block (view):

1. Spherical aberrations: XY and Z curvature;

2. trapezium distortions: dependence of magnification factor on X and Y;

3. magnification-vs.-Z dependence;

4. camera tilt: rotation in the XY plane;

5. optical axis slant: X-Z and Y-Z couplings due to inclined optical axis.

Figure 3: Optical distortion of emulsion image.
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Most of the computing power needed for data correction is taken by other effects that
are purely stochastic: vibrations due to motion, increased by mechanical wear and aging are
unpredictable and spoil the alignment of images within the same view and between consecutive
views. Because the depth-of-field usually exceeds the Z pitch between two images in the same
sequence taken while the Z axis moves, a sizable fraction of the dark clusters in one image will
appear also in the next. Pattern matching works out the relative shift between the images,
usually within 1 µm. This procedure requires scanning a square region of possible values of the
plane shift vector. Combinatorial complexity is reduced by arranging clusters in a 2D grid of
cells and considering only pair matching within each cell. The shift vector that maximizes the
number of combinations is the best approximation of the misalignment between the images.
Likewise, despite position feedback of all axes, a whole tomography is misaligned with respect
to the next. Film scanning is performed so as to leave 30∼40 µm overlap between adjacent
views. The dark clusters found in the overlap region are used to perform 3D pattern matching,
in the same way as for 2D pattern matching. The standard deviation of the distribution of
residuals is of the order of 150 nm (Fig. 4) for X and Y, and 2.6 µm for Z.

Figure 4: Left: precision of image-to-image alignment in the same tomographic sequence. Right:
precision of relative alignment of two tomographic sequences.

3 Track reconstruction

Reconstructing 3D tracks from a set of primitive objects such as emulsion grain images or
electronic detector hits is a common task in high-energy physics. The method depicted in
the following would work in all cases of straight tracks, i.e. absent or weak magnetic field and
scattering effects negligible with respect to the granularity of the detector. Because ionisation is
a stochastic process, the algorithm does not require that a microtrack has a dark cluster in every
image; furthermore, the notion of sampling planes is deliberately discarded to keep the algorithm
general. It just needs to work on 3D pointlike objects, each having a weight, which corresponds
to the number of pixels of the dark cluster in this case (e.g. it may be the deposited energy
in a silicon counter). Each pair of dark clusters defines a seed, i.e. a straight line in 3D space;
other clusters are expected to be aligned with it within proper tolerance (Fig. 5-left). In thin
emulsion layers, microtracks are formed with 6∼40 clusters, depending on the local sensitivity,
on statistical fluctuations and on track angle (the wider the inclination with respect to the
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thickness dimension, the longer the path length). Furthermore, high-energy particles ionise less
than slow ones. Such reasons suggest not to filter out too many possible pairs of clusters as track
seeds, considering all those that are within geometrical acceptance. Physics or experimental
conditions constrain the angular acceptance to a region of interest. Optimum thread allocation
to computing cores demands that constraints be enforced constructively instead of generating
all seeds and discarding invalid ones. Dark clusters are arranged in a 2D grid of prisms, each
one spanning the whole emulsion thickness (Fig. 5-right). The angular region of interest is
scanned in angular steps. At each step the prisms are generated skewed with the central slope
of the step. This ensures that seeds that are very far from the acceptance window will not even
be built and followed.

Figure 5: Left: microtrack seeds and grains. Right: 2D grid of prisms to build seeds. A prism
containing a track is shown darker.

With common operational parameters, the number of useful combinations ranges within
107 and 109 per tomographic sequence, depending on the amount of random alignments and
fog. For each seed, one thread scans the containing prism to find aligned clusters and build
the microtrack. This procedure naturally produces clones of the same track, normally in the
range 2∼4:1. They are discarded by comparing the geometrical parameters of all neighbor
microtracks, neighborhood being defined by means of a 2D spatial grid.

4 Performances and outlook

Performances in terms of processing time vs. grain or microtrack density has been estimated
using several NVidia GPU’s. The results are shown in Figures 6, 7, 8 and 9.

Denoting the grain density (grains per tomography) with N , the number of seed combina-
tions is of order N2, and the search for clusters to attach to the seed is of order N3. Results
show that processing steps of high computational complexity are not overwhelming for typical
operational conditions.

While one would expect the processing time to scale inversely with the number of available
cores, more recent GPU’s perform proportionally worse than older ones. The reason for that is
to be sought mostly in branch divergence, which affects more the multiprocessors with larger
number of cores. In some cases the divergence is due to threads exiting while others keep
running. This could be eliminated, but it’s not clear whether the additional complications of
code would pay off. In other cases the divergence is due to the specific coding style used in
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Figure 6: Absolute time (ms) for cluster correction and alignment. For GTX690, only one GPU
is considered.
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Figure 7: Fraction of total time used for cluster correction and alignment.

the implementation, and could be reduced by fine-tuning the logic: e.g, the kernel that merges
track clones takes about 1/3 of the total time, and removing or taming its divergence offers
good chances of overall speed-up. The relative improvements of a GPU-based system over
traditional technologies can effectively be estimated by the cost of hardware. For QSS, taking
data at 40∼90 cm2/h with 1 GTX 590 for cluster recognition + 6 GTX 690 for alignment and
tracking costs about 5.5 times less than the hardware of ESS taking data at 20 cm2/h on the
same emulsion films. The power consumption is similar, although it is worth noticing the data
taking speed increase. The GPU-based system is also more modular and scalable.
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Figure 8: Dependency of tracking time (GTX780Ti) on the number of grain clusters/view (dark
clusters with minimum size constraint).
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Figure 9: Compute work (Cores × Clock × Time, arbitrary units) for several boards. For
GTX690, only one GPU is considered.
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The LHC experiments are designed to detect large amount of physics events produced
with a very high rate. Considering the future upgrades, the data acquisition rate will be-
come even higher and new computing paradigms must be adopted for fast data-processing:
General Purpose Graphics Processing Units (GPGPU) is a novel approach based on mas-
sive parallel computing. The intense computation power provided by Graphics Processing
Units (GPU) is expected to reduce the computation time and to speed-up the low-latency
applications used for fast decision taking. In particular, this approach could be hence used
for high-level triggering in very complex environments, like the typical inner tracking sys-
tems of the multi-purpose experiments at LHC, where a large number of charged particle
tracks will be produced with the luminosity upgrade. In this article we discuss a track
pattern recognition algorithm based on the Hough Transform, where a parallel approach
is expected to reduce dramatically the execution time.

1 Introduction

Modern High Energy Physics (HEP) experiments are designed to detect large amount of data
with very high rate. In addition to that weak signatures of new physics must be searched in
complex background condition. In order to reach these achievements, new computing paradigms
must be adopted. A novel approach is based on the use of high parallel computing devices,
like Graphics Processing Units (GPU), which delivers such high performance solutions to be
used in HEP. In particular, a massive parallel computation based on General Purpose Graphics
Processing Units (GPGPU) [1] could dramatically speed up the algorithms for charged particle
tracking and fitting, allowing their use for fast decision taking and triggering. In this paper
we describe a tracking recognition algorithm based on the Hough Transform [2, 3, 4] and its
implementation on Graphics Processing Units (GPU).

2 Tracking with the Hough Transform

The Hough Transform (HT) is a pattern recognition technique for features extraction in image
processing, and in our case we will use a HT based algorithm to extract the tracks parameters
from the hits left by charged particles in the detector. A preliminary result on this study has
been already presented in [5]. Our model is based on a cylindrical multi-layer silicon detector
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installed around the interaction point of a particle collider, with the detector axis on the beam-
line. The algorithm works in two serial steps. In the first part, for each hit having coordinates
(xH , yH , zH) the algorithm computes all the circles in the x−y transverse plane passing through
that hit and the interaction point, where the circle equation is x2 + y2 − 2Ax − 2By = 0,
and A and B are the two parameters corresponding to the coordinates of the circle centre.
The circle detection is performed taking into account also the longitudinal (θ) and polar (φ)
angles. For all the θ, φ, A, B, satisfying the circle equation associated to a given hit, the
corresponding MH(A,B, θ, φ) Hough Matrix (or Vote Matrix) elements are incremented by one.
After computing all the hits, all the MH elements above a given threshold would correspond to
real tracks. Thus, the second step is a local maxima search among the MH elements.

In our test, we used a dataset of 100 simulated events (pp collisions at LHC energy, Minimum
Bias sample with tracks having transverse momentum pT > 500 MeV), each event containing
up to 5000 particle hits on a cylindrical 12-layer silicon detector centred on the nominal collision
point. The four hyper-dimensions of the Hough space have been binned in 4× 16× 1024× 1024
along the corresponding A,B, θ, φ parameters.

The algorithm performance compared to a χ2 fit method is shown in Fig. 1: the ρ =√
A2 +B2 and ϕ = tan−1(B/A) are shown together with the corresponding resolutions.
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Figure 1: Hough Transform algorithm compared to χ2 fit. (a) ρ distribution; (b) ϕ distribution;
(c) ρ resolution; (d) ϕ resolution.

3 SINGLE-GPU implementation

The HT tracking algorithm has been implemented in GPGPU splitting the code in two kernels,
for Hough Matrix filling and searching local maxima on it. Implementation has been performed
both in CUDA [1] and OpenCL [6]. GPGPU implementation schema is shown in Fig. 2.

Concerning the CUDA implementation, for the MH filling kernel, we set a 1-D grid over
all the hits, the grid size being equal to the number of hits of the event. Fixed the (θ, φ)
values, a thread-block has been assigned to the A values, and for each A, the corresponding
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B is evaluated. The MH(A,B, θ, φ) matrix element is then incremented by a unity with an
atomicAdd operation. TheMH initialisation is done once at first iteration with cudaMallocHost

(pinned memory) and initialised on device with cudaMemset. In the second kernel, the local
maxima search is carried out using a 2-D grid over the θ, φ parameters, the grid dimension
being the product of all the parameters number over the maximum number of threads per block
(Nφ×Nθ ×NA×NB)/maxThreadsPerBlock, and 2-D threadblocks, with dimXBlock=NA and
dimYBlock=MaxThreadPerBlock/NA. Each thread compares one MH(A,B, θ, φ) element to its
neighbours and, if the biggest, it is stored in the GPU shared memory and eventually transferred
back. With such big arrays the actual challenge lies in optimizing array allocation and access
and indeed for this kernel a significant speed up has been achieved by tuning matrix access
in a coalesced fashion, thus allowing to gain a crucial computational speed-up. The OpenCL

Figure 2: GPGPU implementation schema of the two Hough Transform algorithm kernels.

implementation has been done using a similar structure used for CUDA. Since in OpenCL there
is no direct pinning memory, a device buffer is mapped to an already existing memallocated
host buffer (clEnqueueMapBuffer) and dedicated kernels are used for matrices initialisation
in the device memory. The memory host-to-device buffer allocation is performed concurrently
and asynchronously, saving overall transferring time.

3.1 SINGLE-GPU results

The test has been performed using the NVIDIA [1] GPU boards listed in table 1. The GTX770
board is mounted locally on a desktop PC, the Tesla K20 and K40 are installed in the INFN-
CNAF HPC cluster.

The measurement of the execution time of all the algorithm components has been carried
out as a function of the number of hits to be processed, and averaging the results over 100
independent runs. The result of the test is summarised in Fig. 3. The total execution time
comparison between GPUs and CPU is shown in Fig. 3a, while in Fig. 3b the details about
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Device NVIDIA NVIDIA NVIDIA
specification GeForce GTX770 Tesla K20m Tesla K40m
Performance (Gflops) 3213 3542 4291
Mem. Bandwidth (GB/s) 224.2 208 288
Bus Connection PCIe3 PCIe3 PCIe3
Mem. Size (MB) 2048 5120 12228
Number of Cores 1536 2496 2880
Clock Speed (MHz) 1046 706 1502

Table 1: Computing resources setup.

the execution on different GPUs are shown. The GPU execution is up to 15 times faster with
respect to the CPU implementation, and the best result is obtained for the CUDA algorithm
version on the GTX770 device. The GPUs timing are less dependent on the number of the hits
with respect to CPU timing.

The kernels execution on GPUs is even faster with respect to CPU timing, with two orders
of magnitude GPU-CPU speed up, as shown in Figs. 3c and 3e. When comparing the kernel
execution on different GPUs (Figs. 3d) and 3f), CUDA is observed to perform slightly better
than OpenCL. Figure 3g shows the GPU-to-CPU data transfer timings for all devices together
with the CPU I/O timing, giving a clear idea of the dominant part of the execution time.

4 MULTI-GPU implementation

Assuming that the detector model we considered could have multiple readout boards working
independently, it is interesting to split the workload on multiple GPUs. We have done this by
splitting the transverse plane in four sectors to be processed separately, since the data across
sectors are assumed to be read-out independently. Hence, a single HT is executed for each sector,
assigned to a single GPU, and eventually the results are merged when each GPU finishes its
own process. The main advantage is to reduce the load on a single GPU by using lightweight
Hough Matrices and output structures. Only CUDA implementation has been tested, using the
same workload schema discussed in Sec. 3, but using four MH(A,B, θ), each matrix processing
the data of a single φ sector.

4.1 MULTI-GPU results

The multi-GPU results are shown in Fig. 4. The test has been carried out in double config-
uration, separately, with two NVIDIA Tesla K20 and two NVIDIA Tesla K40. The overall
execution time is faster with double GPUs in both cases, even if timing does not scale with
the number of GPUs. An approximate half timing is instead observed when comparing kernels
execution times. On the other hand, the transferring time is almost independent on the number
of GPUs, this leading the overall time execution.
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Figure 3: Execution timing as a function of the number of analysed hits. (a) Total execution
time for all devices; (b) Total execution time for GPU devices only; (c) MH filling time for
all devices; (d) MH filling timing for GPU devices only; (e) local maxima search timing for all
devices; (f) local maxima search timing for GPU devices only; (g) device-to-host transfer time
(GPUS) and I/O time (CPU).

5 Conclusions

A pattern recognition algorithm based on the Hough Transform has been successfully imple-
mented on CUDA and OpenCL, also using multiple devices. The results presented in this paper
show that the employment of GPUs in situations where time is critical for HEP, like triggering
at hadron colliders, can lead to significant and encouraging speed-up. Indeed the problem by
itself offers wide room for a parallel approach to computation: this is reflected in the results
shown where the speed-up is around 15 times better than what achieved with a normal CPU.
There are still many handles for optimising the performance, also taking into account the GPU
architecture and board specifications. Next steps of this work go towards an interface to actual
experimental frameworks, including the management of the experimental data structures and
testing with more graphics accelerators and coprocessor.

References
[1] NVidia Corporation URL http://www.nvidia.com/

NVidia Corporation URL http://www.nvidia.com/object/gpu.html
NVidia Corporation URL http://www.nvidia.com/object/cuda home new.html

[2] P. Hough; 1959 Proc. Int. Conf. High Energy Accelerators and Instrumentation C590914 554558

GPUHEP2014 5

GPGPU FOR TRACK FINDING IN HIGH ENERGY PHYSICS

GPUHEP2014 21



Number of hits

0 1000 2000 3000 4000 5000

T
im

e
 (

m
s
)

30

35

40

45

50

55

60

(a) Total Execution

Number of hits

0 1000 2000 3000 4000 5000

T
im

e
 (

m
s
)

2−10

1−10

1

(b) Hough Matrix Filling

Tesla K20m Single

Tesla K20m Double

Tesla K40m Single

Tesla K40m Double

Number of hits

0 1000 2000 3000 4000 5000

T
im

e
 (

m
s
)

0

1

2

3

4

5

6

7

8

9

10

(c) Local Maxima Search

Number of hits

0 1000 2000 3000 4000 5000

T
im

e
 (

m
s
)

20

25

30

35

40

45

50

(d) Data Transfer

Figure 4: Execution timing as a function of the number of the hits for multi-GPU configuration.
(a) Total execution time; (b) MH filling timing; (c) local maxima search timing; (d) device-to-
host transfer time.

[3] V Halyo et al; 2014 JINST 9 P04005

[4] M R Buckley, V Halyo, P Lujan; 2014 http://arxiv.org/abs/1405.2082
P. Hough, 1962, United States Patent 3069654.

[5] S Amerio et al; PoS (TIPP2014) 408

[6] OpenCL, Khronos Group URL https://www.khronos.org/opencl/

6 GPUHEP2014

L. RINALDI, M. BELGIOVINE, R. DI SIPIO, A. GABRIELLI, M. NEGRINI, F. . . .

22 GPUHEP2014



FLES – First Level Event Selection Package for

the CBM Experiment

Valentina Akishina1,2, Ivan Kisel1,2,3, Igor Kulakov1,3, Maksym Zyzak1,3

1Goethe University, Grueneburgplatz 1, 60323 Frankfurt, Germany
2FIAS Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt, Ger-
many
3GSI Helmholtz Center for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/4

The CBM (Compressed Baryonic Matter) experiment is a future heavy-ion experiment
at the future Facility for Anti-Proton and Ion Research (FAIR, Darmstadt, Germany).
First Level Event Selection (FLES) in the CBM experiment will be performed on-line
on a dedicated processor farm. An overview of the on-line FLES processor farm concept,
different levels of parallel data processing down to the vectorization, implementation of the
algorithms in single precision, memory optimization, scalability with respect to number of
cores, efficiency, precision and speed of the FLES algorithms are presented and discussed.

1 Introduction

The CBM (Compressed Baryonic Matter) experiment [1] is an experiment being prepared to
operate at the future Facility for Anti-Proton and Ion Research (FAIR, Darmstadt, Germany).
Its main focus is the measurement of very rare probes, that requires interaction rates of up
to 10 MHz. Together with the high multiplicity of charged particles produced in heavy-ion
collisions, this leads to huge data rates of up to 1 TB/s. Most trigger signatures are complex
(short-lived particles, e.g. open charm decays) and require information from several detector
sub-systems.

The First Level Event Selection (FLES) package [2] of the CBM experiment is intended to
reconstruct the full event topology including tracks of charged particles and short-lived particles.
The FLES package consists of several modules: track finder, track fitter, particle finder and
physics selection. As an input the FLES package receives a simplified geometry of the tracking
detectors and the hits, which are created by the charged particles crossing the detectors. Tracks
of the charged particles are reconstructed by the Cellular Automaton (CA) track finder [3] using
to the registered hits. The Kalman filter (KF) based track fit [4] is used for precise estimation
of the track parameters. The short-lived particles, which decay before the tracking detectors,
can be reconstructed via their decay products only. The KF Particle Finder, which is based on
the KFParticle package [2], is used in order to find and reconstruct the parameters of short-
lived particles by combining already found tracks of the long-lived charged particles. The KF
Particle Finder also selects particle-candidates from a large number of random combinations.
In addition, a module for quality assurance is implemented, that allows to control the quality
of the reconstruction at all stages. It produces an output in a simple ASCII format, that can be
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interpreted later as efficiencies and histograms using the ROOT framework. The FLES package
is platform and operating system independent.

The FLES package in the CBM experiment will be performed on-line on a dedicated many-
core CPU/GPU cluster. The FLES algorithms have to be therefore intrinsically local and
parallel and thus require a fundamental redesign of the traditional approaches to event data
processing in order to use the full potential of modern and future many-core CPU/GPU archi-
tectures. Massive hardware parallelization has to be adequately reflected in mathematical and
computational optimization of the algorithms.

2 Kalman Filter (KF) track fit library

Searching for rare interesting physics events, most of modern high energy physics experiments
have to work under conditions of still growing input rates and regularly increasing track mul-
tiplicities and densities. High precision of the track parameters and their covariance matrices
is a prerequisite for finding rare signal events among hundreds of thousands of background
events. Such high precision is usually obtained by using the estimation algorithms based on the
Kalman filter (KF) method. In our particular case, the KF method is a linear recursive method
for finding the optimum estimation of the track parameters, grouped as components into the
so-called state vector, and their covariance matrix according to the detector measurements.

The Kalman filter based library for track fitting includes following tracking algorithms:
track fit based on the conventional Kalman filter; track fit based on the square root Kalman
filter; track fit based on the Kalman filter with UD factorization of the covariance matrix; track
smoother based on the listed above approaches and deterministic annealing filter based on the
listed above track smoothers.

High speed of the reconstruction algorithms on modern many-core computer architectures
can be accomplished by: optimizing with respect to the computer memory, in particular declar-
ing all variables in single precision, vectorizing in order to use the SIMD (Single Instruction,
Multiple Data) instruction set and parallelizing between cores within a compute node.

Several formulations of the Kalman filter method, such as the square root KF and the UD
KF, increase its numerical stability in single precision. All algorithms, therefore, can be used
either in double or in single precision.

The vectorization and parallelization of the algorithms are done by using of: header files,
Vc vector classes, Intel TBB, OpenMP, Intel ArBB and OpenCL.

The KF library has been developed and tested within the simulation and reconstruction
framework of the CBM experiment, where precision and speed of the reconstruction algorithms
are extremely important.

When running on CPU the scalability with respect to the number of cores is one of the
most important parameters of the algorithm. Figure 1 shows the scalability of the vectorized
KF algorithm. The strong linear behavior shows, that with further increase of the number of
cores on newer CPUs the performance of the algorithm will not degrade and the maximum
speed will be reached. The stair-like dependence appears because of the Intel Hyper-Threading
technology, which allows to run two threads per core and gives about 30% of performance
advantage. The scalability on the Intel Xeon Phi coprocessor is similar to CPU with four
threads per core running simultaneously.

In case of the graphic cards the set of tasks is divided into working groups and distributed
among compute units (or streaming multiprocessors) by OpenCL and the load of each compute

2 GPUHEP2014

VALENTINA AKISHINA, IVAN KISEL, IGOR KULAKOV, MAKSYM ZYZAK

24 GPUHEP2014



Ivan Kisel, Uni-Frankfurt, FIAS, GSI GPU Workshop, Pisa, 10.09.2014      /18 

Full portability of the Kalman filter library
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OpenMP (Open Multi-Processing) - is an API that supports multi-platform shared memory 
multiprocessing programming in C, C++, and Fortran.  

It is an implementation of multithreading, a method of parallelizing whereby a 
master thread (a series of instructions executed consecutively) forks a specified number of 
slave threads and a task is divided among them. 
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First Level Event Selection Challenge in the CBM Experiment

➢ Fixed-target heavy-ion experiment 
➢ Up to 1000 charged particles/collision 
➢ Non-homogeneous magnetic field 
➢ 85% fake combinatorial space points in STS 
➢ 107 events per second 
➢ Full event reconstruction is required in the first 

trigger level

NVidia GPU on an example of Nvidia GTX480
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Scalability of the Track Fit on Nvidia 

Track Fit Quality

Scalability on Other Architectures

Conclusions

✓ The Kalman Filter track fitter for the CBM experiment was implemented for Nvidia GPUs. 

✓ The fitter shows high quality of the estimated parameters: momentum resolution is about 1%, pull width is about one, that indicates correctness of the fit. 

✓ The implementation shows linear behaviour depending on the number of tracks in the local working group running on the streaming multiprocessor, that 
indicates no interlocks between cores within one streaming multiprocessor. 

✓ Since implementation is based on OpenCL, it can be run also on other processor architectures. The tests shows nice linear scalability on CPUs, Intel 
Xeon Phi and ATI GPUs.

➢ CBM event reconstruction is based on Kalman Filter  and Cellular Automaton algorithms 
➢ High speed and efficiency of the reconstruction algorithms are required 
➢ The algorithms have to be highly parallelized and scalable in order to use the full potential of the 

modern processors
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Track fit:  
1.  Start with an arbitrary initialisation 
2.  Add one hit after another 
3.  Improve the state vector 
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!
x, y – coordinates 
tx - slope dx/dz*            
ty - slope dy/dz 
q – charge 
p – momentum 
*z axis is along the beam line

r = { x, y, tx, ty, q/p } position, tangent of slopes 
and charge over momentum 

Track state vector in CBM:

The track fit resolution is high, all distributions are unbiased, shape of pulls distribution is Gaussian 
with a width close to 1.
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• The SIMD KF package has been implemented with OpenCL to run on Nvidia  
• OpenCL is a universal parallel language for different types of platforms (CPU, GPU, Cell processors, etc.) 
• For maximum performance each group of data should contain number of elements dividable by the 

number of cores in a streaming multiprocessor 

• The code shows linear scalability depending on the number of tracks in a working group sent to one 
streaming multiprocessor 
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OpenMP (Open Multi-Processing) - is an API that supports multi-platform shared memory 
multiprocessing programming in C, C++, and Fortran.  

It is an implementation of multithreading, a method of parallelizing whereby a 
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Figure 1: Portability of the Kalman filter track fit library on different many-core CPU/Phi/GPU
architectures.

unit is of the particular importance. Each working group is assigned to one compute unit and
should scale within it with respect to the number of tasks in the group. Figure 1 shows that
the algorithm scales linearly on the graphic cards up to the number of cores in one compute
unit (for Nvidia GTX480 — 32, for AMD Radeon HD 7970 — 16). Then the drop appears,
because when first 32 (for Nvidia) or 16 (for AMD) tasks are processed, only one task is left
and all other cores of the compute unit are idle. Increasing the number of tasks in the group
further the speed reaches the maximum with the number of tasks dividable by the number of
cores in the compute unit. Due to the overhead in tasks distribution the maximum performance
is reached when the number of tasks in the group is two-three times more than the number of
cores.

3 Cellular Automaton (CA) track finder

Every track finder must handle a very specific and complicated combinatorial optimization
process, grouping together one- or two-dimensional measurements into five-dimensional tracks.

In the Cellular Automaton (CA) method first (1) short track segments, so-called cells, are
created. After that the method does not work with the hits any more but instead with the
created track segments. It puts neighbor relations between the segments according to the
track model here and then (2) one estimates for each segment its possible position on a track,
introducing in such a way position counters for all segments. After this process a set of tree
connections of possible track candidates appears. Then one starts with the segments with the
largest position counters (3) and follows the continuous connection tree of neighbors to collect
the track segments into track candidates. In the last step (4) one sorts the track candidates
according to their length and χ2-values and then selects among them the best tracks.

The majority of signal tracks (decay products of D-mesons, charmonium, light vector
mesons) are particles with momentum higher than 1 GeV/c originating from the region very
close to the collision point. Their reconstruction efficiency is, therefore, similar to the efficiency
of high-momentum primary tracks that is equal to 97.1%. The high-momentum secondary
particles, e.g. in decays of K0

s and Λ particles and cascade decays of Ξ and Ω, are created far
from the primary vertex, therefore their reconstruction efficiency is lower – 81.2%. Significant
multiple scattering of low-momentum tracks in the material of the detector system and large
curvature of their trajectories lead to lower reconstruction efficiencies of 90.4% for primary
tracks and of 51.1% for secondary low-momentum tracks. The total efficiency for all tracks is
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88.5% with a large fraction of low-momentum secondary tracks. The levels of clones (double
found tracks) and of ghost (wrong) tracks are 0.2% and 0.7% respectively. The reconstruction
efficiency of the CA track finder is stable with respect to the track multiplicity.

The high track finding efficiency and the track fit quality are crucial, especially for re-
construction of the short-lived particles, which are of the particular interest for the CBM ex-
periment. The reconstruction efficiency of short-lived particles depends quadratically on the
daughter track reconstruction efficiency in case of two-particle decays. The situation becomes
more sensitive for decays with three daughters and for decay chains. The level of a combinato-
rial background for short-lived particles depends strongly on the track fit quality. The correct
estimation of the errors on the track parameters improves distinguishing between the signal and
the background particle candidates, and thus to suppress the background. The ghost (wrong)
tracks usually have large errors on the track parameters and therefore are easily combined with
other tracks into short-lived particle candidates, thus a low level of ghost tracks is also im-
portant to keep the combinatorial background low. As a result, the high track reconstruction
efficiency and the low level of the combinatorial background improve significantly the event
reconstruction and selection by the FLES package.

4 4-Dimensional time-based event building

Since resolving different events is a non-trivial task in the CBM experiment, the standard
reconstruction routine will include an event building, the process of defining exact borders of
events within a time-slice and grouping tracks into even-corresponding clusters, which they
originate from. For this task an efficient time-based tracking is essential. Since the CA track
finder is proved to be fast and stable with respect to the track multiplicity, the next step towards
the time-slice based reconstruction would be the implementation of time measurements.
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Figure 2: Part of a time-slice with 100 minimum
bias events. With blue color the distribution of
hit time measurements in a time-slice is shown.

Figure 3: Part of a time-slice with 100 mini-
mum bias events. With light blue color the initial
distribution of hit measurements is reproduced,
black color shows time measurements of recon-
structed tracks.

In order to introduce a time measurement into the reconstruction procedure to each min-
imum bias event in a 100 events group an event start time was assigned during simulation
phase. The start time was obtained with the Poisson distribution, assuming the interaction
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rate of 107 Hz. A time stamp we assign to a certain hit consists of this event start time plus
the time shift due to the time of flight, which is different for all hits. In order to obtain a time
measurement for a hit we then smear a time stamp according to a Gaussian distribution with
a sigma value of the detector resolution of 5 ns.

After introducing the time measurement we can use the time information in the CA track
finder. We do not allow to build triplets out of hits, which time difference is greater than 3σ of
the detector time resolution. It is a very good approximation, since the time of flight between
the detector planes is negligible in comparison to the detection precision. Apart from that, we
perform the reconstruction procedure in a regular way. After the reconstruction we assign to
each track a time measurement, which is calculated as an average of its hits measurements.

The initial distribution of hits measurements representing the complexity of defining event
borders in a time-slice at interaction rate of 107 Hz is shown in Fig. 2 with blue color. The
resulting distribution of reconstructed track measurements (black color), as well as the distri-
bution of initial hit measurements (light blue color), one can see in Fig. 3. The reconstructed
tracks clearly represent groups, which correspond to events, which they originate from.

5 KF Particle Finder – a package for reconstruction of
short-lived particles

Today the most interesting physics is hidden in the properties of short-lived particles, which are
not registered, but can be reconstructed only from their decay products. A fast and efficient
KF Particle Finder package, based on the Kalman filter (hence KF) method, for reconstruction
and selection of short-lived particles is developed to solve this task. A search of more than
50 decay channels has been currently implemented.

In the package all registered particle trajectories are divided into groups of secondary and
primary tracks for further processing. Primary tracks are those, which are produced directly
in the collision point. Tracks from decays of resonances (strange, multi-strange and charmed
resonances, light vector mesons, charmonium) are also considered as primaries, since they are
produced directly at the point of the primary collision. Secondary tracks are produced by the
short-lived particles, which decay not in the point of the primary collision and can be clearly
separated. These particles include strange particles (K0

s and Λ), multi-strange hyperons (Ξ
and Ω) and charmed particles (D0, D±, D±

s and Λc). The package estimates the particle
parameters, such as decay point, momentum, energy, mass, decay length and lifetime, together
with their errors. The package has a rich functionality, including particle transport, calculation
of a distance to a point or another particle, calculation of a deviation from a point or another
particle, constraints on mass, decay length and production point. All particles produced in the
collision are reconstructed at once, that makes the algorithm local with respect to the data and
therefore extremely fast.

KF Particle Finder shows a high efficiency of particle reconstruction. For example, for
the CBM experiment efficiencies of about 15% for Λ and 5% for Ξ− with AuAu collisions at
35 AGeV are achieved together with high signal-to-background ratios (1.3 and 5.9 respectively).

GPUHEP2014 5

FLES – FIRST LEVEL EVENT SELECTION PACKAGE FOR THE CBM EXPERIMENT

GPUHEP2014 27



6 A standalone FLES package for the CBM experiment

The First Level Event Selection (FLES) package of the CBM experiment is intended to re-
construct on-line the full event topology including tracks of charged particles and short-lived
particles. The FLES package consists of several modules: CA track finder, KF track fitter, KF
Particle Finder and physics selection. In addition, a quality check module is implemented, that
allows to monitor and control the reconstruction process at all stages. The FLES package is
platform and operating system independent.

The FLES package is portable to different many-core CPU architectures. The package is
vectorized using SIMD instructions and parallelized between CPU cores. All algorithms are
optimized with respect to the memory usage and the speed.
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to minimize the effect of the operating system each 
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Fig. 14: Block diagram of the FLES package, which 
consists of several modules: track finder, track fitter, 
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Figure 5: Scalability of the FLES package on
3 200 cores of the FAIR-Russia HPC cluster
(ITEP, Moscow).

Four servers with Intel Xeon X5550, L5640 and E7-4860 processors and with AMD 6164EH
processor have been used for the scalability tests. The AMD server has 4 processors with
12 physical cores each, in total 48 cores. All Intel processors have the hyper-threading tech-
nology, therefore each physical core has two logical cores. The Intel X5550 and L5640 servers
with two CPUs each have in total 16 and 24 logical cores respectively. The most powerful Intel
server has 4 processors E7-4860 with 10 physical cores each, that gives 80 logical cores in total.

The FLES package has been parallelized with ITBB (Intel Threading Building Blocks) imple-
menting the event-level parallelism by executing one thread per one logical core. Reconstruction
of 1000 minimum bias Au-Au UrQMD (Ultrarelativistic Quantum Molecular Dynamics model)
events at 25 AGeV has been processed per each thread. In order to minimize the effect of the
operating system each thread is fixed to a certain core using the pthread functionality pro-
vided by the C++ standard library. Fig. 4 shows a strong scalability for all many-core systems
achieving the reconstruction speed of 1700 events per second on the 80-cores server.

The FLES package in the CBM experiment will be performed for the on-line selection and
the off-line analysis on a dedicated many-core CPU/GPU farm. The farm is currently estimated
to have a compute power equivalent to 60 000 modern CPU cores. Fig. 5 shows the scalability
of the FLES package on a many-core computer farm with 3 200 cores of the FAIR-Russia HPC
cluster (ITEP, Moscow).
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7 Summary

The standalone FLES package has been developed for the CBM experiment. It contains track
finding, track fitting, short-lived particles finding and physics selection. The Cellular Automa-
ton and the Kalman filter algorithms are used for finding and fitting tracks, that allows to
achieve a high track reconstruction efficiency. The event-based CA track finder was adapted
for the time-based reconstruction, which is a requirement in the CBM experiment for the event
building. The 4D CA track finder allows to resolve hits from different events overlapping in
time into event-corresponding clusters of tracks. Reconstruction of about 50 decay channels of
short-lived particles is currently implemented in the KF Particle Finder. The package shows a
high reconstruction efficiency with an optimal signal to background ratio.

The FLES package is portable to different many-core CPU architectures. The package is
vectorized and parallelized. All algorithms are optimized with respect to the memory usage
and the processing speed. The FLES package shows a strong scalability on the many-core CPU
systems and the processing and selection speed of 1700 events per second on a server with
80 Intel cores. On a computer cluster with 3 200 AMD cores it processes up to 2.2 · 105 events
per second.
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Standard parallel computing operations are considered in the context of algorithms for
solving 3D graph problems which have applications, e.g., in vertex finding in HEP. Ex-
ploiting GPUs for tree-accumulation and graph algorithms is challenging: GPUs offer ex-
treme computational power and high memory-access bandwidth, combined with a model
of fine-grained parallelism perhaps not suiting the irregular distribution of linked repre-
sentations of graph data structures. Achieving data-race free computations may demand
serialization through atomic transactions, inevitably producing poor parallel performance.
A Minimum Spanning Tree algorithm for GPUs is presented, its implementation discussed,
and its efficiency evaluated on GPU and multicore architectures.

1 Introduction

We are concerned with the problem of finding parallel algorithms to compute a Minimum
Spanning Tree for a weighted undirected graph. We introduce a parallel algorithm for computing
minimum spanning trees over weighted undirected graphs.

An undirected graph G is a pair (V,E), where V is a finite nonempty set of vertices and
E is a set of unordered pairs of vertices in V , called the set of edges of G. A path in G is a
sequence of edges e0, e1, . . . , en, with ei and ei+1, for i ∈ {0..n− 1}, sharing exactly one vertex.
A cycle is path e0, e1, . . . , en, where e0 and en share one vertex. A graph G is connected
if there is a path between any pair of its vertices. A tree is connected graph containing no
cycles. A spanning tree for a graph G is a tree containing all vertices in G. A spanning
forest for a graph G that is not connected is a set of spanning trees, one for each connected
component of G. A graph G is weighted when a function w assigns weights to each edge of
G. A graph’s weight is the sum of weights of its edges. A Minimum Spanning Tree (MST) of
a graph G is a tree of minimal weight among all spanning trees of G. The concept extends to
that of Minimum Spanning Forest (MSF) of G as a spanning forest of minimum weight.

Throughout this paper we will use n to denote number of vertices in a graph G, and m
to denote its number of edges. An MST in R2 can be computed in O(n lg n) using Delaunay
triangulations. However, the work demanded to compute an MST in Rd is limited from below
by Ω(m) when d > 2, see [1]. Even the representation in memory of the edges of a 220 vertices
graph could be a challenge.
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Minimum spanning trees have applications, for example, in computer networks, water supply
networks, and electrical grids. The computation of MSTs is considered a fundamental challenge
in Combinatorial Optimization [2] and is of interest for the HEP community.

In the next sections, we discuss first sequential algorithms for computing connected and
spanning trees, and the difficulties involved in parallelizing them. Then we present an algorithm
for computing minimum spanning trees on GPU architectures and discuss its performance on
both GPU and multi-core architectures.

2 Sequential Algorithms

Minimum spanning tree computations make use of the following property to choose edges from
the underlying graph to add to its MST. See [3] for a proof of its soundness.

Cut property: The lightest edge connecting any nonempty subset X of V (G) to V (G)−X
belongs to MSF (G).

The Borŭvka algorithm is historically the first and possibly most general MSF algorithm.
It uses the cut property to maintain the following invariant: each tree in the forest is an MST
for the vertices in it, and each vertex in the initial graph belongs to exactly one tree. It starts
with a set of forests, each containing exactly one vertex from the given graph G. Borŭvka’s
is essentially a non-deterministic algorithm in which, at any time, all lightest edges that can
expand any of its trees can be added. It’s important to notice, however, that each edge addition
joins two trees and this must be reflected in the data structures used in its implementation.
Also, its non-deterministic nature appeals to parallel implementations, but introduces possible
data-race conditions.

Most theoretically efficient MST algorithms use Borŭvka functions, as for example [4], and
the deterministic algorithm given by [1] and [5]. These algorithms, however, seem to lack
efficient practical implementations or parallel versions. The most successful implementations
of sequential MST algorithms, the Prim-Dijkstra and Kruskal algorithms evaluated in [6],
can be seen as specializations of the Borŭvka algorithm and they also maintain an invariant,
see [7], where at any moment in the computation the edges already selected by the algorithm
form an MST of the subgraph in question and any new edge added satisfies the cut property.
In particular the Kruskal algorithm [3] is a sequential version of the Borŭvka algorithm where
edges are processed in increasing order of weights.

In the next section, we discuss the challenges found in parallelizing the Borŭvka algorithm
and the fundamental requirements for parallelization of a minimum spanning tree computation.

3 Parallel Algorithms

The nondeterministic nature of Borŭvka’s algorithm clearly invites the introduction of asyn-
chronous parallelism in its implementation. We would have an algorithm that performs a
sequence of parallel steps, where each parallel step joins all possible pairs of trees, using the
lightest edges connecting them. However, care must be taken in that: more than two trees may
be joined in the same parallel step; given two trees t0 and t1 joined in a parallel step, all edges
connecting vertices in t0 to vertices in t1 must be discarded.

Those problems result from the fact that many trees may be expanded simultaneously. The
Prim-Dijkstra algorithm expands exactly one tree and thus avoids complications of performing
simultaneous unions of vertices and edges by being strictly sequential. The Kruskal algorithm

2 GPUHEP2014

TREE CONTRACTION, CONNECTED COMPONENTS, MINIMUM SPANNING TREES: A . . .

GPUHEP2014 31



excludes the possibility of joining more than two trees simultaneously by processing the edges
in increasing order of weight. It still keeps track of more than one tree being expanded at any
time, but each expansion and join is serialized. Its first obvious disadvantage is in processing the
edges in increasing weight order, which demands ordering all edges before the real construction
of the tree starts, which can be very expensive or even prohibitive when processing, for example,
Euclidean graphs where the number of edges can approach n2. A graph with 220 vertices might
demand memory to maintain close to 240 edges, maybe two to four terabytes just to store edge
weights.

The Kruskal algorithm, or any other derived from the Borŭvka algorithm, must still take
care of the joining of trees and the union of sets of respective vertices and edges. In practice
this is performed using efficient implementations of the disjoint-set data structure, see [8]. A
disjoint-set data structure offers fast union of two sets by labeling the elements of two sets
with a common identifier that defines that new common set that they belong to. It offers fast
set membership tests by performing a fast search from the vertex to the label of the structure
representing the set it belongs to. In a sequential implementation this is achieving by making
vertices the leaves of trees where each node points to its parent, with the root of the tree
pointing to itself and being taken as the label of the tree. Set union is trivially performed by
making the root of one tree to point to the root of another tree. However, this is an operation
that must be synchronized. Synchronization may also be needed if the search for a tree’s root
is performed concurrently with a join operation.

Nondeterminism has been forcefully defended by authors like Dijkstra [9] and Lamport [10]
as a powerful tool in the design of computer algorithms and concurrent systems. More re-
cently, Steele [11] has made a strong point for the integration of asynchronous computations
in synchronous parallel algorithms, given that asynchronous programs tend to be more flexible
and efficient when processing conditionals. In addition many authors have pointed out asyn-
chronous and non-deterministic parallelism as the root of success of many programs based on
the MapReduce model [12].

An ideal implementation of Borŭvka’s algorithm would start as many asynchronous threads
as possible, each expanding a different minimum spanning tree. Synchronization, however,
would be needed, for example, if a tree t0 must be joined to a tree t1 while, simultaneously, t1
is being joined to t2 and t2 is being joined with t0. That sort of synchronism is a fundamental
requirement of any parallel implementation of Borŭvka’s algorithm.

The objective of this paper is to present a GPU algorithm. Its design must take into ac-
count that GPU architectures perform at their peak when running in SIMD (Single-Instruction-
Multiple-Data) fashion. Performance is lost when atomic transactions, or conditions that send
threads into different paths, are present.

Correctness in parallel and concurrent computation can only be achieved by ensuring non-
interference between threads. Blelloch et ali [13], see also [14], have argued that being data-race
free is the minimum requirement in order to achieve correctness in the presence of concurrency.
However, being data-race free at the cost of atomic operations may be too costly for SIMD
computing. Internal determinism is the solution they introduce to obtain a fast multi-core
algorithms by transforming the code to ensure that internal steps are always deterministic.
Internal determinism, however, should not be introduced through the introduction of expensive
atomic transactions or nesting of conditional structures and code. Possibly the fundamental
mandate for SIMD (and GPU) architectures must be functional determinism, where the absence
of side effects between threads is a guarantee of non-interference and absence of the need for
atomic constructions as semaphores or even transactional memory. This should be achieved by
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program transformations to perform parallel computation through the composition of efficient
GPU parallel constructions.

In the next section we present a parallelization of the Kruskal algorithm and discuss its
performance on both GPU and multi-core architectures.

4 A Parallelization of the Kruskal Algorithm and its Per-
formance Evaluation

We introduce a parallel version of the Kruskal algorithm. The algorithm is composed of two
phases: parallel sorting of the edges of the given graph, followed by the construction of the
minimum spanning tree. The sorting phase is performed by a standard parallel sorting function
and is not described here. We describe the construction phase by introducing first its objects
and the morphisms that transform them. The objects used by the algorithm follow.

• A set of weighted edges. Represented by a vector of triples (v, v, w), where u and v are
the edge vertices and w is its associated weight, it is ordered by a parallel sorting function
in the first phase of the algorithm.

• An ordered sequence of prioritized edges. Represented by a vector of triples (i, u, v), u
and v being vertices and i the order of the edge (u, v) in the sorted set, it is generated by
a parallel zip of the index i and an edge from the sequence of ordered edges fused with a
parallel map to form triple.

• A set of vertex reservations. Represented by a vector that at any moment assigns a vertex
to an edge, where reserved[u] = i, states the fact that edge i owns the vertex u.

• A set of delayed edges. A vector of booleans indexed by edges, which determines if, in a
given parallel step, the addition of an edge to the tree will be suspended and delayed to
be performed in a future step.

• A disjoint set of trees. Represented by a vector SV of vertices to trees, it assigns to a
vertex v the partial minimum spanning tree it belongs, in the sense that if SV [u] equals
to v then v if the parent of u in disjoint-set structure, and they belong to same tree. We
assume a function root(u) which returns the root of u in SV .

The edges are processed in blocks of p edges. An edge (u, v) is considered for processing and
consequent addition to a tree only if its vertices do not belong to the same tree, i.e., root(u)
and root(v) are different. Each block is processed by the sequence of parallel transformations
described below.

• Parallel reservation. reserve(i, u, v). It is implemented by a parallel loop, where each
parallel step takes a triple (i, u, v) from the sequence of prioritized edges described above
and tries to mark u and v as reserved by i. It is important to notice that a data-race
condition arises when two parallel steps try to acquire the same vertex for different edges.

• Parallel delay. A parallel loop where each step takes a prioritized edge (i, u, v) and the
reserved set and marks the edge i as delayed if neither u nor v is reserved for i.
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• Parallel commit. Another parallel loop where each step commits a prioritized edge by
linking v to u when v is reserved by i, or linking u to v, when u is reserved by i. Linking
u to v consists in assigning v to SV [u].

• Parallel disjoint set compression. Using a pointer jumping technique as described in the
rake and compress algorithm of Shiloach and Vishkin [15] applied to the disjoint set
structure implemented by SV , it compresses the structure to make each leaf to point
directly to its respective root.

Problem 1 HT 4 HT 8 HT GPU
sort 1.34 1.11 0.91 0.078
Uniform 6.31 4.05 4.12 0.74
PLaw 7.90 5.91 6.05 1.24

Table 1: Time (seconds) comparing sorting
floats and MST construction

Table 1 shows times for tests with an imple-
mentation of the algorithm on a machine with an
Intel Xeon E5620 and an Nvidia Tesla C2070.
Ubuntu 14.04 was the operating system and nvcc,
the compiler. Each line shows the time to solve a
problem using 1, 4, 8 threads, and the time on the
GPU. The first line shows the problem of sorting
225 single-precision floating-point numbers from
a uniform distribution. It is important to notice
that the Intel Xeon E5620 has four cores, that can be used to run 2 hyperthreads (HT) each.
The GPU sort produces close to 11.7 times acceleration compared to sorting on eight threads.
In both cases, the tests used the standard sort function provided by the NVidia thrust library.

The second line shows the times to build a minimum spanning tree with 220 uniformly
distributed vertices, and 223 edges on an Euclidean three dimensional space. The GPU gives
around 5.56 times acceleration compared with running on 8 threads. The last line shows tests
for random graphs with 220 nodes and 224 edges with a power law distribution, based on [16].

5 Conclusions and Further Work

The technical literature generally presents the construction of minimum spanning forests as
an outstanding combinatorial optimization problem, that is challenging enough to be used in
several benchmarks as shown in the recent [13]. Even if many theoretical parallel algorithms
can be found, only a few seem to show effective implementations. Badder et ali [17] have studied
parallelizations both based on the Borŭvka algorithm and on the Prim-Dijkstra algorithm. The
paper [17] shows some gain from the range of two to four processors, but the absence of numbers
for one core tests doesn’t allow for a clear evaluation of the acceleration obtained. Chong [18]
presents a multi-core asynchronous parallel algorithm relying on atomic transactions, that would
hardly be realizable on a GPU architecture. The algorithm in [19] seems to be an exception
in targeting a GPU architecture. It is based on the Prim-Dijkstra algorithm and achieves less
than 3 times acceleration when compared with a single core algorithm. Belloch [13] presents
an algorithm for multi-core architectures that introduces the idea of vertex reservation used in
this paper. It seems, however, to depend on atomic transactions to access a disjoint-set data
structure. The algorithm presented in this paper borrows from Blelloch and from Steele’s ideas
on combining asynchronous and synchronous parallelism.

A clear limitation of any algorithm derived from Kruskal is the need to use an explicit
representation of the edges. We have previously presented a parallel algorithm for k-d-tree
construction [20] that could be used to avoid the huge allocation of space when a quadratic
number of edges is present in an Euclidean graph.
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Manycore feasibility studies at the LHCb trigger

D.H. Campora Perez1

1 CERN, Geneve, Switzerland

The LHCb trigger is a real time system with high computation requirements, where in-
coming data from the LHCb detector is analyzed and selected by applying a chain of
algorithms. The infrastructure that sustains the current trigger consists of Intel Xeon
based servers, and is designed for sequential execution. We have extended the current soft-
ware infrastructure to include support for offloaded execution on manycore platforms like
graphics cards or the Intel Xeon/Phi. In this paper, we present the latest developments
of our offloading mechanism, and we also show feasability studies over subdetector specific
problems which may benefit from a manycore approach.
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The LHCb experiment is entering in its upgrading phase, with its detector and read-out
system re-designed to cope with the increased LHC energy after the long shutdown of
2018. In this upgrade, a trigger-less data acquisition is being developed to read-out the
full detector at the bunch-crossing rate of 40 MHz. In particular, the High Level Trigger
(HLT) system has to be heavily revised. Since the small LHCb event size (about 100 kB),
many-core architectures such as General Purpose Graphics Processing Units (GPGPUs)
and multi-core CPUs can be used to process many events in parallel for real-time selection,
and may offer a solution for reducing the cost of the HLT farm. Track reconstruction and
vertex finding are the more time-consuming applications running in HLT and therefore
are the first to be ported on many-core. In this talk we present our implementation of
the existing tracking algorithms on GPGPU, discussing in detail the case of the VErtex
LOcator detector (VELO), and we show the achieved performances. We discuss also other
tracking algorithms that can be used in view of the LHCb upgrade.

1 Introduction

One of the most stringent restrictions upon reconstruction algorithms for the software trigger
is their throughput. Data rates require fast execution times, which eventually limit the type
of algorithms to be used. One may not count anymore on the fast development of processors
to expect a given algorithm to become faster just because the CPU clock frequency increases:
clock frequencies are frozen for more than ten years now. The trend has moved towards having
several cores, ranging from two to, likely, many-cores in the near future. For this reason,
we might expect improvements in execution times coming from a clever use of the multicore
structure and parallelization. Therefore, sensibility advises to build up a program to study
and exploit the possibilities of parallelization of the algorithms involved in the reconstruction
and also in the trigger. Among the candidate architectures to support these algorithms we
find General Purpose Graphics Processing Units (GPGPUs), specialized for compute-intensive,
highly parallel computation. GPGPUs may offer a solution for reducing the cost of the HLT
farm for the LHCb upgrade and R&D studies have started to evaluate the possible role of this
architecture in the new trigger system.

In the following section we discuss our preliminary attempt to port the existing tracking
algorithm of the VErtex LOcator (VELO) detector on GPGPU, and we show the achieved

∗On behalf of the GPU@LHCbTrigger working group
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performances.

1.1 FastVelo

The VELO [1] is a silicon strip detector that provides precise tracking very close to the in-
teraction point. It is used to locate the position of any primary vertex within LHCb, as well
as secondary vertices due to decay of any long lived particles produced in the collisions. The
VELO detector is formed by 21 stations, each consisting of two halves of silicon-strip sensors,
which measure R and φ coordinates. Each half is made of two type of sensors: R sensors with
strips at constant radius covering 45◦ in a so called sector or zone (four zones/sensor), and φ
sensors with nearly radial strips.

“FastVelo” [2] is the algorithm developed for tracking of the current VELO and was written
to run online in the High Level Trigger (HLT) tracking sequence. For this reason, the code
was optimized to be extremely fast and efficient in order to cope with the high rate and hit
occupancy present during the 2011-2012 data collection. FastVelo is highly sequential, with
several conditions and checks introduced throughout the code to speed up execution and reduce
clone and ghost rates.

The algorithm can be divided into two well-defined parts. In the first part (RZ tracking),
all tracks in the RZ plane are found by looking at four neighbouring R-hits along the Z axis
(“quadruplet”). The quadruplets are searched for starting from the last four sensors, where
tracks are most separated. Then the quadruplets are extended towards the lower Z region as
much as possible, allowing for some inefficiency. In the second part of the algorithm (space
tracking), 3D tracks are built by adding the information of the φ hits to the RZ track. A first
processing step is to define the first and last φ sensor to use, then the algorithm starts from
the first station with hits searching for a triplet of nearby φ hits. The triplet is then added
to the RZ track to form a 3D tracklet, so that the track parameters can be estimated. These
3D segments are then extrapolated towards the interaction region by adding hits in the next
stations compatible with the tracklet. The final 3D track is re-fitted using the information of
R and φ hits, while hits with the worst χ2 are removed from the track. Hits already used in
a track are marked as used and not further considered for following iterations (“hit tagging”);
this is done to reduce the number of clones produced by the algorithm, avoiding encountering
the same track several times. The full FastVelo tracking includes additional algorithms for
searching R-hit triplets and unused φ hits; these algorithms ran only at HLT2 during 2012.
However, the GPU implementation of FastVelo reported in this work refers only to the VELO
tracking running on HLT1 during the RUN1.

2 GPU implementation

The strategy used for porting FastVelo to GPU architectures takes advantage of the small
size of the LHCb events (≈ 60kB per event, ≈ 100 kB after the upgrade) implementing two
level of parallelization: “of the algorithm” and “on the events”. With many events running
concurrently, it can be possible, in principle, to gain more in terms of time performances with
respect to the only parallelization of the algorithm. The GPU algorithm was adapted to run
on GPU using the NVIDIA Compute Unified Device Architecture (CUDA) framework [3].

One of the main problems encountered in the parallelization of FastVelo concerns hit tagging,
which explicitly spoils data independence between different concurrent tasks (or “threads”
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in CUDA language). In this respect, any implementation of a parallel version of a tracking
algorithm relying on hit tagging implies a departure from the sequential code, so that the
removal of tagging on used hits is almost unavoidable. The main drawback of this choice
is that the number of combinations of hits to be processed diverges and additional “clone
killing” algorithms (intrinsically sequential and not easy to parallelize) have to be introduced
to mitigate the increase of ghost and clone rates. Another issue encountered in the development
of the parallel version of FastVelo is due to the R-φ geometry of the current VELO that impose
a splitting of the tracking algorithm in two sequential steps (RZ tracking plus 3D tracking).

The approach described in this note follows closely the sequential algorithm; therefore, also
the tracking algorithm implemented on GPU is based on a local search (“local” method): first
seeds are formed by looking only to a restricted set of sensors (quadruplets), then the remaining
hits on the other sensors are added to build the full tracks.
The outline of the implementation chosen to parallelize FastVelo can be summarized as follows:

• The algorithm searches for long tracks first, using only the last five sensors downstream
the VELO (upstream for backward tracks). Four threads (one for each sensor zone) find all
possible quadruplets in these sensors. Then, each quadruplet is extended independently
as much as possible by adding R-hits of other sensors. The R-hits of each RZ track are
marked as used; potential race-conditions are not an issue in this case, because the aim
is to flag an hit as used for the next algorithms.

• Then the remaining sensors are processed: each thread works on a set of five contiguous
R-sensors and find all quadruplets on a zone of these sensors. A check is done on the hits
in order to avoid hits already used for the long tracks. In a sense, the algorithm gives
more priority to the long tracks with respect to the short ones.

At this stage the number of quadruplets belonging to the same tracks is huge and a first
“clone killer” algorithm is needed to protect against finding the same track several times.
All pairs of quadruplets are checked in parallel: each thread of the clone killer algorithm
takes a quadruplet and computes the number of hits in common with the others; if two
quadruplets have more than two hits in common, the one with worst χ2 is discarded (here,
the χ2 is defined as the sum of residual of the position of the R-hits of the RZ track with
respect to the predicted position given by fitted track).

• Next, each quadruplet is extended independently as much as possible by adding R-hits
of other sensors on both directions. After this step, all possible RZ tracks are built.
The number of clones generated by the algorithm is still huge, and another clone killer
algorithm similar to the one implemented in the previous step is used to reduce the fraction
of clone tracks to a tolerable value.

It should be noted that this procedure of cleaning clones follows the same lines of the one
implemented in the original FastVelo algorithm, the only difference being that in FastVelo
the clone killer algorithm is applied only to the full 3D tracks (almost at the end of the
tracking), while in the parallel implementation, without hit tagging, we are forced to
introduce it well before in the tracking sequence in order to reduce the number of tracks
in input to the next steps.

• Next step is to perform full 3D tracking by adding φ hits information. Each RZ track is
processed concurrently by assigning a space-tracking algorithm to each thread.
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This part is almost a re-writing in CUDA language of the original space-tracking algo-
rithm, with the notable exception of the removal of tag on the used φ hits. When all 3D
tracks have been found, a final cleanup is done on the tracks to kill the remaining clones
and ghosts; the clone killer algorithm is the same of the one used in the previous steps,
with the exception that now the χ2 is based on the information of both R and φ hits of
the track.

3 Preliminary results

In this section the timing performances and tracking efficiencies obtained with FastVelo on
GPU will be compared to the sequential algorithm running on 1 CPU core. Other studies will
be presented using a multi-core CPU. These preliminary results refer only to the tracking time
without including data transfer time from CPU to GPU, and vice-versa. The reason for this
choice was dictated in part by the approach of exploiting the parallelization over the events,
where each thread is assigned to an event. This strategy cannot be easily implemented using the
standard software framework, originally developed to process sequentially one event at time. A
simple offloading mechanism has been developed which is able to load data on GPU memory
decoding the information of the VELO hits from raw data. After the tracking on GPU, the
tracks are sent back to the original sequential framework.

The measurements of the tracking time for GPU have been taken using the standard CUDA
timer (“CUDA event”), while the timing for CPU has been taken from the detailed FastVelo
profile given by the LHCb reconstruction program. Tracking efficiencies for both GPU and
CPU have been obtained from the standard tools provided by Brunel. The GPU model used
for these tests is an NVidia GTX Titan (14 Streaming multiprocessors, each equipped with
192 single-precision CUDA cores), while the CPU is an Intel(R) Core(TM) i7-3770 3.40 GHz.
A MonteCarlo (MC) sample of Bs → φφ events generated with 2012 conditions (with pile-
up of ν = 2.51) has been used to evaluate the tracking and timing performances. Timing
performances have been compared also with real data using a NoBias sample collected during
2012 (µ = 1.6). In the Bs → φφ MC sample, the average number of hits per sensor is ≈ 17,
while the average number of reconstructed VELO tracks per event is ≈ 80.

The comparison of tracking efficiencies between the GPU implementation and the original
FastVelo algorithm for different categories of tracks is shown in Tab. 1 2. The efficiencies
obtained by FastVelo on GPU are quite in agreement with the sequential FastVelo; in particular,
clones and ghosts are at the same level of the original code. Fig. 1 shows the tracking efficiency
as a function of the true track momentum Ptrue as obtained by the two algorithms; the overall
agreement is good, showing that the GPU implementation does not introduce any distortion
on the resolution of the track parameters.

The speed-up obtained by the GPU algorithm with respect to FastVelo running on a single
CPU core as a function of the number of processed events is shown in Figs. 2. The maximum
speed-up obtained by the GPU algorithm with respect to the sequential FastVelo is ≈ 3× for
the 2012 datasets. The speedup as a function of the number of events can be explained by
the fact that the GPU computing resources are more efficiently used as the number of events

1ν is the number of total elastic and inelastic proton-proton interactions per bunch crossing, while µ represents
the number of visible interactions per bunch-crossing. LHCb labels simulated event samples according to ν.

2Only the VELO tracking running on HLT1 has been implemented on GPU, so that the quoted efficiencies
and timings refer to FastVelo in the HLT1 configuration.
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Track category FastVelo on GPU FastVelo
Efficiency Clones Efficiency Clones

VELO, all long 86.6% 0.2% 88.8% 0.5%
VELO, long, p > 5 GeV 89.5% 0.1% 91.5% 0.4%

VELO, all long B daughters 87.2% 0.1% 89.4% 0.7%
VELO, long B daughters, p > 5 GeV 89.3% 0.1% 91.8% 0.6%

VELO, ghosts 7.8% 7.3%

Table 1: Tracking efficiencies obtained with FastVelo on GPU, compared with the results
obtained by original FastVelo code (only the VELO tracking running on HLT1). The efficiencies
are computed using 1000 Bs → φφ MC events, generated with 2012 conditions.

increases (there are more threads running at the same time).
The comparison of the timing performance has been done using also a multi-core CPU

(Intel Xeon E5-2600, 12 cores with hyper-threading and 32 GB of memory). A instance (job)
of FastVelo was sent to each core at the same time, with each job processing the same number
of events (for this study the number of events/job was set to 1000): the throughput of a single
core goes down the more instances are running in parallel (this is due to memory IO pressure,
the CPU scaling down its frequency when a lot of cores are running to stay within its power
budget). In the case of Bs → φφ MC events, the rate of processed events on the multi-core
CPU, using all the 24 logical cores, is ≈ 5000 events/sec, while on GPU the rate decrease down
to ≈ 2600 events/sec. However, the number of processed events per second is not a real measure
for performances, because it has no meaning when comparing different computing platforms or
even computing architectures. A better estimator for these performance studies is the rate of
events normalized to the cost of the hardware (events/sec/cost): the GPU gaming-card cost
a small fraction of the server used in the HLT farm, so also a moderate speed-up (e.g. 2×)
compared to a Xeon CPU can bring a real saving to the experiment (provided the GPU is
reasonably well used).

Next steps of this work will include a development of the full FastVelo tracking on GPU (the
part running on HLT2) and the remaining tracking algorithms, such as the Forward tracking
[4]. In addition, we plan to test FastVelo on GPU in parasitic mode during the RUNII in
2015 in order to assess the impact and the feasibility of the many-core solution on the HLT
infrastructure.
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Figure 1: Tracking performance comparisons between the sequential FastVelo and FastVelo on
GPU. Tracking efficiency as a function of the true track momentum Ptrue.

Figure 2: Tracking execution time and speedup versus number of events using a 2012 MC
sample of Bs → φφ decays (ν = 2.5). The GPU is compared to a single CPU core (Intel(R)
Core(TM) i7-3770 3.40 GHz).
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A GPU-based track reconstruction in the core of

high pT jets in CMS

F. Pantaleo1
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The Large Hadron Collider is presently undergoing work to increase the centre-of-mass
energy to 13 TeV and to reach much higher beam luminosity. It is scheduled to return
to operation in early 2015. With the increasing amount of data delivered by the LHC,
the experiments are facing enormous challenges to adapt their computing resources, also
in terms of CPU usage. This trend will continue with the planned future upgrade to
the High-Luminosity LHC. Of particular interest is the full reconstruction of the decay
products of 3rd generation-quarks in high pT jets that have a crucial role in searches
of new physics at the energy frontier. At high pT, tracks from B-decays become more
collimated, hence reducing the track-finding efficiency of generic tracking algorithms in the
core of the jet. The problem of reconstructing high pT tracks in the core of the jet, once
a narrow eta-phi region around the jet is defined, was found to be especially beneficial for
the application of GPU programming techniques due to the combinatorial complexity of
the algorithm. Our approach to the problem will be described, and particular focus will be
given to the partitioning of the problem to map the GPU architecture and improve load
balancing. To conclude, measurements are described, which show the execution speedups
achieved via multi-threaded and CUDA code in the context of the object-oriented C++
software framework (CMSSW) used to process data acquired by the CMS detector at the
LHC.

Contribution not received.

GPUHEP201444 GPUHEP2014



GPUHEP2014

A GPU-BASED TRACK RECONSTRUCTION IN THE CORE OF HIGH pT JETS IN CMS

GPUHEP2014 45



An evaluation of the potential of GPUs to accel-

erate tracking algorithms for the ATLAS trigger.

J. Howard1

1 University of Oxford, UK

The potential of GPUs has been evaluated as a possible way to accelerate trigger algorithms
for the ATLAS experiment located at the Large Hadron Collider (LHC). During LHC Run-
1 ATLAS employed a three-level trigger system to progressively reduce the LHC collision
rate of 20 MHz to a storage rate of about 600 Hz for offline processing. Reconstruction
of charged particles trajectories through the Inner Detector (ID) was performed at the
second (L2) and third (EF) trigger levels. The ID contains pixel, silicon strip (SCT) and
straw-tube technologies. Prior to tracking, data-preparation algorithms processed the ID
raw data producing measurements of the track position at each detector layer. The data-
preparation and tracking consumed almost three-quarters of the total L2 CPU resources
during 2012 data-taking. Detailed performance studies of a CUDATM implementation of
the L2 pixel and SCT data-preparation and tracking algorithms running on a Nvidia Tesla
C2050 GPU have shown a speed-up by a factor of 12 for the tracking code and by up to a
factor of 26 for the data preparation code compared to the equivalent C++ code running
on a CPU. A client-server technology has been used to interface the CUDATM code to
the CPU-based software, allowing a sharing of the GPU resource between several CPU
tasks. A re-implementation of the pixel data-preparation code in openCL has also been
performed, offering the advantage of portability between various GPU and multi-core CPU
architectures.
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Modern HEP experiments produce tremendous amounts of data. This data is processed
by in-house built software frameworks which have lifetimes longer than the detector it-
self. Such frameworks were traditionally based on serial code and relied on advances in
CPU technologies, mainly clock frequency, to cope with increasing data volumes. With
the advent of many-core architectures and GPGPUs this paradigm has to shift to parallel
processing and has to include the use of co-processors. However, since the design of most
of the existing frameworks is based on the assumption of frequency scaling and predate
co-processors, parallelisation and integration of co-processors are not an easy task. The
ATLAS experiment is an example of such a big experiment with a big software frame-
work called Athena. In this proceedings we will present studies on parallelisation and
co-processor (GPGPU) use in data preparation and tracking for trigger and offline recon-
struction as well as their integration into the multiple process based Athena framework
using the Accelerator Process Extension APE.

1 Introduction

Figure 1: Peak interactions per bunch-crossing
per time. LHC exceeded design value in 2012. [1]

The Large Hadron Collider (LHC) is a
27km long circular particle accelerator near
Geneva, situated about 100m below the
Swiss and French border [2]. It is designed
to collide proton bunches with a center-of-
mass energy of 14TeV every 25ns. It is
equipped with 4 detectors namely ALICE
and LHCb, two relatively small special pur-
pose detectors, and CMS and ATLAS two
larger general purpose detectors. The AT-
LAS detector is the biggest of them and
composed of concentric cylindrical detec-
tors with end-caps [3]. The inner Detec-

GPUHEP2014 148 GPUHEP2014



tor(ID) is the closest to the beam and it is composed of Pixel, SCT and TRT trackers. Calorime-
ters are located around the ID. Calorimeters have electromagnetic and hadronic components
comprised of Liquid Argon and Tile calorimeters. Muon detectors form the outermost shells
of the detector. Toroidal and solenoid magnets provide the magnetic field for momentum and
charge determination.

During the Run-1 period, LHC operated below its design energy, at 7TeV and 8TeV with
a bunch spacing of 50ns. However the single bunch luminosity was increased which led to a
higher number of collisions at each bunch crossing(pile-up) than design expectations as shown
in Figure 1. Towards the end of Run-1, average pile-up at ATLAS exceeded 40 interactions per
crossing, creating more than 1200 tracks. Since the end of 2012, LHC is being upgraded and will
operate at full design energy and bunch crossing period in the Run-2 phase, starting in 2015.
Pile-up is expected to increase up to 80 interactions per bunch crossing leading to many more
tracks. Predictions for Run-3 with a peak luminosity of 1035cm−2s−1 and a pile-up of up to 140
interactions per bunch crossing are even higher. Since track finding is a combinatorial problem,
total processing time will also increase exponentially. The estimated pile-up dependency of
average reconstruction time is given in Figure 2.

Figure 2: Average event reconstruction time
versus pile-up at different bunch crossing
rates. [4]

Up until a few years ago, the com-
puting capacity of CPUs increased mostly
due to increases in clock frequency. This
increase usually compensated the increase
in data rates with no changes in the
code. However due to physical con-
straints, clock frequency of the CPUs has
plateaued and the increase in comput-
ing capacity is provided by adding more
cores and vector units to processors or
in the form of co-processors. Unlike
CPUs, co-processors tend to work effec-
tively on certain types of highly paral-
lel problems. However, they have a
higher computing capacity per watt at
a lower cost than CPUs. These prop-
erties make them attractive solutions for
highly parallelizable workloads such as track-
ing.

2 ATLAS Software Framework

The ATLAS software framework, Athena, is composed of more than 4 million lines of C++ and
about 1 million lines of python code written by hundreds of developers [5, 6]. The code is spread
over more than 4000 shared libraries in about 2000 packages. Its design and implementation
predates multi-core CPUs and thus was designed to run serially in a single process. Multi-core
CPUs are exploited by running multiple independent processes at the expense of increased
memory usage. Because of the design and complexity of the existing code, porting it to co-
processors is not feasible if not impossible. However it is still possible to utilize co-processors
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such as GPUs for some self contained parts of the software, yet it is still a challenge due to the
multi-process nature of the framework.

2.1 Accelerator Process Extension (APE)

The Accelerator Process Extension (APE) is a framework designed for managing and sharing
co-processors between different processes. It is based on a Server-Client model and its working
diagram is given in Figure 3. Algorithms that are running in Athena have to prepare and
serialize the input data and issue a processing request to the Offload Service. The Offload Service
manages the communication between the APE Server and algorithms. Processing requests are
forwarded to the APE Server via Yampl, an inter-process communication (IPC) abstraction
layer. It abstracts various IPC technologies, such as shared memory, pipes and ZeroMQ [7]
based layer for network communication. This enables running the APE server on a local host
or a dedicated server host. The APE server does bookkeeping of requests and relays them to
appropriate module which is a dynamically loaded plug-in that manages resources and contain
algorithm implementations for a given hardware like GPUs or Intel MICs. They execute the
requested operations on input data and return the results to the APE server. The APE server
passes the results back to the Offload Service which in turn returns the results to algorithms
that made the request.

Figure 3: APE flow chart. Processing requests from algorithms together with data are sent to
the server. Data are processed in appropriate module and results are sent back.

The APE framework also simplifies the development cycle and enables use of different lan-
guages and compilers which would not be possible inside the Athena framework. Since the client
is hidden from algorithms and only input data is important, it is possible to use a standalone
application to send a request with some predefined data sets without running the full recon-
struction framework. IPC time between server and client is small compared to time budgets
of the offloaded algorithms. In spite of that, it introduces a serial section and thus reduces the
scaling as per Amdahl’s Law. On the other hand, having multiple requests from different pro-
cesses increases the throughput and utilization of GPU as per Gustafson’s Law thus reducing
the effect of the overhead.
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3 GPU studies in ATLAS

There are several ongoing studies in ATLAS to use GPU resources. The Tracking for Muon
and ID in Trigger and Reference Kalman-Filter for offline reconstruction are briefly described
below.

3.1 GPUs for track finding in ATLAS Triggers

Figure 4: Bytestream decoding and clus-
tering show a 26x speed-up on NVIDIA
C2050 GPU vs single-threaded Intel E5620
CPU. [8]

The ATLAS Trigger systems filter out more than
99.9% (in particular about 100 over 1 billion events
are retained) of the events and select only interest-
ing events. In order to decide whether an event is
interesting or not, an incremental reconstruction
is performed and a decision is produced in a few
seconds. Data preparation and track reconstruc-
tion typically consume 50%-70% of the processing
time budget. These processes contain some par-
allelization possibilities and they are implemented
as GPU algorithms composed of various steps.

Data preparation starts with decoding of de-
tector output, the Bytestream. In this step, the
compactly-encoded pixel and SCT hit information
from the detector’s readout buffers are retrieved,
and decoded into hits within individual pixel and
SCT modules. The Bytestream itself is divided
into 16/32-bit words. While the CPU implementation of decoding iterates over the words
sequentially, the GPU implementation maps each word to a GPU thread and does context
detection and value decoding in GPU threads.

Figure 5: Track formation and clone re-
moval show a 12x speed-up on NVIDIA
C2050 GPU vs single-threaded Intel E5620
CPU. [8]

After the Bytestream is decoded, clusterization
of neighboring hits in each module is done in order
to take the activation of multiple adjacent detector
cells by a single traversing particle. In the CPU,
the pixel clustering is done in two nested loops
and the SCT clustering is done in a single loop.
In the GPU, a special cellular automaton-based
algorithm is used to parallelize the comparisons
done between hits. This approach allows paral-
lelization in a module as well as across modules
by assigning modules to different thread blocks.
These clusters then converted to Space Points by
using their locations in space and calculating their
centers. A comparison of timings for CPU and
GPU based data preparation implementations for
different Bytestream sizes is given in Figure 4.

After data preparation is completed, track for-
mation starts. The first step in track formation
is the creation of track candidates. In this step,
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space points in different layers are paired to create seeds. These seeds are then extended into
outer silicon layers by looking for tertiary hits. This is a combinatoric algorithm which does
not scale well with hit multiplicity. The CPU version is implemented as a series of nested loops
while the GPU version essentially takes the Cartesian product of different detector layers by
using a 2-dimensional block of GPU threads.

Once track candidates are formed, clone removal is done. During the clone removal step,
track candidates which are formed by the same outer layer hits but different inner layer seeds
are merged and copies are removed. Due to nature of the task, the GPU implementation splits
the task in to identification and merging/removal while on the CPU it is done in a single step.
Timing results of the track formation steps are shown in Figure 5.

Figure 6: Muon regions of in-
terest. Data around expected
muon track at different detec-
tors is taken into account.

Another place in the Trigger where GPUs are being stud-
ied is the Muon triggers. The ATLAS Muon trigger tries to
select online events with relevant physics properties, based on
the presence of a muon in the event. A muon is expected to
leave hits in the inner tracking systems of ATLAS, as well as in
the outer Muon Spectrometers while traversing the detector.
On the other hand it is expected to leave a very small amount
of energy in the calorimeter. To achieve best-possible muon
reconstruction, all these have to be taken in account within
allowed time budget. Initial implementation is aimed to cal-
culate energy deposition in calorimeter cells around expected
muon trajectory, which involves looping over several hundreds
of calorimeter cells. However, flattening data structures for
GPU utilization was found to be a limiting factor.

3.2 GPU Based Reference Kalman-Filter for Offline Reconstruction

Figure 7: relative speedup of OpenMP, CUDA and
OpenCL implementations compared to serial C++
code

To allow a fair performance compari-
son between different systems, a refer-
ence Kalman- Filter[9] was implemented
in four independent versions. A se-
rial C++ version of the Kalman-Filter
is used to generate a base performance
index for further comparison. Then
we implemented three different paral-
lelized Kalman-Filter algorithms using
OpenMP, OpenCL[10] and CUDA[11].
Each of these uses the same flat data
structures and produces the same re-
sults. To measure the performance of
each implementation a set of test data
is used which consists of 96 events containing 19500 tracks and a total of 220000 hits. The test
system uses an Intel XEON E5-1620 processor with 8 GB RAM and a nVidia GeForce GTX
Titan 6 GB graphics card.
To achieve the results shown in Figure 7, we improved the code base of both the OpenCL
and CUDA implementation so that the whole Kalman-Filter chain is processed on the GPU.
This includes forward and backward filtering and the smoothing step. All tracks per event are
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processed in parallel using 5x5 GPU threads (corresponding to co-variance matrix entries). For
an even higher performance, we use GPU-side matrix inversion which is done completely in
Shared Memory of the GPU. With the used hardware we were able to invert up to 224 matrices
in parallel on the GPU.
To simulate a higher load we ran the implementation in a benchmark fashion by calculating
the same dataset several times in a loop (up to 500 times) as shown in Figure 7. The GPU im-
plementations (CUDA and OpenCL) then achieved a relative speedup of about 15x compared
to the serial C++ implementation.

4 Conclusion

ATLAS is continuously producing a tremendous amount of data that has to be processed.
The possibility of compensating this rising amount of data just by the increase of CPU clock
frequency will be no longer an option due to physical constraints. CPU clock frequencies are
nearly at their maximum and therefore simply more cores and vector units are added so that one
now has to make use of parallel programming. Co-processors such as GPUs have a relatively
higher computing power per watt at a lower cost compared to CPUs, such that the use of
co-processors looks like a promising solution.

We introduced the APE framework, an approach for integrating co-processors into the ex-
isting ATLAS software framework Athena. This study allows us to use GPUs within Athena
with as little changes in the existing code as possible. We therefore have a working solution for
short- to medium-term software framework integration.

We also have first implementations for online computing tasks in the ATLAS Trigger as
well as a Kalman-Filter approach for offline computing. We are still evaluating other possible
parallelizable problems from which we could gain reasonable speedups in computation time.
Especially because of its combinatorial nature, track reconstruction seems to be promising.

We already achieved several encouraging results. Performing the data preparation steps of
the ATLAS trigger on a GPU reached a relative speedup of up to 26x compared to a serial
version run on a CPU. Parallelizing a Reference Kalman-Filter implementation achieved a
speedup of 16x also compared to a single threaded CPU version.

References

[1] ATLAS Collaboration. Atlas experiment luminosity public results. https://twiki.cern.ch/twiki/bin/

view/AtlasPublic/LuminosityPublicResults.

[2] Lyndon Evans and Philip Bryant. LHC Machine. JINST, 3:S08001, 2008.

[3] The Atlas Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:S08003,
2008.

[4] M Elsing. Online and Offline Tracking for High Pileup. (ATL-SOFT-SLIDE-2014-513), Aug 2014.

[5] Marco Clemencic, Hubert Degaudenzi, Pere Mato, Sebastian Binet, Wim Lavrijsen, et al. Recent develop-
ments in the LHCb software framework Gaudi. J.Phys.Conf.Ser., 219:042006, 2010.

[6] S Binet, P Calafiura, M K Jha, W Lavrijsen, C Leggett, D Lesny, H Severini, D Smith, S Snyder,
M Tatarkhanov, V Tsulaia, P VanGemmeren, and A Washbrook. Multicore in production: advantages
and limits of the multiprocess approach in the atlas experiment. Journal of Physics: Conference Series,
368(1):012018, 2012.

[7] iMatix Corporation. ZeroMQ web page. http://zeromq.org/.

6 GPUHEP2014

USE OF HARDWARE ACCELERATORS FOR ATLAS COMPUTING

GPUHEP2014 53



[8] JTM Baines, TM Bristow, D Emeliyanov, JR Howard, S Kama, AJ Washbrook, and BM Wynne. An
evaluation of the potential of GPUs to accelerate tracking algorithms for the ATLAS trigger. Technical
Report ATL-COM-DAQ-2014-094, CERN, Geneva, Sep 2014.

[9] R. Fruehwirth, M. Regler, R.K. Bock, H. Grote, and D. Notz. Data Analysis Techniques for High-Energy
Physics, chapter 3.2.5, pages 244 – 252. Cambridge Univerity Press, 2nd edition, 2000.

[10] Maik Dankel. Implementierung eines GPU-beschleunigten Kalman-Filters mittels OpenCL. Master’s thesis,
Fachhochschule Muenster, 2013.

[11] Rene Böing. Implementation eines CUDA basierten Kalman-Filters zur Spurrekonstruktion des ATLAS-
Detektors am LHC. Master’s thesis, Fachhochschule Muenster, 2013.

GPUHEP2014 7

MATTEO BAUCE , RENE BOEING , MAIK DANKEL , JACOB HOWARD , SAMI KAMA

54 GPUHEP2014



Chapter 2

GPU in Low-Level Trigger

Convenors:

Massimiliano Fiorini
Silvia Arezzini

GPUHEP2014 55





GPU-based Online Tracking for the PANDA Ex-

periment

Andreas Herten1 on behalf of the PANDA collaboration
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The PANDA experiment is a new hadron physics experiment currently being built at
FAIR, Darmstadt (Germany). PANDA will study fixed-target collisions of antiprotons of
1.5 GeV/c to 15 GeV/c momentum with protons and nuclei at a rate of 20 million events
per second. To distinguish between background and signal events, PANDA will utilize a
novel data acquisition technique. The experiment uses a sophisticated software-based event
filtering scheme involving the reconstruction of the whole incoming data stream in real-
time to trigger its data taking. Algorithms for online track reconstruction are essential
for this task. We investigate algorithms running on GPUs to solve PANDA’s real-time
computing challenges.

1 The PANDA experiment

PANDA, short for Antiproton Annihilation at Darmstadt, is a new hadron physics experiment
currently being built for FAIR, the Facility for Antiproton and Ion Research in Darmstadt,
Germany. PANDA will deliver unprecedented insight into current topics of hadron physics. The
experimental program includes meson spectroscopy in the charm energy region (charmonium;
open charm), baryon production, nucleon structure, charm in nuclei, and searches for exotic
states.

PANDA is an internal experiment at the High Energy Storage Ring (HESR) of FAIR. An-
tiprotons of 1.5 GeV/c to 15 GeV/c momentum collide with protons inside of PANDA in a
fixed-target fashion. The resulting physical events are detected by PANDA’s target spectrome-
ter, located around the interaction region, and the forward spectrometer, dedicated to precision
measurements of the forward-boosted event structure. [1]

Tracking detectors The innermost sub-detector of PANDA is the Micro Vertex Detector
(MVD), a silicon-based detector directly around the interaction point. 10 million pixel and
200 000 strip channels enable vertex reconstruction with a resolution of < 100µm. The Straw
Tube Tracker (STT), PANDA’s central tracking detector, surrounds the MVD. The detector
consists of 4636 small drift tubes of 1 cm diameter, aligned into 26 layers (18 parallel to the
beam axis, 8 tilted by ±1.5◦ with respect to the beam axis). Both the STT and MVD are
located within the field of PANDA’s 2 T solenoid. A third tracking detector covers forward
angles around the beam line with gas electron multiplying (GEM) foils. Three GEM stations
with two tracking planes each will be installed.
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Figure 1: PANDA’s online trigger-
ing system.

Online trigger In the investigated energy region,
background and signal events have similar signatures
and can not be distinguished easily. A conventional
hardware-based triggering mechanism would not be effi-
cient for PANDA. Instead, the experiment will use a so-
phisticated software-based online event trigger for event
selection in realtime [1]. This process needs to reduce the
raw data rate of 200 GB/s (≈ 2 × 107 event/second) by
three orders of magnitude to match the imposed limits
by the storage facility (∼ 3 PB/year) for further in-depth
offline analysis.

The online trigger of PANDA is structured as in Fig-
ure 1. In particular, online track reconstruction is a chal-
lenging part in terms of performance and efficiency, as a large number of computations are
performed on a combinatorial complex datastream.

In this work, different tracking algorithms are investigated for their suitability to match
the performance needed for PANDA’s online reconstruction. The algorithms are implemented
on GPUs, exploiting the low-cost, high-performance computing infrastructure offered by these
devices. In addition to GPU-based tracking, event reconstruction using FPGAs is also investi-
gated for PANDA [2], but not part of this report.

2 Online tracking algorithms

We are currently investigating three different algorithms for GPU-based track reconstruction.
They are presented in the following.

2.1 Hough Transform

Hough Transforming is a method used in image processing to detect edges in images. It was first
used for digitalization of images from bubble chamber experiments at CERN in the 1960s [3].
Adapting it for track finding and fitting means, to stay in computer vision terminology, to find
edges (tracks) in images with a small number of pixels (hit points).

Method The method centers around transforming a point into a set of values in a parameter
space (Hough space) and then extracting the most frequently generated parameters.

For every hit point (xi, yi), the equation

rij = xi cosαj + yi sinαj (1)

is solved for a number of αj ∈ [0◦, 180◦). rij is an equation of a line going through (xi, yi)
avoiding possible poles. Every parameter pair (rij , αj) is filled into a histogram. As more and
more hit points of the same track are evaluated, a bin with the highest multiplicity emerges.
This is the parameter pair equivalent to the line best connecting all hit points – the desired
track parameter. See Figure 2.
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Figure 2: Schematic visualizations of Hough Transforms with coarse step sizes α for illustration.
Left : Different lines going through a hit point (center) are sampled in 10◦ steps with Equation 1.
Right : Hough space for a set of STT hit points, the α granularity is 2◦.

Conformal map pre-step Since PANDA’s central tracking detectors are enclosed in
a solenoid magnet, the trajectories of particles are bent. A conformal mapping as a Hough
Transform pre-step is used to convert curved tracks with hit points (xi, yi) into straight lines
with hit points (x′i, y

′
i):

(
x′i
y′i

)
=

1

x2i + y2i

(
xi
yi

)
. (2)

While conformal mapping involves only two computations per hit point, the actual Hough
Transform calculates a large set of transformed points per hit – all independent from each other
and hence very suitable to compute on a GPU. For example, an average event with 80 STT
hits, evaluated every 0.2 ◦, leads to 72 000 computations, all independent from each other. The
α granularity is here the main source for parallelism and subject to tuning. Its value is limited
by detector measurement uncertainties on the one side and by available computing resources
on the other.

Implementations Currently, two implementations are available for the Hough Transform.
The first uses Thrust [6], the template library for CUDA, offering a big set of standard com-
puting functions. No explicit CUDA kernel has been written for this implementation, only
specialized operators were used. The benefit of this method is the ability to make use of the
pre-programed sophisticated algorithms, optimized for high GPU performance. The drawback
is an overhead of converting the data into Thrust-compatible data types, and the inflexibil-
ity when customizing the algorithms. With 3 ms/event, this implementation is also not at its
performance maximum.

The second implementation is a plain CUDA implementation, built completely for this
task. Its performance is six times better (0.5 ms/event) than the Thrust version. It is fitted
for PANDA’s exact task and is completely customizable, since it uses plain kernels throughout.
Since this version is both faster and more flexible, we consider the plain CUDA implementation
the better approach for Hough Transforms at PANDA.

The Hough Transform implementations give the expected results and fill the Hough space
reliably with the data of possible tracks. (Figure 3, left). A further challenge, though, is peak
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Figure 3: Left : Hough Transform of 68 hit points (STT, MVD). α is evaluated every 0.1◦.
Thrust is used for computation, ROOT [4] for displaying, and CUSP [5] for providing fast,
templated methods to interface between both using the GPU. Right : Sketch of Triplet genera-
tion of the Triplet Finder.

finding in the Hough space: Large sets of hits create overlapping bands of parameter values in
the Hough space. A complicated picture emerges to find peaks in – a simple threshold cut is
not feasible. This part is currently under study.

2.2 Riemann Track Finder

The Riemann Track Finder is a track reconstruction algorithm already in use in PandaRoot,
PANDA’s software framework, since several years [7]. The basic principle of the method is
a projection of two-dimensional hit points onto a Riemann surface (paraboloid) in a three
dimensional space. There, a plane going through the mapped hit points can easily be fitted.
The parameters of the plane are re-mapped into the two-dimensional and, with this, converted
into track parameters. The method is based on [8].

GPU optimization As three points can always parameterize a circle, this is the minimum
number of hits required for the Riemann Track Finder. A set of three hits (seed) is grown
to a proper track candidate by subsequently testing additional hits against it and checking
for passing certain quality cuts. The algorithm works on MVD hits. The seeding three-hit
combinations are generated in the CPU version by three cascaded for loops, each one for a
different layer of the MVD, implicitly assuming a track can not have two hits in the same layer.
For running seed generation in parallel on the GPU, the serial loops are flattened out. Using
explicit indexes, a 1 : 1 relation between global kernel variables involving CUDA’s threadIdx.x
and a layer hit combination is formulated.

As this produces a considerable amount of track seeds, the rest of the core Riemann Track
Finder code is directly ported to the GPU. No further optimization has initially been done –
the parallelism based on seeds suffices for a 100× performance increase when compared to the
CPU version. Tracks of an event are found, on average, in 0.6 ms using a NVIDIA Tesla K20X
GPU. The overhead needed for copying data to and from the device comprises 7 % of this time,
making the Riemann Track Finder a computing-intensive algorithm and a good candidate for
running on GPUs.
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Figure 4: Performance for different optimization aspects of the Triplet Finder. Shown: Time
needed to process a given number of hits, in million hits processed per seconds. Left : Com-
parison of Triplet Finder performance with and without bunching wrapper (optimal bunch size
(1000 ns), dynamic parallelism approach). Right : Comparison of performance of different kernel
launch strategies, invoked with respective ideal bunch sizes in bunching wrapper.

2.3 Triplet Finder

The Triplet Finder is an algorithm specifically designed for the PANDA STT [9]. It is ported
to the GPU in collaboration with the NVIDIA Application Lab of the Jülich Supercomputing
Centre.

Method Instead of evaluating data of the whole STT all the time, the Triplet Finder initially
takes into account only a subset. Certain rows of neighboring STT drift tubes (straws) are
selected for initiating the algorithm. As soon as a hit is detected in such a so-called pivot layer,
the algorithm searches for additional hits in the directly neighboring straws. A center-of-gravity
point is formed from all the hits, called a Triplet. Combining a Triplet from a pivot layer on
the inner side of the STT with a Triplet from a pivot layer from the outer side of the STT with
the interaction point at (0, 0), a circle as a track candidate is calculated. In the next step, hits
close to the track candidate are associated to it to eventually form a proper track, as shown in
Figure 3, right. [10]

The Triplet Finder is a robust algorithm with many algorithmic tuning possibilities. Track
candidates are calculated without relying on the event start time t0, a value usually needed by
algorithms to generate an isochronous hit circle around a straw’s anode wire. t0 is not known
a-priori, as PANDA is running without any trigger information and needs to be provided by
dedicated algorithms.

GPU optimizations A number of different GPU-specific optimizations are performed on
the algorithm. Two of them are highlighted in the following, for a full list see [11].

Bunching wrapper The Triplet Finder looks at a set of hits at once and computes all
possible track candidates. For a certain amount of hits, the algorithm reaches its peak perfor-
mance. On the tested graphics card (NVIDIA Tesla K20X), this point is roughly equivalent
to 25 000 hits (or 1000 ns STT data). To always invoke the algorithm with the number of
hits at which it is performing best, a bunching wrapper is introduced. This wrapper cuts the
continuous hit stream into sets (bunches) of sizes that maximize the occupancy of the GPU.

GPUHEP2014 5

GPU-BASED ONLINE TRACKING FOR THE PANDA EXPERIMENT

GPUHEP2014 61



The algorithmic complexity is reduced and a performance maximum of 7 Mhit/s is reached
(Figure 4, left).

Kernel launch strategies Different methods of launching the Triplet Finder processes
are evaluated.

• Dynamic Parallelism: This method was used during the GPU development of the al-
gorithm. Per bunch, one GPU-side process (thread) is called, launching itself the different
Triplet Finder stages subsequently as individual, small kernels directly from the GPU.

• Joined kernel: One CUDA block per bunch is called on the GPU. Instead of individual
kernels for the stages of the Triplet Finder (as in the previous approach), one fused kernel
takes care of all stages.

• Host streams: Similarly to the first approach, the individual stages of the algorithm
exist as individual kernels. But they are not launched by a GPU-side kernel, but by
stream running CPU-sided. One stream is initiated per bunch.

Results in Figure 4, right, show the Dynamic Parallelism approach to be the fastest, as GPU
occupancy is high and GPU-CPU communication reduced.

Optimization results The best performance in terms of computing time needed to process
an event, which was reached with the aforementioned and further optimizations, is 0.02 ms/event
(see also [11]). Employing only the Triplet Finder as a tracking algorithm, a multi-GPU system
consisting of O(100) GPUs seems sufficient for PANDA.

3 Conclusions

Different algorithms have been presented for online track reconstruction on GPUs in the
PANDA experiment. Each algorithm is in a different stage of development and has distinct
feature sets specializing on different objectives. The most optimized algorithm is the Triplet
Finder, with performance results making GPU-based online tracking a promising technique for
PANDA’s online event filter.
We are continuing tailoring the algorithms for PANDA’s needs – optimizing performance and
modifying specific aspects. All presented algorithms still need to be validated with physics
cases of PANDA and benchmarked in terms of reconstruction quality. Also, further research is
needed beyond the STT when including more sub-detectors into the different algorithms. Re-
cently, high-throughput data transfer to the GPU is also subject of our research to complement
the promising algorithmic developments towards a integrated GPU online track reconstruction
system for PANDA.
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Graphics Processing Units are high performance co-processors originally intended to im-
prove the use and the acceleration of computer graphics applications. Because of their
performance, researchers have extended their use beyond the computer graphics scope.
We have investigated the possibility of implementing online neutrino trigger algorithms in
the KM3Net-It experiment using a CPU-GPU system. The results of a neutrino trigger
simulation on a NEMO Phase II tower and a KM3-It 14 floors tower are reported.

1 Introduction

A neutrino telescope is a tool to increase our knowledge and to answer fundamental questions
about the universe. Following the success of the IceCube experiment [1], which is a km3 size
telescope in the ice at the south pole, and of the ANTARES experiment [2], an underwater
telescope with a volume of 0.4 km3. The European scientific community is going to construct
a neutrino telescope similar to but larger than IceCube called Km3Net in the Mediterranean
Sea. NEMO [3] and NESTOR [4] are R&D experiments for the same purpose. All these optical
telescopes use a Photomultiplier Tube (PMT), or a group of it, as a Detection Unit (DU). The
NEMO collaboration has already deployed a tower of 32 single PMT DUs. For the much larger
Km3Net telescope, thousands of DUs will be used to detect the muon passage produced by
undersea neutrino interactions. This large number of sensors will lead to a huge amount of data
because of the presence of high rate background, and the data must be filtered by an efficient
trigger algorithm to reduce the background rate and to keep all possible muon tracks. In the
case of the ANTARES telescope, the amount of data acquired in a second is 0.3-0.5 GB, and a
set of CPUs is used for such a task. The general strategy of data analysis for an online trigger
is that a set of CPUs works in parallel on consecutive time slices within one second of the
data coming from the underwater telescope [3]. In the present work, we describe the study of
combining a Graphical Processor Unit (GPU) and CPU (GPU-CPU) to implement the muon
trigger algorithms. In addition, the use of GPU-CPU leads to savings in power, hardware and
time. The parallel version of the trigger algorithm is shown to be suitable for an online muon
track selection and was tested on simulated data of the NEMO towers of 32 (NEMO Phase II)
and 84 (KM3Net-It tower) single PMT DUs.
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2 DAQ system of NEMO Phase II

During March 2013, the NEMO collaboration has deployed a tower (See Fig.2) at the Capo
Passero site, south east of Sicily island [3]. Since then, it was taking data until August 2014,
when it was shut-down for upgrades. The tower is 450 m high and it is composed of 8 floors,
each floor is equipped with 4 DUs and two hydrophones. The distance between floors is 40 m,
where the length of the floor is 6 m. The tower is kept straight by an appropriate buoyancy on
its top.

The tower is hosted at a depth of 3400 m nearly 100 km off the Capo Passero harbor. Each
floor is equipped with a Sea Floor Control Module (SFCM) that collects data streams from
the four PMTs as well as the two hydrophones and sends it to its twin card on-shore called
Earth FCM (EFCM). The communication between the SFCM and EFCM is guaranteed via an
Electro-Optical-Cable (EOC) which permits 2.5 Gbs of bandwidth. During data acquisition
and low bioluminescence activity, the measured rate by each PMT is 50-55 kHz. The PMT hit
size is 28 bytes in average and 20% of the available bandwidth is used.

The data streams from all EFCMs are grouped into two streams and routed to the first
stage of CPUs data processing called Hit Managers (HM) via Gbit link, which means the tower
has two HMs as in Figure 3. Each HM merges together the 16 PMT data streams and divides
them in consecutive time intervals of 200 ms called time-slices. All time slices from HMs within
the same time interval are sent to one Trigger CPU (TCPU), where the trigger is applied.
Successive time slices are sent to different TCPUs. A detailed description of the DAQ system
can be found in [3]. Once trigger conditions are satisfied, a 6µs time window of the tower data
(centered at the time of the trigger seed) is sent to the Event Manager for storage. And last,
another off-line filter is applied on the saved events for muon track reconstruction.

3 Muon trigger strategy

A muon passing through water, faster than the speed of light in that medium, produces
Cherenkov photons. These photons have an angle θC with respect to the trajectory of the
muon and are detected by distributed DUs. The arrival times of Cherenkov photons at PMTs
are correlated in time and space which is not the case for background photons (most photons are
generated by 40K decays). Hence, looking for coincidences of multiple PMTs within a certain
time window reduces the background rate.

In fact, the time difference of the arrival time of photons generated by a muon are distributed
in a 3µs (time needed for a muon to traverse the detector) interval or less. A time-space
correlation between PMT hits within a time interval less than 3µs can be used to filter out the
background hits. In addition to the time-space correlation, a hit charge over threshold trigger
can be applied on all hits. These types of triggers can be parallelized as they are applied on
data streams independently.

Even though these triggers are simple, the amount of background hits in the NEMO phase
II (8 floors tower) is about 1.7 Mhits/s/tower (comparing to roughly a few hits/s of a muon
track) and it will be 4.6 Mhits/s for the 14 floors tower. In addition to these standard triggers,
we have studied a new level 0 trigger algorithm. It is easy to implement on a GPU and is based
on N hits in a fixed Time Windows TW, we chose N=7 and TW=1000ns (N7TW1000). This
trigger reduces the time-consuming of time-space correlation and charge over threshold triggers
[5]. After this level 0 trigger, we apply the previously mentioned triggers, reducing the rate
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drastically.

4 CPU-GPU

The aim of our work is to replace the TCPU by a TCPU-GPU system (TGPU). The work in
the TGPU is done in three steps: first prepare 1s of data to be sent to GPU, then, send data
to the GPU for trigger selection, and last, save the selected events.

Every PMT hit data point in the NEMO Phase II tower contains a header with the GPS
time and geometry information, followed by a sampled charge waveform with a variable size.
To apply triggers in the GPU, the raw hits are converted to a fixed size structure that contains
all needed information for the trigger algorithms: charge, time, DU identification (DU ID),
trigger flags, and rates. We have optimized the work in CPU and GPU to minimize the trigger
searching time as explained in next paragraphs.

4.1 Preparation in CPU

The main work of the CPU is to convert 5 consecutive time slices of 200 ms to a unique time
slice of 1 s to be sent to the GPU (one fixed-size memory buffer). This is done by running 5
threads in the CPU; each thread is filling the dedicated memory zone, which means that the
5 CPU treads are filling the same memory zone but at different offsets. Each thread converts
the 200 ms time slice to N time slices to be used by GPU threads. The number of threads N
is chosen to have in average 100 hits per thread at a nominal rate of 50 kHz/PMT. Hence, the
total number of threads (NTHRD) in a GPU is NTHRD=5×N .

In our simulation code we have also taken into account the edge effect between threads.
When the trigger algorithm reaches the last hit of the current thread, it proceeds on first hits of
the next time slice. The data sent to the GPU is a 1 second time interval and its size takes into
account the maximum rate of each PMT (5 times the nominal rate). Hence, with the NEMO
tower of 84 PMTs and in the presence of bioluminescence at two PMTs, for example at rate of
1 Mhits/s, and assuming a nominal hit number per thread of 100 (55 kHz/PMT), we expect
an increase of 40% (140 hits/thread) of the number of total hits.

4.2 Sorting and triggering in GPU

The work on the GPU side is done in two steps. First we sort the hits in time using classical
sorting methods (Shell, quick, and merge sort algorithms). Than we apply the needed trigger
algorithms (see the list below). Figure 4 shows the performance of quicksort and Shellsort
algorithms on uniformly distributed time values. To see the effect of the hit structure size on
the sorting time, the sorting algorithms are tested on hits of different sizes (one float is used for
the time value). Clearly the quicksort algorithm shows a good performance and the measured
times for all cases remain below 100 ms for 100 elements per thread. In addition, Figure 4
shows how the size of the hit structure affects the performance of the sorting algorithms.

In the case of NEMO tower data, we have noticed, that the Shellsort algorithm shows a
better performance over the others. The reason for this is that our data within a GPU thread
is not completely random, but is time-ordered for single PMT within a GPU thread.

After time sorting, we apply the following trigger algorithms:

• Time-space correlation (for NEMO Phase II tower):
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– N7TW1000: looking for 7 hits in TW = 1000 ns: hit[i].time- hit[i+7].time<
TW

– DN7TW1000: looking for 7 hits from different PMTs within TW = 1000 ns

– Simple Coincidence (SC): a coincidence between two hits occurred in two adjacent
PMTs within 20 ns

– Floor Coincidence (FC): a coincidence between two hits occurred in two PMTs in
the same floor within 100 ns

– Adjacent Floor Coincidence (AFC): a coincidence between two hits occurred in two
PMTs located at two consecutive floors within 250 ns

• Charge threshold (QTRIG) looking for charge over a threshold: hit[i].Charge> QTRIG

• Combination of the above trigger seeds: for example applying N7TW1000, than SC and
FC

N7TW1000 and DN7TW1000 have the same efficiency for muon track selection, however
DN7TW1000 is more efficient in the presence of bioluminescence activities for background
reduction [5]. In addition, the DN7TW1000 is time consuming and for this reason we have used
N7TW1000 in our simulation. To select muon events we combine these trigger seeds. Once the
candidate hits satisfy the trigger, all hits within ±3µs are tagged to be saved with respect to
the time of one of the trigger seeds (in our simulation we have used the SC trigger). After that,
the data is sent back to the CPU to save the tagged hits. Even though there is a difference in
the rate of the selected events between applying N7TW1000 before or after time coincidences,
we have chosen N7TW1000 first (as level 0 trigger) because the trigger time searching is less
and the muon track selection efficiency remains the same [5].

5 Results and perspectives

For our simulation we have used a Tesla 20c50 (448 CUDA cores) and a GTX Titan (2688
CUDA cores) device. 2 PCs were used, one as a HM for time slice sending and the other PC
was used with the GPU cards for the trigger algorithms. The measured time of the CPU to
prepare 1 second of data ranges from 200 ms (for the 32 PMT tower) to 300 ms (for the 84
PMT tower), the CPU-GPU data memory transfer time is included. Our first aim was to see
whether the TGPU can cope with data streaming and online triggering for muon track selection
within the remaining time (less than 700 ms).

The first step was to simulate the actual NEMO Phase II tower with 32 DUs at a rate
of 55kHz, applying the following triggers: charge trigger, SC, FC, AFC, N7TW1000, and a
combination of them: applying N7TW1000, and if it is satisfied, we apply [SC and AFC] or
[FC and AFC]. The last two triggers (N7TW1000 with [SC and AFC] or [FC and AFC]) are
used to tag the muon track candidate. In the case of the KM3Net-It tower with 84 DUs, we
use N7TW500 (the inter-floor distance is 20 m instead of 40 m).

Table (1) shows measured Tesla-GPU times for 1 second data from 32 and 84 PMTs using
8000, 20000, and 40000 threads, respectively, including the data preparation time on CPU
(200-300 ms). We verify that the Tesla 20c50 GPU card is able to cope with the online
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NTHRDs 32 PMTs
(t/ms)

84 PMTs
(t/ms)

8000 250 950
20000 230 600
40000 190 500

Table 1: Measured trigger times (ms) us-
ing Tesla 2050c for 1 second time slice of
NEMO towers data (time slice preparation
on CPU is included).

trigger algorithms of the NEMO Phase II
tower, as well as of KM3Net-It tower (with num-
ber of GPU threads ≥ 20000).

We have also compared the performance of
our triggers between a Tesla 20c50 and a GTX
Titan devices. We have tested only the GPU
work without including the 1 second time slice
preparing as well as data memory transfer.
The results are shown in Table (2). We see that
the measured trigger times, for Tesla 20c50, are
less than the results shown in Table (1), because
the CPU is not busy by the 1 second time slice
preparation. For a sufficient number of GPU threads (>=2000), both GPU cards can handle
the online trigger with data of 84 PMTs. The measured trigger times can be used to give a
first estimate of the speeding up of the trigger algorithm in the GPU over the CPUs.

NTHRDs 32 PMTs
(t/ms)

84 PMTs
(t/ms)

8000 160 / 90 500 / 450
20000 100 / 50 200 / 140
40000 50 / 45 150 / 110

Table 2: Measured trigger times (ms) using
Tesla20c50 / GTX TITAN for 1 second of
NEMO towers data without including the
time preparation.

The task of HMs can also be included in the
CPU-GPU work, given that we were using only
40% of the CPU resources. HMs and TCPUs can
be grouped in a TGPU system, with an adequate
network structure. Our conclusion is that both
GPU cards can be used in the TGPU system for
the on-line muons trigger. We propose a new DAQ
system based on TGPU structures (Figure 1) for
the 8 towers of KM3Net-It, where each of the 8
TGPUs looks for all trigger seeds in a 1 second
window of raw data of the corresponding tower
and sends all trigger seeds to the TCPU for muon

tracks selection. Once the TCPU selects the candidate trigger seeds for muon tracks, it sends
back the corresponding times to all TGPUs to send their window of data to the Event Manger,
and frees the corresponding memory buffer.

This new DAQ of the CPU-GPU is a huge simplification of the classical CPU DAQ sys-
tem (using only CPUs) and can be used for both the online trigger and also the muon track
reconstruction, by processing thousands of events at one step, and reducing further the fake
events.
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Figure 1: Proposed DAQ based on CPU-GPU structure.

Figure 2: NEMO tower.
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Figure 3: DAQ system for NEMO Phase II and the trigger scheme.

Figure 4: Measured sorting time (ms).
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The Mu3e experiment searches for the lepton flavour violating decay µ → eee, aiming at
a branching ratio sensitivity of 10−16. A high precision tracking detector combined with
timing detectors will measure the momenta, vertices and timing of the decay products of
more than 109 muons/s stopped in the target. The trigger-less readout system will deliver
about 100 GB/s of data. The implementation of a 3D tracking algorithm on a GPU is
presented for usage in the online event selection. Together with a vertex fit this will allow
for a reduction of the output data rate to below 100 MB/s.

1 The Mu3e experiment

The Mu3e experiment [1] searches for the lepton flavour violating decay µ → eee. Within the
standard model, this process is allowed via neutrino oscillations. It is however suppressed to
a branching fraction below 10−54. If lepton flavour violation is observed in the charged lepton
sector, this is a clear indication for new physics. Many models beyond the standard model,
such as supersymmetry, grand unified models or the extended Higgs sector predict lepton flavour
violation at a level to which future detectors are sensitive. The current limit on the µ → eee
branching fraction was set by the SINDRUM experiment to 10−12 [2]. The Mu3e experiment
aims to improve this limit by four orders of magnitude and to reach a sensitivity of 10−16 at
90 % CL.

To reach this sensitivity level, the distinction between signal and background events is
crucial. In the Mu3e experiment, muons will be stopped in a target and decay at rest. A signal
event consists of two positrons and one electron originating from one single vertex as shown in
Figure 1a. They are coincident in time and the momentum sum is zero. The total energy of
the event is equal to the rest mass of the muon.

One source of background is a radiative muon decay with internal conversion
µ+ → e+e−e+ν̄µνe. This process is shown in Figure 1b. Here, the decay products are also
coincident in time and have a single vertex, however the momenta do not add up to zero and
the energy does not equal the muon rest mass. Combinatorial background stems from two
ordinary muon decays µ+ → e+νeν̄µ taking place close to each other in space and time together
with an additional electron from photon conversion, Bhabha scattering etc. (see Figure 1c).
When both the e+ and e− from Bhabha scattering are detected, only one additional muon
decay is required and the probability of misreconstruction as signal event is higher.
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Figure 1: Comparison of signal and background events.

Momentum, timing and vertex resolution are therefore the key parameters for the distinction
between signal and background events. To achieve the desired sensitivity, Mu3e aims for a
momentum resolution < 0.5 MeV/c, a timing resolution of 100 ps and a vertex resolution of
< 200 µm. These requirements guide the design of the Mu3e detector.

1.1 Detector design

Since the muons decay at rest in the target, the momentum of the decay electrons is at maximum
half the muon mass (53 MeV/c). In this energy range, the momentum resolution is dominated
by multiple Coulomb scattering whose variance is inversely proportional to the momentum.
Therefore the design of the Mu3e experiment is aimed at minimizing the material budget.
Ultralight mechanics will be used for construction and a pixel tracking detector is built from high
voltage monolithic active pixels sensors [3, 4, 5] thinned to 50 µm, with a pixel size of 80×80 µm2.
In addition, scintillating tiles and fibres are included for precise timing information. The muons
are stopped on the surface of a hollow double cone target, leading to a spread in the vertex
locations. A magnetic field of 1 T is applied so that the tracks are bent and recurling tracks are
detected by outer detector regions. This allows for a more precise momentum measurement.
A schematic of the detector is shown in figure 2. To reach the sensitivity of 10−16 within a
reasonable time, muons at high rates are desired which will be provided by the Paul Scherrer
Institut. At the current beamlines, up to 108 µ/s are available. A future high intensity muon
beam line (HiMB) could deliver in excess of 2 · 109 µ/s.

2 Readout scheme

A triggerless readout is foreseen for the detector. At the above mentioned rates this results in
a data rate of about 100 GB/s. Consequently, an online selection is required to cope with this
amount of data and reduce the rate by a factor of 1000. A schematic of the readout is shown
in Figure 3. Zero-suppressed data are sent from the pixel sensors, the fibres and the tiles to
front-end FPGAs via flex print cables. The FPGAs merge the data and sort it into time slices
of 50 ns which are then transferred via optical links to the readout boards. Each readout board
receives the information from each sub-component of the detector and then sends the complete
detector information for one time slice to one computer of the filter farm via optical links. With
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Figure 2: Schematic of the Mu3e detector design.

this procedure, each PC analyzes different time slices of full detector information. The GPUs
of the filter farm PCs perform the online event selection by searching for 3 tracks originating
from one single vertex.
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Figure 3: Readout scheme of the Mu3e detector design. [6]

3 Multiple scattering fit

Tracks are reconstructed based on the hits in the pixel detectors using a 3D tracking algorithm
for multiple scattering dominated resolution [7, 8]. Triplets of subsequent hits in three layers are
selected and multiple scattering is assumed at the middle hit of the triplet. In the momentum
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region of interest the position resolution of the pixel detector (σpixel = 80/
√

12 µm) is small
compared to the effects of multiple scattering.

Figure 4 shows one triplet with the azimuthal scattering angle ΦMS in the x-y plane on the
left and the polar scattering angle ΘMS in the s-z plane on the right, where s is the 3D path

length. The combined χ2 =
φ2
MS

σ2
MS

+
θ2MS

σ2
MS

is minimized during the non-iterative fitting procedure.

The variances of the scattering angles are obtained from multiple scattering theory. Several
triplets grouped together form one track.

z

s

x

y

ΦMS

S01

S12

S12

S01

ΘMS

Figure 4: Sequence of three hits forming a triplet in the x-y plane on the left, and the s-z plane
on the right with respective scattering angles.

4 Fit implementation on GPU

For online event selection, a basic version of the multiple scattering fit runs on the GPUs of
the filter farm PCs. It has been implemented on Nvidia’s GeForce GTX 680 using the CUDA
environment. Triplets are constructed from hits in the first three detector layers. The number
of possible hit combinations to form a triplet is proportional to n1 × n2 × n3 where ni is the
number of hits in layer i. The main steps of the processing are:

• Sorting the hit array with respect to the z-coordinate

• Geometric filtering on ordered hits

• Triplet fitting and selection

Notice that in the final readout mechanism, the hit arrays will be sorted by the FPGAs
in the PCs and geometrical selection cuts will be applied. The preselected arrays will then be
copied via direct memory access to the GPUs to perform the fitting step. Currently the CPU
sorts the hit arrays with respect to the z-coordinate, then the sorted hit arrays are copied to
the GPU global memory.

A preliminary kernel implementation gathers the hit filtering and triplet fitting. The selec-
tion cuts require proximity in the x-y plane and in z for pairs of hits in layers one and two, and
two and three respectively. If these cuts were passed, the fitting procedure is applied and hits
of triplets are saved in global memory with an atomic function given a successful fit completion
and a certain χ2.
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For the first kernel implementation, a 2D-grid is set up with n1 × n2 grid dimensions,
each kernel loops over the n3 hits in layer three. Since the geometrical selection cuts and fit
completion cuts introduce branch divergence, 87 % of the threads are idle in this configuration.

Consequently, an alternative implementation with two separate kernels was tested. Within
the geometric kernel, only the geometry cuts are applied and triplets of hits passing these cuts
are saved into an array in global memory. The grid dimensions for this kernel are the same as
described for the first implementation. Then, the fit kernel, which fits and selects hit triplets,
is launched on the number of selected triplets using a 1D-grid associated with 128-block size.
Consequently, one fit is performed per thread without any divergence. In addition, since the
block dimension is now a multiple of the warp size (32), no inherently idle threads are launched
in the grid.

In terms of run time, there is no significant improvement with the two kernel version com-
pared to one kernel. However, only tasks for which the GPU is optimized are now performed in
the fitting kernel, so this is one step towards the final readout and selection chain of the filter
farm.

5 Performance

Figure 5: Compute utilization of the streaming
multiprocessors on the GTX 680 for the fitting
kernel of the two kernel fit implementation.

Next we will focus on the triplet fitting per-
formance, since it will be the processing step
deployed on GPUs.
Using Nvidia’s Visual Profiler tool, the per-
formance of the different versions was stud-
ied. The compute utilization of the stream-
ing multiprocessors averages around 80 % for
the fitting kernel of the two kernel version, as
shown in Figure 5.

The block size has been chosen to optimize
the number of warps per streaming multipro-
cessor: 128 threads per block take advantage
of all 64 warps in a streaming multiprocessor
(see Figure 6 on the left). Since the fitting
kernel requires 29 registers per thread, the

kernel implementation can make optimal use of these 64 warps per streaming multiprocessor
(see Figure 6 on the right). Therefore, the compute efficiency is not limited by the block size
or register count.

Currently, 1.4 ·1010 triplets/s are processed. This measurement is based on the wall time of
both CPU and GPU, so that all sorting and selection times are included. Most of the time is
spent on the first kernel applying the selection cuts. Therefore, further improvement is expected
when the pre-selection is outsourced to the FPGAs on the readout boards. Similarly, the ratio
of copying data from CPU to GPU compared to computing time (40 %) will improve once more
selection criteria are applied before transferring the data to the PC.
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Figure 6: Warps per Streaming Multiprocessor (SM) as a function of the block size (left) and
the register count (right).

6 Summary and outlook

To achieve a sensitivity of 1016 in the measurement of the µ→ eee branching ratio, high rates
on the order of 109µ/s are required, resulting in a data rate on the order of 100 GB/s in the
detector.

The implementation of the triplet fit on the GTX 680 can currently process 1.4 × 1010

triplets/s. For a muon rate of 108, about 1012 hit combinations are expected per second in the
first three layers, therefore requiring 10 - 100 GPU computers in the filter farm. Faster filtering
is required for the higher rate of 109µ/s. This can be achieved by sorting the data on FPGAs
and further improving the performance of the fit, and as a result, reduce by a factor of 1000
the data rate. In addition, a new vertex fit [9] will be implemented on the GPU in order to
apply the selection criteria for a signal of 3 tracks originating from one single vertex.
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A pilot project for the use of GPUs (Graphics processing units) in online triggering ap-
plications for high energy physics experiments (HEP) is presented. GPUs offer a highly
parallel architecture and the fact that most of the chip resources are devoted to computa-
tion. Moreover, they allow to achieve a large computing power using a limited amount of
space and power. The application of online parallel computing on GPUs is shown for the
synchronous low level trigger of NA62 experiment at CERN. Direct GPU communication
using a FPGA-based board has been exploited to reduce the data transmission latency
and results on a first field test at CERN will be highlighted. This work is part of a wider
project named GAP (GPU application project), intended to study the use of GPUs in
real-time applications in both HEP and medical imaging.

1 Introduction

The trigger system plays a fundamental role in any HEP experiment since it must decide
whether a particular event observed in a detector should be recorded or not, based on limited
information. Every experiment features a limited amount of DAQ bandwidth and disk space
for data storage, the use of real-time selections is crucial to make the experiment affordable
maintaining at the same time its discovery potential. Online selection of important events
can be performed by arranging the trigger system in a cascaded set of computational levels.
The low-level (hereinafter referred to as L0) is usually realized in hardware, often based on
custom electronics devoted to the experiment and normally developed using programmable
logic (FPGA) that offer flexibility and possibility of reconfiguration. The upper trigger levels
(L1 and L2) are implemented in software on a commodity PC farm for further reconstruction
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and event building. In the baseline implementation, the FPGAs on the readout boards compute
simple trigger primitives on the fly, such as hit multiplicities and rough hit patterns, which are
then timestamped and sent to a central trigger processor for matching and trigger decision.

This paper presents the idea of using GPUs for low-level triggering in HEP experiments.
In fact, GPUs provide a huge computing power on a single device, thus allowing to take com-
plex decisions with a significantly high speed. In particular, in the standard multi-level trigger
architecture, GPUs can be easily exploited in the higher software levels, where the number
of computing farm nodes can be reduced and the capability of the processing system can be
improved without increasing the scale of the system itself. As an example, GPUs are currently
under study in the software trigger level of ATLAS experiment at CERN [1] and are imple-
mented with encouranging results in tracking of Pb-Pb Events in the ALICE experiment [2].

Low-level triggers can also take advantage from the usage of GPUs, but a careful assessment
of their online performance is required especially in terms of computing power and latency. In
fact, low level trigger systems are designed to perform very rough selection based on a sub-set
of the available information, typically in a pipelined structure housed in custom electronics,
in order to bring to a manageable level the high data rate that would otherwise reach the
software stages behind them. Due to small buffers size in the read-out electronics, such systems
usually require very low latency. A low total processing latency is usually not crucial in the
applications for which GPUs have been originally developed. On the contrary, for a GPU-
base trigger system, data transfer latency to the GPU and its stability in time become a very
important issue.

In this paper we present recent results of the ongoing R&D on the use of GPUs in the lowest
trigger level of the NA62 Experiment at CERN, within the framework of the GAP project [3].
Next section describes the idea of the adoption of GPUs in the NA62 L0 trigger while in the
other subsection we address more specifically the latency control problem, and we show the
results on the solution that we are currently developing. This is based on a custom “smart”
NIC that allows copying data directly into the GPU.

2 GPUs in the low-level trigger of the NA62 experiment

The NA62 experiment at CERN aims at measuring the branching ratio of the ultra-rare decay
of the charged kaon into a pion and a neutrino-antineutrino pair. The goal is to collect ∼ 100
events with a 10:1 signal to background ratio, using a high-energy (75 GeV/c) unseparated
hadron beam decaying in flight [4, 5]. In order to manage the 25 GB/s raw data stream due to
a ∼ 10 MHz rate of particle decays illuminating the detectors, the NA62 trigger consists of three
levels as illustrated in the previous section: the L0 is based on FPGA boards which perform
detector data readout [6], while the next two levels are developed on PCs, thus implemented
in software. L0 must handle an input event rate of the order of 10 MHz and apply a rejection
factor of around 10, in order to allow a maximum input rate of 1 MHz to the L1 trigger. The
latter, together with the L2 trigger, must reduce the rate to about 10 kHz in order to permit
permanent data storage for later offline analysis. The maximum total latency allowed by the
NA62 experiment for the L0 trigger is 1 ms.

A pilot project within NA62 is investigating the possibility of using a GPU system as L0
trigger processor (GL0TP), exploiting the GPU computing power to process unfiltered data
from the readout in order to implement more selective trigger algorithms. In the standard L0
implementation, trigger primitives contributing to the final trigger decision are computed on
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Figure 1: Throughput as a function of the
number of events for last generation GPUs.

Figure 2: Total latency (including data trans-
fer and computing). Here the maximum
threshold does not take into account the
data transfer from readout, but it only esti-
mates the total latency contribution within
the GPU.

the readout board FPGAs, and are mostly based on event hit patterns. The use of GPUs in
this level would allow building more complex physics-related trigger primitives, such as energy
or direction of the final state particles in the detectors, therefore leading to a net improvement
of trigger conditions and data handling.

In particular, the reconstruction through GPUs of the ring-shaped hit patterns within the
NA62 Ring Imaging Cherenkov (RICH) detector represents the first study case on the use of
GPUs at low-level trigger in the GAP project. The proposed GL0TP will operate in parasitic
mode with respect to the main L0 trigger processor by processing data coming only from the
RICH detector. Such detector, described in [7], provides a measurement of the velocity and
direction of the charged particles crossing its volume above the Cherenkov threshold. It can
therefore contribute to the computation of other physical quantities, such as the decay vertex
of the K+ and the missing mass. On the basis of such information, highly selective trigger
algorithms can be implemented for several interesting K+ decay modes.

As highlighted in [8], several ring reconstruction algorithms have been studied in order to
assess the best GPU-based implementation. In particular, the one based on a simple coordinate
transformation of the hits which reduces the problem to a least square procedure was found
to be the best ring-fitting algorithm in terms of computing throughput. This algorithm was
developed and tested on different GPUs, such as the NVIDIA Tesla C1060, Tesla C2050 and
GeForce GTX680. The computing performance of the C2050 and GTX680 proved to be a factor
4 and 8 higher than that of the C1060, respectively.

Figure 1 shows the computing throughput for these devices as a function of the number of
events processed in one batch. The effective computing power is seen to increase with the num-
ber of events to be processed concurrently. The horizontal line shows the minimum throughput
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requirement for an online trigger based on the RICH detector of the NA62 experiment.
Figure 2 points out the total computing latency that includes data transfer times to and

from the GPU and the kernel execution time. Here NVIDIA Tesla C2050 and GeForce GTX680
devices have been used for the measurement. The significant reduction of the latency for the
newer GTX680 GPU is due to the faster data transfer allowed by the 3rd generation PCIExpress
bus. As can be seen, the maximum threshold (green horizontal line) seems to be attainable
when a reasonable number of events is processed in one batch.

In a standard GPU computing approach, data from the detector reach the Network Interface
Card (NIC) which copies them periodically on a dedicated area in the PC RAM, from where
they are then copied to the user space memory where applications can process them. Here a
sufficient data load of buffered events is usually prepared for the following stages, and they
are copied to GPU memory through the PCI express bus. The host (the PC on which the
GPU card is plugged) has the role of starting the GPU kernel, which operates on the data.
Computation results can then be sent back to the host for further processing or distribution to
the detectors, to ultimately trigger the read-out of the complete data event. In this system, the
most important contribution to the total latency is due to the data transfer latency from the
NIC to the GPU memory. Thus, in order to reduce the maximum total latency, an approach
will be described in detail in the following, i.e., the use of a direct data transfer protocol from
a custom FPGA-based NIC to the GPU.

2.1 NaNet

NaNet is a modular design of a low-latency NIC with GPUdirect capability developed at INFN
Rome division, that is being integrated in the GPU-based low level trigger of the NA62 RICH
detector [9, 10]. Its design comes from the APEnet+ PCIe Gen 2 x8 3D NIC [11] and the board
supports a configurable number of different physical I/O links (see Figure 3). The Distributed
Network Processor (DNP) is the APEnet+ core logic, behaving as an off-loading engine for the
computing node in performing inter-node communications [12]. NaNet is able to exploit the
GPUDirect peer-to-peer (P2P) capabilities of NVIDIA Fermi/Kepler GPUs enabling a host PC
to directly inject into its memory an UDP input data stream from the detector front-end, with
rates compatible with the low latency real-time requirements of the trigger system.

To measure the data transmission latency a readout board (TEL62) has been employed to
send input data. In particular, data communication between the TEL62 readout boards and the
L0 trigger processor (L0TP) happens over multiple GbE links using UDP streams. The main
requisite for the communication system comes from the request for <1 ms and deterministic
response latency of the L0TP, thus communication latency and its fluctuations are to be kept
under control. The requisite on bandwidth is 400÷700 MB/s, depending on the final choice
of the primitives data protocol which in turn depends on the amount of preprocessing to be
actually implemented in the TEL62 FPGA. This means that, to extract primitives data from
the readout board towards the L0TP in the final system, 4÷6 GbE links will be used.

NaNet latency was measured sending UDP packets from one of the host GbE ports to the
NaNet GbE interface: using the x86 TSC register as a common reference time, a single-process
test could measure the time difference between the moment before the first UDP packet of a
bunch (needed to fill the receive buffer) is piped out through the host GbE port and when the
signal of a filled receive buffer reaches the application. Within this measurement setup (“system
loopback”), the latency of the send process is also taken into account.

Measurements in Figure 5 were thus taken; UDP packets with a payload size of 1168 Bytes
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Figure 3: NaNet as a FPGA-based NIC im-
plemented using an Altera development board
(Stratix IVGX230 FPGA).

Figure 4: NaNet architecture schematic.

(16 events) were sent to a GPU memory receiving buffer of size variable between 1 and 64 times
the UDP packet payload.

2.1.1 Synchronization of NaNet with the Timing Trigger and Control system at
CERN

The Timing Trigger and Control (TTC) system distributes the system clock for the NA62
experiment as well as the first level triggers and synchronization commands, which are all
distributed on a single optical fibre. In particular, a mezzanine card (TTCrq) [13], developed
by the CERN microelectronics group, acts as an interface between the TTC system for NA62
detectors and its receiving end users. The card delivers the clock together with control and
synchronization information to the front-end electronics controllers in the detector.

Synchronization of NaNet with the TTC system through the TTCrq, has been tested by
firstly realizing an interface board between NaNet and the TTCrq. This has been produced at
Physics Department at University of Ferrara (Italy) and connected to the High Speed Mezzanine
Card (HSMC) port B of the FPGA board. The whole TTCrq-interface-NaNet system (see
Figure 6) proved to correctly receive all the signals necessary to synchronise the detectors, i.e.
clock, event counter reset and bunch counter reset (the last ones encoding start-of-burst and
end-of-burst commands).

3 Conclusions

The GAP Project aims at studying the application of GPUs in real-time HEP trigger systems
and in medical imaging. In this paper the application to a low-level trigger system for the NA62
experiment at CERN has been described: the critical point to be pursued is the reduction of
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Figure 5: A comparison between NaNet com-
munication latency and standard GbE inter-
faces results.

Figure 6: The TTCrq-interface-NaNet system
together with a NVIDIA Tesla K20 GPU.

the contributions to the total latency due to data transfer from the detectors to the GPU. An
approach based on a FPGA board to establish a peer-to-peer connection with the GPU is being
developed. The reconstruction of photon rings in the RICH detector has been considered as
first case of study on the use of GPUs at L0 in the NA62 experiment. Preliminary results
show that current GPUs are suitable for sustaining the event rates, while at the same time
minimizing the latency to an acceptable level.
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The capability of processing high bandwidth data streams in real-time is a computational
requirement common to many High Energy Physics experiments. Keeping the latency
of the data transport tasks under control is essential in order to meet this requirement.
We present NaNet, a FPGA-based PCIe Network Interface Card design featuring Remote
Direct Memory Access towards CPU and GPU memories plus a transport protocol offload
module characterized by cycle-accurate upper-bound handling. The combination of these
two features allows to relieve almost entirely the OS and the application from data tranfer
management, minimizing the unavoidable jitter effects associated to OS process scheduling.
The design currently supports one GbE (1000Base-T) and three custom 34 Gbps APElink
I/O channels, but four-channels 10GbE (10Base-R) and 2.5 Gbps deterministic latency
KM3link versions are being implemented. Two use cases of NaNet will be discussed: the
GPU-based low level trigger for the RICH detector in the NA62 experiment and the on-
/off-shore data acquisition for the KM3Net-IT underwater neutrino telescope.

1 Introduction

In many fields of Experimental Physics ranging from Radio Astronomy to High Energy Physics,
the GPU adoption effort that in High Performance Computing brings such outstanding results

∗Corresponding author. E-mail: alessandro.lonardo@roma1.infn.it
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is hampered by the real-time constraints that the processing of data streams outflowing from
experimental apparatuses is often subject to. GPUs processing latency is mostly stable once
data has landed in their own internal memories; a data transport mechanism with determin-
istic or at least bound latency is then crucial in building a GPGPU system honouring these
constraints.

Our NaNet design is one such mechanism, reusing several IPs developed for the APEnet+
3D torus NIC [1] targeted at HPC hybrid clusters; its real-time features were achieved by adding
dedicated modules and support of multiple link technologies, both standard and custom. The
resulting FPGA-based, low-latency PCIe NIC is highly configurable and modular, with RDMA
and GPUDirect capabilities. It has been employed in widely varying configurations and physical
device implementations in two different High Energy Physics experiments: the NA62 experiment
at CERN [2] and the KM3NeT-IT underwater neutrino telescope [3].

2 NaNet design overview
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Figure 1: NaNet architecture schematic.

NaNet is a low-latency PCIe NIC support-
ing standard — GbE (1000BASE-T) and
10GbE (10Base-R) — and custom — 34 Gbps
APElink [4] and 2.5 Gbps deterministic la-
tency optical KM3link [5] — network links.
NaNet bridges the gap between real-time and
GPGPU heterogeneous computing by inher-
iting the GPUDirect P2P/RDMA capabil-
ity from its HPC-dedicated sibling — the
APEnet+ 3D torus NIC — and enhancing it
with real-time-enabling features, e.g. a net-
work stack protocol offload engine for sta-
ble communication latency. NaNet design is
partitioned into 4 main modules: I/O In-
terface, Router, Network Interface and PCIe
Core (see Fig. 1). The I/O Interface module
performs a 4-stages processing on the data
stream: following the OSI Model, the Phys-
ical Link Coding stage implements the channel physical layer (e.g. 1000BASE-T) while the
Protocol Manager stage handles, depending on the kind of channel, data/network/transport
layers (e.g. Time Division Multiplexing or UDP); the Data Processing stage implements
application-dependent reshuffling on data streams (e.g. performing de/compression) while the
APEnet Protocol Encoder performs protocol adaptation, encapsulating inbound payload data
in APElink packet protocol — used in the inner NaNet logic — and decapsulating outbound
APElink packets before re-encapsulating their payload into output channel transport protocol
(e.g. UDP). The Router module implements a parametric full crossbar switch responsible for
data routing, sustaining multiple data flows @2.8 GB/s.

The Network Interface block acts on the trasmitting side by forwarding PCIe-originated data
to the Router ports and on the receiving side by providing support for RDMA in communications
involving both the host and the GPU (via a dedicated GPU I/O Accelerator module). A Nios II
µcontroller handles configuration and runtime operations.

Finally, the PCIe Core module is built upon a powerful commercial core from PLDA that
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sports a simplified but efficient backend interface and multiple DMA engines.

This general architecture has been specialized up to now into three configurations, namely
NaNet-1, NaNet3 and NaNet-10, to match the requirements of different experimental setups:
NaNet-1 is implemented on the Altera Stratix IV FPGA Dev Kit; it sports a PCIe Gen2 x8 host
interface, a GbE channel and three optional 34 Gbps APElink ones; NaNet3 is implemented
on the Terasic DE5-net Stratix V FPGA Dev Kit; it supports a PCIe Gen2 x8 host interface
while the four SFP+ cages of the board are used for the KM3link channels which are 2.5 Gbps
optical links with deterministic latency;NaNet-10 is another implementation on the Terasic
DE5-net board; the PCIe Gen2 x8 host interface is the same as NaNet3 while the SFP+ ports
support four 10GbE channels.

3 NaNet-1: a NIC for NA62 GPU-based low-level trigger

The NA62 experiment at CERN aims at measuring the Branching Ratio of the ultra-rare
decay of the charged Kaon into a pion and a neutrino-antineutrino pair. The NA62 goal is
to collect ∼ 100 events with a 10:1 signal to background ratio, using a novel technique with
a high-energy (75 GeV) unseparated hadron beam decaying in flight. In order to manage
the 25 GB/s raw data stream due to a ∼ 10 MHz rate of particle decays illuminating the
detectors, the trigger system is designed as a set of three cascaded levels that decrease this rate
by three orders of magnitude [6]. The low-level trigger (L0) is a synchronous real-time system
implemented in hardware by means of FPGAs on the readout boards and reduces the stream
bandwidth tenfold: whether the data on the readout board buffers is to be passed on to the
higher levels has to be decided within 1 ms to avoid data loss. The upper trigger levels (L1
and L2) are implemented in software on a commodity PC farm for further reconstruction and
event building. A pilot project within NA62 is investigating the possibility of using a GPGPU
system as L0 trigger processor (GL0TP), exploiting the GPU computing power to process
unfiltered data from the readout in order to implement more selective trigger algorithms. In
order to satisfy the real-time requirements of the system, a fast, reliable and time-deterministic
dedicated link must be employed. NaNet-1 has been designed and developed with the motivation
of building a fully functional and network-integrated GL0TP prototype, albeit with a limited
bandwidth with respect to the experiment requirements, in order to demonstrate as soon as
possible the suitability of the approach and eventually evolve the design to incorporate better
I/O channels. NaNet-1 real-time characterization has been carefully assessed on dedicated
testbeds [7, 8]. The results of this activity have driven the latest developments towards a lower
latency design. Allocation of time-consuming RDMA related tasks has been moved from the
Nios II µcontroller to dedicated logic blocks. The Virtual Address Generator (VAG) included
in the NaNet Controller module is in charge of generating memory addresses of the receiving
buffers for incoming data, while a Translation Lookaside Buffer (TLB) module performs fast
virtual-to-physical address translations.

A bandwidth-downscaled GL0TP setup was realized in a loopback configuration by a host
system simulating TEL62 UDP traffic through one of its GbE ports towards a NaNet-1 NIC
streaming the incoming data into a GPU memory circular list of receive buffers; once landed,
buffers are consumed by a CUDA Kernel implementing the pattern matching algorithm. Com-
munication and kernel processing tasks were serialized in order to perform the measure; in Fig. 2
(left) the results for the K20Xm system are shown. During normal operation, this serialization
constraint can be relaxed, and kernel processing task overlaps with data communication. Ac-
tually this is what was done to measure system throughput, with the results in Fig. 2 (right).
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Figure 2: (left) NaNet-1 latency over GbE towards GPU memory for varying datagram payload
sizes (nVIDIA Fermi K20Xm); (right) NaNet-1 GbE bandwidth towards GPU memory at
varying datagram payload sizes.

We see that using GPU receive buffer sizes ranging from 128 to 1024 events allows the system
to stay within the 1 ms time budget while keeping a ∼ 1.7 MEvents/s throughput.

Besides optimizing performances, we undertook several developments to cope with the
NaNet-1 integration within the NA62 experiment. A Timing Trigger and Control (TTC) HSMC
daughtercard was designed to provide NaNet-1 with the capability of receiving either trigger
and 40 MHz clock streams distributed from the experiment TTC system via optical cable: this
common reference clock was used to perform latency measurements discussed above. A decom-
pressor stage was added in the I/O interface to reformat events data in a GPU-friendly fashion
on the fly. Finally, a timeout was implemented in the NaNet Controller module that triggers the
DMA of received data towards CPU/GPU memory on a configurable deadline rather than on
the filling of a buffer. The prototype to be deployed at the NA62 experiment site will integrate
into NaNet-1 a TTC HSMC daughtercard and a nVIDIA Kepler K20 GPU.

4 NaNet3: KM3NeT-IT neutrino telescope on-shore board

KM3NeT-IT is an underwater experimental apparatus for the detection of high energy neutrinos
in the TeV÷PeV range by means of the Čerenkov technique. The KM3NeT-IT detection unit
consists of 14 floors vertically spaced 20 meters apart, with ∼8 m long floor arms bearing 6 glass
spheres each called Optical Modules (OM); each OM contains one 10 inches photomultipliers
(PMT) and front-end electronics that digitizes, formats and emits the PMT signal. All data
produced by OMs and auxiliary floor instrumentation is collected by an off-shore electronic
board called Floor Control Module (FCM) contained in a vessel at the floor centre; the FCM
manages the communication between the on-shore laboratory and the underwater devices, also
distributing the timing information and signals. Due to the distance between apparatus and
shoreland the connecting medium is optical fiber.

The spatially distributed DAQ architecture requires a common clock distributed all over
the system to correlate signals, with respect to a fixed reference, coming from different parts
of the apparatus. For this purpose data acquisition and transport electronics labels each signal
with a “time stamp”, i.e. hit arrival time. Time resolution is also fundamental for the track
reconstruction accuracy. These constraints pushed the choice of a synchronous link protocol
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embedding clock and data with deterministic latency; Floors are independent from each other;
each is connected to the on-shore laboratory by a bidirectional virtual point-to-point link.
A single floor data stream delivered to shore has a rate of ∼300 Mbps, while shore-to-underwater
communication data rate is much lower, consisting only of slow-control data for the apparatus.
The small data rate per FCM compared with state-of-the-art technologies led us to designing
NaNet3, an on-shore readout board able to manage multiple FCM data channels.
This is a NaNet customization for the KM3NeT-IT experiment, with added support for a
synchronous link protocol with deterministic latency at physical level and for a Time Division
Multiplexing protocol at data level (see Fig. 1).

Figure 3: Deterministic latency of NaNet3

SerDes: phase alignment of the transmitting
(upper) and receiving (central) clocks.

The first design stage for NaNet3 was
implemented on the Terasic DE5-net board,
which is based on an Altera Stratix-V GX
FPGA with four SFP+ channels and a PCIe
x8 edge connector. To match time resolution
constraint, time delta between wavefronts of
three clocks must have ns precision: the first
clock is an on-shore reference one (coming
from a GPS and redistributed), used for the
optical link transmission from NaNet3 to-
wards the underwater FCM; the second clock
is recovered from the incoming data stream
by a Clock and Data Recovery (CDR) module
at the receiving end of the FCM which uses
it for sending its data payload from the ap-
paratus back on-shore; a third clock is again
recovered by NaNet3 decoding the payload at

the end of the loop. The deterministic latency constraint must be enforced on the Stratix device
as the FCM does on paths both ways to allow correct time stamping of events on the PMT.
The established link is synchronous, i.e. clock rate is equal for both devices with fixed phase
displacement. We developed a test setup to explore latency capabilities of a complete link chain
leveraging on the fixed latency native mode of the Altera transceivers, on the NaNet3 board, and
on the hardware fixed latency implementation for a Xilinx device on the FCM board [9]. The
external GPS-equivalent clock has been input to the NaNet3 to clock the transmitting side of
the device. A sequence of dummy parallel data are serialised, 8b/10b-encoded and transmitted,
together with the embedded serial clock, at 800 Mbps along the fiber towards the receiver side
of the FCM system. The FCM system recovers the received clock and transmits the received
data and recovered clock back to the NaNet3 board. The receive side of NaNet3 deserializes
data and produces the received clock.
Testing the fixed latency features of the SerDes hardware implementation is straightforward
when taking into account that on every initialisation sequence, e.g. for a hardware reset or at
SerDes hardware powerup, we should be able to measure the same phase shift between trans-
mitted and received clock, equal to the fixed number of serial clock cycles shift used to correctly
align the deserialised data stream. Fig. 3 shows a scope acquisition in infinite persistence mode
sampled over 12 h issuing every 10 s a new reset and align. The NaNet3 transmitter parallel
clock (the upper line) maintains exactly the same phase difference with the receiver parallel
clock (the central line) and with the FCM recovered clock (the lower line).
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5 Conclusions and future work

Our NaNet design proved to be an efficient real-time communication channel between the NA62
RICH readout system and GPU-based L0 trigger processor over a single GbE link. With four
10 GbE ports, the currently under development NaNet-10 board will exceed the bandwidth
requirements for the NA62 RICH, enabling integration of other detectors in the GPU-based
L0 trigger. Along the same lines, the deterministic latency link of the NaNet3 customization
makes it a viable solution for the data transport system of the KM3NeT-IT experiment while
the GPUDirect RDMA features imported from NaNet will allow us later on to build a real-time
GPU-based platform, to investigate improved trigger and data reconstruction algorithms.
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Fast event generation on GPU

J. Kanzaki1

1 KEK, Japan

We use a graphics processing unit (GPU) for fast event generation of general Standard
Model (SM) processes. The event generation system on GPU is developed based on the
Monte Carlo integration and generation program BASES/SPRING in FORTRAN. For
computations of cross sections of physics processes all SM interactions are included in the
helicity amplitude computation package on GPU (HEGET) and phase space generation
codes are developed for efficient generation of jet associated processes. For the GPU version
of BASES/SPRING new algorithm is introduced in order to fully exploit the ability of
GPU performance and the improvement of performance in nearly two orders of magnitude
is achieved.

The generation system is tested for general SM processes by comparing with the Mad-
Graph, which is widely used in HEP experiments, and integrated cross sections and distri-
butions of generated events are found to be consistent. In order to realize smooth migration
to the GPU environment, a program that automatically converts FORTRAN amplitude
programs generated by the MadGraph into CUDA programs is developed.
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The Geant-Vector prototype is an effort to address the demand for increased performance in
HEP experiment simulation software. By reorganizing particle transport towards a vector-
centric data layout, the projects aims for efficient use of SIMD instructions on modern
CPUs, as well as co-processors such as GPUs and Xeon Phi.

The geometry is an important part of particle transport, consuming a significant fraction of
processing time during simulation. A next generation geometry library must be adaptable
to scalar, vector and accelerator/GPU platforms. To avoid the large potential effort going
into developing and maintaining distinct solutions, we seek a single code base that can be
utilized on multiple platforms and for various use cases.

We report on our solution: by employing C++ templating techniques we can adapt geom-
etry operations to SIMD processing, thus enabling the development of abstract algorithms
that compile to efficient, architecture-specific code. We introduce the concept of modu-
lar “backends”, separating architecture specific code and geometrical algorithms, thereby
allowing distinct implementation and validation. We present the templating, compila-
tion and structural architecture employed to achieve this code generality. Benchmarks of
methods for navigation in detector geometry will be shown, demonstrating abstracted al-
gorithms compiled to scalar, SSE, AVX and GPU instructions. By allowing users to choose
the most suitable type of processing unit for an application or potentially dispatch work
dynamically at runtime, we can greatly increase hardware occupancy without inflating the
code base. Finally the advantages and disadvantages of a generalized approach will be
discussed.

1 Introduction
Recent evolution of hardware has seen a reawakened focus on vector processing, a concept that
had otherwise lain dormant outside the world of video games while CPU clock speeds still
rode Moore’s law. Most notable is the surge of interest in general purpose GPU programming
(GPGPU), but vector instruction sets have existed on convential CPUs since the introduction
of 3DNow! by AMD [3] and SSE by Intel [4] in 1998 and 1999, respectively.

∗Presenting author (johannes.definelicht@cern.ch).
†Corresponding author (sandro.wenzel@cern.ch).
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To improve performance on modern hardware, it is essential to make use of their vector
processing capabilities to access memory efficiently, whether this means efficient cache access
on CPU or efficient use of memory bandwidth on GPU.

1.1 GeantV

The Geant Vector prototype (GeantV) [1] was started as a feasibility study of the potential for
adding vectorization to detector simulation programs, in order to address an increasing need
for performance in HEP detector simulation software.

At the core of GeantV there is a scheduling engine orchestrating the progress of the sim-
ulation. This scheduler works on particle data packed in structure of arrays (SOA) form for
cache-efficiency and to accommodate SIMD memory access [7]; particles that require similar
treatment are grouped into baskets, which can be dispatched to the relevant components for
vectorized treatment [5]).

The GeantV R&D effort targets multiple platforms for vectorization, including SIMD in-
structions on CPUs (SSE, AVX) and accelerators such as GPUs and the Xeon Phi (AVX512).
Although sometimes limited by the state of compilers, the project pursues platform indepen-
dence to avoid vendor lock-in.

1.2 VecGeom

Navigation and particle tracking in detector geometry is responsible for up to 30%–40% of time
spent on particle transport in detector simulation (this fraction is highly experiment depen-
dent) [2], thus being an important research topic for vectorization in the GeantV prototype.
The main consumers of cycles are the four algorithms shown in Figure 1, which are implemented
separately for each geometrical shape.

VecGeom introduces vectorization techniques in the implementation of a new geometry
modeller. It is a continuation of the USolids [8] effort, a common library for geometrical
primitives, unifying and enhancing the implementations that currently exist in ROOT [9] and
Geant4 [10]. The scalar interfaces of VecGeom are therefore made to be compliant with the
ones of USolids, allowing free interchangeability between the two. VecGeom and USolids are
converging to a single code base.

To accommodate the scheduler of GeantV mentioned above, VecGeom exposes vector signa-
ture operating on baskets of particles. These signatures take SOA objects carrying information
on the particles in the basket, instead of a single set of parameters. Since these interfaces come
in addition to the scalar ones, there is an issue of signature multiplication requiring a lot of
boilerplate code, which will be addressed in Section 2.3.

VecGeom does not rely on vectorization alone to achieve performance. In the spirit of
USolids, the library employs the best available algorithms to solve the problems listed in Fig-
ure 1. This can mean picking and optimizing the best algorithm between existing ones in
ROOT, Geant4 and USolids, or it can mean writing them from scratch if deemed relevant.
When a new shape is implemented, performance is compared directly to that of the existing
libraries. Algorithms are not accepted before their scalar version (in addition to the vectorized
one) outperforms all existing implementations (more on different kernel versions follows in Sec-
tion 2.1). After algorithmic optimization, the library uses a number of additional templating
techniques for performance which are described in Section 2.1 and 2.4.

2 Templates for portability and performance
Templating is at the heart of VecGeom, being involved in every aspect of optimization. The
philosophy is that whenever the parameters of a performance-critical component can be resolved
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Figure 1: Primary problems solved by a geometry library during particle transport in simulation.

at compile-time, or even just if it has a finite set of configurations (see Section 2.4), templates
will be used to generate specialized machine code.

2.1 Thinking in kernels
The approach taken by VecGeom to achieve portability and performance through templates is to
separate performance-critical functionality into small plug-and-play kernels. Each kernel should
have a single and well-defined purpose, delegating subtasks to separate kernels, promoting the
sharing of kernels between algorithms. Kernels are built to operate on a single unit of input,
meaning no explicit vectorization is typically done in them. Instead, vectorization can be
conveyed by the types on which operations are performed (as this will often be a template
parameter), and is described in Section 3. Logical constructs such as branches have to be
abstracted to higher level functions in order to accommodate this. To ensure that kernels can
indeed be shared between different contexts, kernels can live either as free C-like functions or
as static methods of enclosing classes, but should never relate to an object. When an object-
abstraction is useful, classes can instead implement static methods and call them from within
their own methods.

2.2 Architecture abstraction
An important motivation for taking the kernel approach is architecture abstraction. VecGeom is
a performance-oriented library, and as such aims at maximizing hardware utilization by offering
to run scalar and SIMD code on CPU, and also run on accelerators. Rather than writing sep-
arate implementations for each target architecture and multiplying the required maintenance,
VecGeom has opted for a generalized approach. The difference between architectures is isolated
to memory management and the types that are operated on, with the latter being handled by
the kernels. For this, the concept of backends was introduced. Backends represent an architec-
ture to which kernels should compile, and are encapsulated in C++ trait classes. These classes
contain the relevant types to operate on, as well as some static members, such as a boolean to
toggle early returns. Backends are used as a template parameter of kernels that operate on the
provided types, and by overloading higher level functions called on these types, the architecture
specific instructions necessary to perform operations is decided. An example of a backend class
is shown in Listing 1.
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class VcBackend {

public:

typedef Vc:: double_v double_t;

typedef Vc::int_v int_t;

typedef Vc:: double_m bool_t;

static constexpr bool earlyReturns

= true;

};

Listing 1: A C++ trait class
representation of a backend, providing
types to operate on and allowing other
configuration options. Vc is used to
wrap vector instruction sets.

template <class B>

typename B:: double_t DistanceToPlane(

Vector3D <typename B::double_t > const &point ,

Vector3D <typename B:: double_t const &plane) {

typename B:: double_t result;

result = point.dot(plane);

// If behind the point is considered inside

MaskedAssign(result < 0, 0, &result);

return result;

}

Listing 2: Kernel operating on a backend class, such
as the one shown in Listing 1.

2.3 Solving code multiplication

The introduction of the vector interfaces led to a multiplication of signatures necessary for
a shape to implement, as each shape has to provide both the scalar and vector signatures.
Because of the way kernels are designed, this quickly led to large amounts of boilerplate code
that simply called different instantiations of the the same family of templates. These were not
only cumbersome to write for each implemented shape, but also meant a lot of duplicate code
to maintain in the future. To improve this, the curiously recurring template pattern (named by
James Coplien [12]) is employed. This pattern allows a leaf class to inherit from a templated
auxiliary class, passing its own type as a template parameter. The auxiliary class will then
inherit from the appropriate base class and implement a number of methods calling static
methods of the class passed as a template parameter. This can be either the inheriting class
itself or a separate class entirely. Using the interface of VecGeom shapes, this meant that only a
single templated method per algorithm had to be implemented for each shape. The boilerplate
code used to call different configurations was collected in a single global auxiliary class. An
example of this technique is provided in Listing 3.

2.4 Shape specialization

VecGeom defines a set of geometrical shapes. Some parameters describing the shapes have
a significant impact on the algorithms: an angle configuration can eliminate the need for a
trigonometric function, or a tube with no inner radius can just be treated as a cylinder. Cre-
ating separate shape classes for specific configurations would cause the number of primitives
to explode. Instead, VecGeom takes advantage of this behind the scenes by using the concept
of shape specialization. By having kernels template on one or more specialization parameters,
blocks of code are tweaked or removed entirely from the implementation at compile time. This
saves branch mispredictions and register allocation as compared to performing all branches at
runtime. The concept is shown in Listing 4.

To avoid to expose end users to specialization, the instantiation of each configuration is done
by a factory method. This limits specialization to a finite phase space, but hides the specifics
through polymorphism, handing the user an optimized object behind the base primitive’s in-
terface. Specialization happens when shapes are placed into their frame of reference. Volumes
instantiated by other means are not specialized, and will instead branch at runtime.

Figure 2 shows relative benchmarks between the same kernel compiled for three different
scenarios: the unspecialized case where branches are taken at runtime, the specialized case
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template <class B, class S>

class Helper : public B {

public:

virtual double Distance(Vector3D <double > ...) const {

// Implement virtual methods by calling the

// implementation class methods

S:: template Distance <kScalar >(...);

}

virtual void Distance(SOA3D <double > ...,

double *distance) const {

// Generate vector types from the input and loop

// over the kernel

S:: template Distance <kVector >(...);

}

};

Listing 3: Applying the curiously recurring template
pattern to eliminate boilerplate code. A shape inheriting
from the helper class only needs to provide a single kernel
per algorithm, as the helper will use it to implement all
the virtual function required by the interface.

template <bool hollow >

class TubeImplementation {

public:

void Distance (...) {

// Treat outer radius and

both ends

...

if (hollow) {

// Treat inner radius

...

}

}

};

Listing 4: Change or remove
blocks of code at compile-time.
To avoid relying on the optimizer,
an auxiliary function can also be
introduced to explicitly specialize
different cases of a template
parameter.

where unused code has been optimized away at compile time, and the vectorized case treating
four incoming rays in parallel using AVX instructions.

3 Running on multiple architectures

With the proposed kernel design, supporting multiple architecture means to provide the per-
architecture backend trait class, and to write kernels in a generic fashion, letting types lead to
the underlying instructions. Mathematical functions typically work by simple overloading on
input types. Conditional statements need to be handled more carefully, as conditions evaluated
from the input can have different values for each value in the vectors being operated on. This can
be done using masked assignments and boolean aggregation: the overloaded masked assignment
function uses an input condition to only assign input elements to a new value if the condition
evaluates to true for the instance in question; the overloaded boolean aggregation functions
reduce an input condition by aggregators all, any or none. When the input is scalar, these
functions trivially assign the variable or return the conditional variable itself, respectively. An
example of a kernel using a masked assignment is shown in Listing 2.

VecGeom uses the Vc [11] library to target CPU vector instructions. Vc provides types
stored as packed, aligned memory, which are loaded into vector registers. Depending on the
supported instruction set, this can compile to SSE, AVX or AVX512 intrinsics, operating on
2, 4 or 8 doubles at a time, respectively. Since vectorization by Vc is explicit, kernels instanti-
ated with these types are guaranteed to use appropriate vector intrinsics. Figure 2 includes a
benchmark for a kernel compiled to AVX intrinsics by operating on Vc types.

Supporting CUDA is fairly straightforward, as the VecGeom kernel architecture fits well
into a GPU design. Kernel functions are simply annotated with host and device when
compiling with nvcc, making them available to both CPU and GPU as needed. Additionally,
the mask-based coding style described above means that branching is discouraged by design,
showing how the generalized SIMD-oriented approach benefits multiple architectures.
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Once kernels have been instantiated with different backends, it is easy to perform bench-
marks such as the ones shown in Figure 4, comparing performance and scaling on different
architectures. This can also be used for verification purposes: once an algorithm is validated
on one architecture, other architectures can conveniently be validated against this result.

3.1 GPU support

The library support for GPUs was first implemented in CUDA. Although this opposes the desire
to avoid vendor lock-in, it was considered the more productive way forward given the current
state of CUDA and OpenCL compilers.

The support offered is two-fold: shape primitives and their respective kernels are provided
as device functions that can be run from user code, and memory synchronization capabilities
are offered to copy geometries built in main memory to GPU memory. Together this offers
full flexibility to integrate the GPU in user code, whether it be exclusively or as a target for
offloading.

An effort to investigate the use of this approach with OpenCL has been significantly ham-
pered by the lack of support for polymorphism in the current specification.

3.2 Feasibility of architecture independence

Several advantages of architecture independent kernels have been discussed, such as maintain-
ability, hardware utilization and cross-architecture benefits of SIMD data structures. There
are of course disadvantages to this approach, the most prominent being loss of important ar-
chitecture specific optimizations by restricting kernels to use higher-level abstractions. This
is recognized in VecGeom by allowing implementation of template specializations of a given
backend for kernels or overwriting methods (that are otherwise implemented by a helper as
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(a) Distance algorithm, 50 floating point operations
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per kernel execution.

Figure 4: Relative benchmarks of generic kernels run on scalar, AVX and CUDA architectures
on consumer-grade hardware (3.4 GHz Ivy Bridge Core i7 and GeForce GTX 680). Speedup
with respect to the scalar instantiation of the same kernel shown as the black dashed line.
The GPU needs considerably more floating point operations than the CPU to efficiently hide
memory latency.

demonstrated in Section 2.3) in leaf classes. In this way, the code base can be extended to
include specific implementations without sacrificing the benefits of having general kernels.

Since kernels often template on one or more parameters, and to encourage compiler opti-
mizations in general, all kernels are implemented in header files. In performance intensive code,
function calls (virtual function calls in particular) have proven to be a significant performance
liability, amplified by the design that encourages high separation of functionality. Avoiding this
comes with at least two (correlated) penalties, being compilation time and binary file size. Al-
though this is typically an acceptable trade-off, the impact can be significant, and is monitored
as development progresses to ensure a desirable balance.

4 Summary

Through the philosophy of small, reusable and general kernels, and the creation of abstract
backends, VecGeom has achieved a small code base with a large degree of portability, support-
ing both CPU and accelerators. Architecture specific optimizations remain possible by using
template specialization and method overwriting.

Benchmarks were presented that demonstrate benefits of vectorization achieved in a general
fashion by employing the Vc library, and the gain in the performance obtain by specializing
shapes at compile time to remove unused code (all configurations instantiated from the same
templated kernel).

GPU support is offered through device instantiations of kernels and memory synchronization
API, allowing exclusive or offloading use by an external scheduler.
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Cutting edge statistical methods involving Monte-Carlo integrations are commonly used in
the LHC analysis chains. Dealing with high dimensionality integration, the computing time
can be a bottleneck to deploy such statistical methods at large scales. In this paper we
present the first bricks to build an HPC implementation of the well known vegas algorithm.
Thanks to the open programming standards

OpenCL and MPI, we target to deploy such tool on cluster of nodes handling various hardware
like GPGPU or ’many-core’ computing accelerators.

1 Motivations

Multidimensional integration based on Monte-Carlo (MC) techniques [1] are widely used in High
Energy Physics (HEP) and numerous other computing domains. In HEP, they naturally arise
from the multidimensional probability densities or from the likelihoods often present in the
analysis. Due to computing intensive integrations and large data sets containing millions of
events, the situation is difficult for an analysis team if the processing of all samples exceeds 2-3
weeks (elapsed time).

Today, HPC programming requires dealing with computing accelerators

like GPGPU or ’many-core’ processors, but also taking into account the development portabil-
ity and the hardware heterogeneities with the use of open programming standards like OpenCL.
Among the available MC algorithms (miser, Markov Chain, etc.) the choice has been driven by
the popularity and the efficiency of the method. The ’vegas’ algorithm [2, 3] is frequently used
in LHC analyses as it is accessible from the root environment [4], while providing reasonably
good performance.

The parallel implementation of vegas for computing accelerators presents no major ob-
stacle [5], even though some technical difficulties occur when dealing with portability and
heterogeneity, mainly due to the lack of libraries and development tools (like

performance analysis tools).

Combining MPI and OpenCL, we present a scalable distributed implementation. Performance
will be shown on different platforms (NVidia K20, Intel Xeon Phi) but also on heterogeneous
platform mixing CPUs, and different kinds of computing accelerator cards.

The presented work is a canvas to integrate various multidimensional

functions for different analysis processes. It is planned to integrate and exploit this imple-
mentation in the future analyses by the CMS (Compact Muon Solenoid) experiment at CERN.
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2 Software design

2.1 Introduction to the VEGAS MC algorithm

The root-based MC integration environment is popular within the High Energy Physics com-
munity. This environment actually provides an encapsulation of the GNU Scientific Library
(GSL) MC integration functions [6]. GSL offers 3 kinds of MC algorithms : classical (or plain),
miser, vegas. Since vegas converges more rapidly than the two other methods, and is widely
used in the CMS collaboration data analysis, we will focus on this MC integration method.

A High-dimensional integral I =
∫
dn~x f(~x) can be approximated by evaluating f(~x) at M

points ~x, drawn randomly in the domain Ω with the probability density p(~x):

I = fp =
V

M

∑

~x

f(~x)

p(~x)
, V is the volume of Ω,

with its estimated variance σ2 :

σ2 =
f2p − (fp)

2

M − 1
' σ2, where f2p =

V

M

∑

~x

(
f(~x)

p(~x)
)2.

The classical MC integration method (plain in GSL library) uses a uniform density probability
p(~x) = cst which ensures the process’ convergence: limM→+∞ fp −→ I. Nevertheless, the
convergence is slow and requires a great number of points M to obtain a good approximation
of I.

In the vegas algorithm, two main ideas are used to reduce the variance and, as a result,
accelerate the convergence of the estimated integral I.

1. Importance sampling: the variance tends to zero if the probability density has the form

p(~x) ∝ |f(~x)| (quick justification for f(~x) > 0, f(~x)
p(~x) = cst,⇒ σ2 = 0, see [1] for more

details) . In other words, this means that the function sampling must be concentrated on
the largest magnitudes of the function f(~x). Starting with p(~x) uniform, p(~x) gradually

approximates |f(~x)|cst , thanks to the contributions of the different function evaluations.

2. Stratified sampling: this other strategy samples the highest variance domains in Ω, then
subdivides it in sub-domains to decrease the local variance and thus the global variance of
|f(~x)|. With this strategy, the system converges with a sub-domain partition of Ω which
minimizes the variance σ2. In GSL implementation, the probability distribution p(~x) is
updated with the local sub-domain variance σ2(~x); these sub-domains are called boxes
and are used to discretize p(~x).

Depending on the number of points to evaluate (set by user), vegas chooses Importance
sampling or Stratified Sampling according to the sampling density of the domain.

2.2 Parallelism and OpenCL considerations

The vegas algorithm can be sketched with 3 main embedded loops as shown in Fig.: 1. The
internal loop evaluates the function f(~x) for M random points ~x, according to the probability
distribution pk−1(~x). The accumulated values of f(~x) give the estimated integral Ik. In the
same loop, the estimated variance σk

2, as well as the new probability distribution pk(~x), are
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updated. Several evaluations of the Ik integral are performed in the intermediate loop, in order
to compute the Chi-square χ2 by degree of freedom, thus determining the consistency of the
sampling. Finally, the outer-loop is used to control the integral convergence (I, σ2, χ2).

Compute: I =
∫
Ω f(~x) dnx, on

a d-dimensional integration domain Ω
Loop until convergence (σ2, χ2)

Loop internal iteration k
pk(~x)← 0;
Loop over N points ~x ∈ Ω

~x← rand();
f̄ ← f̄ + f(~x);
update Ik, σk

2, pk(~x);
End Loop

update I, σ2, χ2;
End Loop

End Loop

Figure 1: the vegas algorithm. The integral
I of f(~x) is evaluated on the d-dimensional do-
main Ω. The standard deviation σ2 and the χ2

can be used as convergence criteria. pk(~x) is the
probability distribution discretized on a grid.

From the parallelization point of view, the
most computing intensive loop, i.e. the in-
ternal one, must be spread among different
computing units, handling the shared vari-
ables Ik, σk

2, pk(~x) with care. It is well-
known that opening a parallel region (with
the OpenMP formalism) on the internal loop
is much less efficient than opening a parallel
region on the outer loop. In the same way,
OpenCL (or CUDA ) kernels must be as large as
possible to avoid substantial overhead time
to launch kernels and unnecessary work to
split the initial kernel in several kernels. It is
worth mentioning, in our algorithm, the em-
bedded loops must be split in two kernels at
the reduction step (Ik, . . .) to synchronize the
global memory between the different work-
groups. As a result, split kernels will generate
unexpected overhead time to launch and syn-
chronize : number convergence iterations×
number internal iterations× 2 kernels.

Writing and managing a single kernel
which takes into account all steps of the ve-
gas algorithm, presents no difficulty. It only requires that each computing element evaluates
several points contributing to the integral. In addition it substantially increases the computing
load per computing unit. However, the only way to synchronize the shared variables is to per-
form the computations in a single work-group (or block in CUDA). Although this solution works
well on Intel Xeon Phi (thanks to OpenCL 1.2), it does not work properly on NVidia hardware
for 2 reasons:

• The work-group size is limited (hardware limit, generally 1024).

• Two OpenCL kernels cannot be run simultaneously on NVidia GPGPUs (the situation is
even more dramatic, two OpenCL kernels cannot be run simultaneously on two different
GPGPUs in the same process).

With such limitation on NVidia OpenCL driver we were constrained to split the kernel and
lose efficiency.

2.3 OpenCL and MPI event dispatchers

The expected speed-up factor of a single accelerator card will not be sufficient to minimize user
waiting time when dealing with data-sets containing each 106 events to process. The CMS
analysis team cannot afford to wait for long processing chains to end (each chain needs several
weeks to be processed). With this requirement, it is mandatory to use several accelerator cards
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simultaneously, and even more, using several nodes themselves handling several accelerator
cards to build a high performance computing application.

Platform 1

GPGPU GPGPU

clEvent clEvent

Device 1,2

Platform 2

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

clEvent

Device 1

Platform N

CPU CPU

CPU CPU

clEvent

clEvent

clEvent

clEvent

Device 1,2,3,4

MPI Event
Dispatcher

OpenCL Event
Dispatcher

Events

Ev
en
ts

E
ve
n
ts Events

Figure 2: OpenCL dispatcher: the events are dis-
patched to different device queues. The dif-
ferent kernels to be processed are run asyn-
chronously. The synchronization is performed
thanks to OpenCL events

To gather the computing power available,
a two-level event dispatcher has been imple-
mented: the OpenCL event dispatcher dealing
with the distribution of events among sev-
eral devices (i.e. several accelerator cards and
CPUs) and the MPI event dispatcher to dis-
tribute events among the computation nodes.

The OpenCL event dispatcher takes advan-
tage of the OpenCL abstract model, in which
queues manage kernels to be executed on the
hosted devices. In this way, we can benefit
directly of the CPUs power without adding a
multi-thread programming paradigm to build
a hybrid application.

The OpenCL dispatcher feeds the device
with an event to be processed, as soon as a
queue is free. All copies from host node to
accelerator cards and all kernels are launched
asynchronously, with a dependence graph
built thanks to OpenCL events. The computa-
tion of the integral is considered to be finished
when the copy of the result - from the device
to the host - is completed.

The second dispatcher level, called MPI

event dispatcher aggregates computing power
form different nodes by distributing sets of events among several MPI processes (generally one
MPI process per node). In the same way as the OpenCL dispatcher, the master MPI process sends
a set of events to be processed, as soon as a worker MPI process is idle. Then, the MPI worker
(or MPI master) delegates the treatment of its event set to the OpenCL dispatcher.

3 Performance studies

3.1 Benchmark environment

Product Version/Options

Compiler icc-13.0.1 / -O3

MPI OpenMPI 1.6.5
OpenCL Intel 1.2
OpenCL NVidia 1.1

Table 1: Compiler and library
versions.

As far as the integration is concerned, we choose for this
benchmark the special function sinus integral to test the
adaptive scheme for an oscillating function, whose result is
known:

I =

∫ 2π

0

n∏

i=0

sin(xi)

xi
dnx ' 5.7360, withn = 5.

Often, the integration is done iteratively to control the
convergence towards acceptable values of the standard de-
viation σ and chi-square χ2. In this test case, we want to
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perform a fixed number of iterations, evaluating 5 × 105 points per integration. For these pa-
rameters, vegas draws 2 points per box (discretized volume element of pk(~x)), this means that
only 12 boxes are used per dimension for the grid integration domain (2× 125 = 497664).

Three kinds of clusters are available on our platform, called GridCL, for benchmarking:

• Two nodes connected with an InfiniBand link, each hosting 2 Intel Xeon E5-2650

processors (8 cores for each processor rated at 2.0 GHz). In addition, each node hosts 2
NVidia K20M GPGPU cards.

• Same as above concerning the node characteristics. Each node hosts 2 Intel Xeon Phi

5110P accelerator cards.

• The last node based on two Intel Xeon E5-2650 v2 (Ivy Bridge) processors (8 cores for
each processor rated at 2.6 GHz) hosts 6 NVidia Titan GPU cards.

The software configuration used to build the vegas hybrid application is presented in Tab. 1.

3.2 Results

Speed-up GSL OCL OCL OCL OCL MPI

(1) (2) (3) (4) (5) (6)

# CPUs 32 32 - - 32 -
# accelerators - - 1 2 2 2/6

K20M node 18.5 50.0 56.0 56.0 94.5 110
Xeon Phi node 18.5 50.0 27.3 54.1 80.3 -
Titan node 18.1 39.1 55.9 55.6 95.3 328

Table 2: Speed-up values obtained with different configu-
rations (the reference time to calculate the speed-up val-
ues is the computing time obtained with the GSL library):
(1) using GSL library executed on 32 processors (in fact 16
physical processors, 32 with hyper-threading), (2) OpenCL
version on the 32 processors, (3) OpenCL version on a sin-
gle accelerator card, (4) OpenCL with 2 accelerator cards,
(5) OpenCL with all devices including CPUs, (6) 2 MPI pro-
cesses (6 MPI processes on the Titan node), each handling
one accelerator card (with OpenCL).

As shown in Tab. 2, the OpenCL

implementation of vegas presents
very good performance on CPUs

(column 2). This improvement is
not only accountable to OpenCL par-
allelization, but also to the Intel

OpenCL implementation which both
parallelizes and vectorizes the ker-
nels, as Intel was claiming [7] (a
speed-up of 18.5 is obtained with 32
MPI instantiations of the GSL imple-
mentation - column 1).

The acceleration obtained with
the NVidia K20M card seems to be
good, but compared with CPUs per-
formance, the gain is not excel-
lent. As announced in paragraph
section 2.2, no gain is obtained
with two K20M devices (column 4),
assuming that the NVidia OpenCL

driver does not handle simultaneously several cards properly. Fortunately, we can bypass the
lack of functionality, by launching 2 MPI processes each handling one device (see column 6).

Concerning Intel Xeon Phi, the speed-up shows that we do not use theses accelerators
optimally. We will rely on the Intel performance analysis software VTune to highlight the
bottleneck when we will start to optimize our kernels. However, the Intel OpenCL driver deals
with the 2 cards simultaneously (column 4). Considering all computing devices, good overall
performance is obtained (column 5), thanks to the efficiency of OpenCL CPUs.

Benchmarking the computing node holding 6 NVidia Titan cards, the performance profile
is the same as above : moderated speed-up for one card (speed-up = 56). With all 6 cards the
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speed up value is identical due to the NVidia driver issue, while the speed-up reaches 328 with
6 MPI processes.

The OpenCL and MPI event dispatchers provide good efficiency (see columns 5 and 6) even
if the efficiency decreases when using several nodes. A time sampling has been added into
the application to trace the event distribution, the overheads and the idle zones for future
optimization work.

4 Conclusion

This preliminary version of our high performance MC integration implementation, based on
OpenCL and MPI, already offers good efficiency on CPUs and OpenCL event dispatchers. The
application however still needs several improvements to extract more computing power from
accelerator cards, and requires tuning load-balancing parameters to efficiently run on MPI event
dispatchers. Already substantial speed-up (> 300 - compared with sequential integrations based
on GSL library) has been reached on the GridCL node hosting 6 NVidia Titan cards.

Before improving the application with all potential identified optimizations, we are going
to focus our activity on a real application currently designed by the LLR CMS analysis team.
Based on vegas integrations, the matrix-element methods (MEM) [8, 9], is a well known powerful
approach in particle physics to extract maximal information from the events. Knowing that
MEM require a huge computing power (processing one event can take 60s), we aim to provide a
drastic speed-up to the MEM processing chain.
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The matrix element method utilizes ab initio calculations of probability densities as power-
ful discriminants to extract small signals from large backgrounds at hadron collider exper-
iments. The computational complexity of this method for final states with many particles
and degrees of freedom sets it at a disadvantage compared to supervised classification
methods such as decision trees, k nearest-neighbour, or neural networks. We will present
a concrete implementation of the matrix element technique in the context of Higgs boson
analysis at the LHC employing graphics processing units. Due to the intrinsic paral-
lelizability of multidimensional phase space integration, dramatic speedups can be readily
achieved, which makes the matrix element technique viable for general usage at collider
experiments.

1 Introduction

The matrix element method (MEM) in experimental particle physics is a unique analysis tech-
nique for characterizing collision events. When used to define a discriminant for event classifi-
cation, it differs from supervised multivariate methods such as neural networks, decision trees,
k-NN, and support vector machines in that it employs unsupervised ab initio calculations of
the probability density Pi that an observed collision event with a particular final state arises
from 2 → N scattering process i. Furthermore, the strong connection of this technique to the
underlying particle physics theory provides key benefits compared to more generic methods:

1. the probability density Pi directly depends on the physical parameters of interest;

2. it provides a most powerful test statistic for discriminating between alternative hypothe-
ses, namely Pi/Pj for hypotheses i and j, by the Neyman-Pearson lemma;

3. it avoids tuning on unphysical parameters for analysis optimization1;

4. it requires no training, thereby mitigating dependence on large samples of simulated
events.

The MEM was first studied in [1] and was heavily utilized by experiments at the Tevatron for
W helicity [2] and top mass [3, 4] measurements, and in the observation of single top production

1Rather, optimization is determined by theoretical physics considerations, such as inclusion of higher order
terms in the matrix element, or improved modeling of detector resolution.
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[5], for example. It has also been used in Higgs searches at the Tevatron [6] and at the Large
Hadron Collider (LHC) by both CMS [7] and ATLAS [8] collaborations. The MEM has also
been extended in a general framework known as MadWeight [11].

The MEM derives its name from the evaluation of Pi:

Pi =
1

σi

∑

flavor

∫

Vn

M2
i (Y)

f1(x1, Q
2) f2(x2, Q

2)

|~q1| · |~q2|
dΦn(q1 + q2; y1, .., yn), (1)

where Mi is the the Lorentz invariant matrix element for the 2→ n process i, Y is shorthand
notation for all the momenta ~y of each of the n initial and final state particles, f1 and f2 are the
parton distribution functions (PDF’s) for the colliding partons, σ is the overall normalization
(cross-section), and

dΦn(q1 + q2; y1, .., yn) = (2π)4δ4(q1 + q2 −
n∑

i=1

yi)

n∏

i=1

d3yi
(2π)32Ei

(2)

is the n-body phase space term. The momenta of the colliding partons are given by q1 and q2,
and the fractions of the proton beam energy are x1 and x2, respectively. The sum in Equation
(1) indicates a sum over all relevant flavor combinations for the colliding partons.

The association of the partonic momenta Y with the measured momenta X is given by a
transfer function (TF), T (~x; ~y) for each final state particle. The TF provides the conditional
probability density function for measuring ~x given parton momentum ~y. Thus,

p̂i =

∫
Pi T (X;Y) dY, (3)

is the MEM probability density for an observed event to arise from process i assuming the
parton → observable evolution provided by the TF’s. For well-measured objects like photons,
muons and electrons, the TF is typically taken to be a δ-function. For unobserved particles
such as neutrinos, the TF is a uniform distribution. The TF for jet energies is often modeled
with a double Gaussian function, which accounts for detector response (Gaussian core) and
also for parton fragmentation outside of the jet definition (non-Gaussian tail). To reduce the
number of integration dimensions, the jet directions are assumed to be well-modeled so that
T (θx, φx; θy, φy) = δ(θx − θy)δ(φx − φy).

Despite the advantages provided by the MEM enumerated above, an important obstacle to
overcome is the computational overhead in evaluating ≥ 1 multi-dimensional integrals for each
collision event. For complex final states with many degrees of freedom (eg., many particles
with broad measurement resolution, or unobserved particles), the time needed to evaluate p̂i
can exceed many minutes. In realistic use cases, the calculations must be performed multiple
times for each event, such as in the context of a parameter estimation analysis where p̂i is
maximized with respect to a parameter of interest, or for samples of simulated events used
to study systematic biases with varied detector calibrations or theoretical parameters. For
large samples of events, the computing time can be prohibitive, even with access to powerful
computer clusters. Therefore, overcoming the computation hurdle is a relevant goal.

This paper presents an implementation of the MEM using graphics processing units (GPU’s).
The notion of using GPU’s for evaluating matrix elements in a multidimensional phase space
has been investigated previously [12], although not in the context of the MEM. In order to
ascertain the improvements in computing time when utilizing GPU’s, the MEM was applied
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in the context of a simplified tt̄H(→ bb̄) search in LHC Run II. Studying the tt̄H process is
important in its own right [13, 14, 15, 16, 17]. Due to the complexity of the final state for this
process, it is also an interesting use case in which to study the feasibility of the MEM with the
improvements from highly parellelized multi-dimensional integration.

The note is organized as follows: in Section 2, the applicability of GPU architectures to the
computational problem at hand is briefly outlined. In Section 3 a simplified tt̄H analysis is
presented, which will be used to benchmark the improved computational performance afforded
by modern GPU’s. In Section 3.1 the specific implementation is outlined together with a
summary of the results obtained from a number of GPU and CPU architectures.

2 Parallelized Integrand Evaluation

For dimensions ≥ 3, evaluation of multidimensional integrals is typically only feasible using
Monte Carlo methods. In these methods, the integrand

I =

∫

Vm

f(~x) d~x (4)

is approximated by a sum over randomly sampled points in the m-dimensional integration
volume Vm

SN ≡ Vm
1

N

N∑

i=1

f(~xi)

︸ ︷︷ ︸
≡ f

, (5)

which converges to I by the law of large numbers. For all Monte Carlo integration algorithms,
there is a trivial parallelization that can be achieved by evaluating the integrand f(xi) at points
{xi}i=1,..,N simultaneously, since the evaluation of the integrand at each point xi is independent
of all other points {xj}j 6=i.

This mode of parallel evaluation is known as data parallelism, which is achieved by concur-
rently applying the same set of instructions to each data element. In practice, evaluating the
functions used in the MEM involves conditional branching, so that the integrand calculation at
each xi does not follow an identical control flow. Nevertheless, it is instructive to proceed with
the ansatz of strict data parallelism.

Data parallelism maps very well to the single instruction, multiple data (SIMD) architecture
of graphics processing units (GPU’s). Modern GPU’s contain many individual compute units
organized in thread units. Within each thread unit, all threads follow the same instruction
sequence2, and have access to a small shared memory cache in addition to the global GPU
memory.

The advent of general purpose programming on GPU’s (GPGPU) has vastly increased the
computing capability available on a single workstation, especially for data parallel calculations
such as in the MEM. Two languages have gained traction for GPGPU, namely CUDA [20]
(restricted to GPU’s manufactured by NVidia) and OpenCL [21]. Both languages are based on
C/C++3.

2This has implications for code with complicated control flow, since threads will be locked waiting for other
threads in the same unit to be syncronized in the instruction sequence. Careful tuning of the MEM function
control flow and the thread unit sizes may improve the performance.

3In this work, the AMD Static C++ extensions to OpenCL [22] are used.
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3 tt̄H(→ bb̄) Search

The fact that the Higgs coupling to the top quark is ≈ 1 hints at a special role played by the
top quark in electroweak symmetry breaking. Analysis of tt̄H(→ bb̄) production at the LHC
can provide a powerful direct constraint on the fermionic (specifically, the top) couplings of
the Higgs boson, with minimal model-dependence. The dominant backgrounds to this process,
assuming at least one leptonic top decay, arise from the irreducible tt̄bb̄ background as well
as the tt̄cc̄ and tt̄jj backgrounds via ‘fake’ b-tagged jets. The association of observed jets to
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Figure 1: Representative Feynman diagrams for tt̄H(→ bb̄) production (left) and the irreducible
tt̄bb̄ background (right) in the dilepton channel.

the external lines of the leading order (LO) Feynman diagrams in Figure 1 also gives rise to a
combinatoric dilution of the signal, since there is an increased probability that a random pair
of b partons in a tt̄bb̄ event will have mbb ′ ≈ mH . For the fully hadronic tt̄ decay, there are
4! × 4! / 2= 288 combinations, assuming fully efficient b-tagging. This benchmark study is
performed predominantly for the dileptonic tt̄ decay mode, to showcase the application of the
method for a very complex final state and also to reduce the large QCD backgrounds.

For the dilepton channel, the observable signature of the final state is bb̄`¯̀ + /ET , where
/ET = ~pνT + ~pν̄T . It is not possible to constrain the z components of the neutrino momenta, and
using transverse momentum balance removes only two of the remaining four degrees of freedom
from the x and y components. Due to the broad resolution of the measured jet energy, there
are also four degrees of freedom for the energy of the four b quarks in the final state, so that
the MEM evaluation implies an 8-dimensional integration:

p̂i =
1

σi

∑

jet comb.

∑

flavor

∫
M2

i (Y)
f1(x1, Q

2) f2(x2, Q
2)

|~q1| · |~q2|
Φ · (6)

δ
(
pνx − /E

x
T − pν̄x

)
δ
(
pνy − /E

y
T − pν̄y

)
d3~pν d

3~pν̄

Njet=4∏

j=1

T (Ejet
j ;Ej) · (E2

j sin θj) dEj ,

where Φ = (2π)4δ4(q1 +q2−
∑n
i=1 p

i
y)
∏n
i=1

1
(2π)32Ei

, and the integrals over the lepton momenta

are removed by assuming infinitesimal measurement resolution. The outer sum is over all
permutations of assigning measured jets to partons in the matrix element. A transformation
to spherical coordinates has been performed d3~p → p2 sin(θ) dp dθ dφ for the jets, and E is set
to |p|.
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The behaviour of the matrix element function M(Y) is strongly influenced by whether or
not the internal propagators are on shell. It is difficult for numerical integration algorithms to
efficiently map out the locations in momentum space of the external lines for which the internal
lines are on shell. Therefore, it is advantageous to transform integration over the neutrino
momenta to integrals over q2 (where q is the four momentum) of the top quark and W boson
propagators, so that the poles in the integration volume are along simple hyperplanes. This
leads to the following coupled equations:

/Ex = pνx + pν̄x
/Ey = pνy + pν̄y

q2
W+ = (E`+ + Eν)2 − (p`

+

x + pνx)2 − (p`
+

y + pνy)2 − (p`
+

z + pνz)2

q2
W− = (E`− + Eν̄)2 − (p`

−
x + pν̄x)2 − (p`

−
y + pν̄y )2 − (p`

−
z + pν̄z )2 (7)

q2
t = (Eb + E`+ + Eν)2 − (pbx + p`

+

x + pνx)2 −
(pby + p`

+

y + pνy)2 − (pbz + p`
+

z + pνz)2

q2
t̄ = (Eb̄ + E`− + Eν̄)2 − (pb̄x + p`

−
x + pν̄x)2 −

(pb̄y + p`
−
y + pν̄y)2 − (pb̄z + p`

−
z + pν̄z)2,

which have been solved analytically in [23]. For the tt̄H(→ bb̄) process, there is an additional
very narrow resonance from the Higgs propagator. For the same reasoning as above, the fol-
lowing transformation of variables for E1 and E2 are employed, which are the energies of the
b-quarks from the Higgs decay, respectively:

f = (E1 + E2)

m2
H = (E1 + E2)2 − |~p1|2 − |~p2|2 − 2 |~p1| |~p2| cos ∆θ1,2, (8)

where |~p| =
√
E2 −m2. Figure 1 highlights the internal lines which are used in the integration.

3.1 Analysis and Results

The evaluation of the integrand in Equation (6) is broken into components for the matrix
element M(Y), the PDF’s, the TF’s and the phase space factor. Each of these components is
evaluated within a single GPU “kernel” program for each phase space point. Code for evaluating
M is generated using a plugin developed for MadGraph [24]. This plugin allows one to export
code for an arbitrary 2→ N process from MadGraph to a format compatible with OpenCL,
CUDA, and standard C++. This code is based on HELAS functions [25, 26]. Compilation for
the various platforms is controlled with precompiler flags. Model parameters, PDF grids and
phase space coordinates are loaded in memory and transferred to the device4 (GPU) whereafter
the kernel is executed. The PDF’s are evaluated within the kernel using wrapper code that
interfaces with LHAPDF [27] and with the CTEQ [28] standalone PDF library. The PDF data is
queried from the external library and stored in (x,Q2) grids for each parton flavor (d, u, s, c, b),
which are passed to the kernel program. The PDF for an arbitrary point is evaluted using
bilinear interpolation within the kernel. The precision of the interpolation is within 1% of the

4In the case of CPU-only computation, the transfer step is unnecessary.
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Configuration Details Peak Power Cost (USD, 2014)
CPU Intel Xeon CPU E5-2620 0 @ 2.00GHz (single core) using gcc 4.8.1 95W 400
CPU (MP) Intel Xeon CPU E5-2620 0 @ 2.00GHz (six cores + hyperthreading) using AMD SDK 2.9 / OpenCL 1.2 95W 400
GPU AMD Radeon R9 290X GPU (2,816 c.u.) using AMD SDK 2.9 / OpenCL 1.2 on Intel Xeon CPU E5-2620 295W 450
GPUx same configuration as GPU, but with minor code modifications to accomodate GPU architecture

Table 1: Details of the hardware configurations used to benchmark the MEM for GPU and
(multicore) CPU’s. The peak power is as reported by the manufacturer. The cost is listed
in USD for the CPU or GPU only. For the GPU configuration, the code was identical to
that used for the CPU configurations. For the GPUx configuration, the code was modified to
accommodate the specific GPU architecture.

values directly queried from the PDF library. An event discriminant D is constructed as

D = log10

(
p̂tt̄H
p̂tt̄bb̄

)
(9)

and evaluated for a sample of signal (tt̄H) and background (tt̄bb̄) events generated in Mad-
Graph and interfaced with Pythia for the parton shower, [29] using the so-called Perugia tune
[30]. Jets are reconstructed using the anti-kT algorithm described in [31] with width parameter
d = 0.4. Any jets overlapping with leptons within d are vetoed, and b-tagging is performed
by matching jets to the highest energy parton within ∆R =

√
∆η2 + ∆φ2 < d. A transfer

function is defined for b-jets by relating the jet energy to the energy of the matched parton
using a double Gaussian distribution.

The analysis is performed at two levels, namely

1. parton level: using the parton momenta from MadGraph-generated events directly (by
assuming δ-function TF’s for all final state particles), and averaging over all permutations
for the assignment of the b partons in each event;

2. hadron level: using the outputs from Pythia and selecting events with four b-jets, aver-
aging over all the permutations and integrating over the full 8-dimensional phase space
as in Equation (6).

The convenient PyOpenCL and PyCUDA [32] packages are used to setup and launch
OpenCL and CUDA kernels. Using OpenCL one can also compile the MEM source for a CPU
target, and is thereby able to parallelize the MEM across multiple cores (see Table 1). In order
to perform the numerical integration, a modified Vegas implementation in Cython/Python [33]
is used. This implementation has a number of improvements compared to previous versions
and, importantly, interfaces with the provided integrand function by passing the full grid of
phase space points as a single function argument. This allows one to pass the whole integration
grid to the OpenCL or CUDA device at once, which facilitates the desired high degree of paral-
lelism. The parton and hadron level MEM is performed with various hardware configurations
specified in Table 1. In all configurations except the one labelled GPUx, the MEM code used
is identical. For the GPUx case, minor modifications were made to replace particular array
variables with sets of scalar variables.

3.1.1 Parton Level

Here, the evaluation is performed using the parton momenta, so that all the transfer functions
become δ-functions, and the evaluation of D does not involve any numberical integration. In
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this benchmark, all possible combinations of b-quarks in the final state are summed. The
distribution of D for the signal and background samples is shown in Figure 2. A comparison
of the time needed to evaluate p̂i for all events is shown in Table 2 for various CPU and GPU
configurations.

Process CPU CPU (MP) GPU GPUx CPU / GPUx

signal 255 29 1.8 0.7 364

background 661 91 12 5.4 122

Table 2: Processing time, in seconds, required to evaluate the matrix elements for 105 events
at parton level, for the various configurations detailed in Table 1. Using GPU’s reduces the
processing time by a factor greater than 120× compared to a single CPU core for the tt̄bb̄ matrix
element.

3.1.2 Hadron Level

The analysis at hadron level is closer to what can be optimally achieved in a real world collider
experiment. Only the momenta of stable, interacting particles are accessible, and the jet energy
resolution must be taken into account. The calculation of p̂i requires evaluating the eight-
dimensional integral in Equation (6). The integration variable transformation for tt̄H and tt̄bb̄
matrix element integrals presented in Section 2 are used. At each phase space point in the sum
of Equation (5), the /ET used in Equation (7) is defined as

/Ex,y = −


p`+x,y + p`

−
x,y +

∑

j ∈ jets

pjx,y


 . (10)

The processing times per event for the hadron level MEM calculation are shown in Table 3.
The relative improvement for the GPU is significantly reduced compared to the parton level
analysis. This arises from a number of differences for this scenario. First, the VEGAS stratified
sampling and adaptive integration algorithm is run on the CPU in all cases, which damps the
GPU improvements in the integrand evaluation. Second, in the evaluation of the integral of
Equation (6), significant additional complexity is demanded to solve Equations (7) and (8).
Due to the cancellation of large coefficients in these solutions, double floating point precision is
required, which reduces the GPU advantage since double precision calculations are performed
significantly slower on most GPU’s. Furthermore, the number of intermediate variables is
significantly larger, which is found to increase the number of processor registers used. Since the
number of registers available to each thread unit (or “wavefront” in the parlance of OpenCL)
is limited to at most 256 for the GPU used in this study, the overall duty factor of the GPU is
significantly reduced, to as low as 10%, since the full number of threads available in each block
could not be utilized. It is anticipated that careful tuning of the code to accommodate GPU
architecture could greatly improve the relative performance.

3.2 Further Results in the Lepton + Jets Channel

A brief summary is given on the evaluation of the GPU performance on a recent implementation
of the tt̄H(→ bb̄) search in the lepton + jets channel. The corresponding Feynman diagrams for
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Figure 2: The event discriminant D for tt̄H (filled) and tt̄bb̄ (dashed line) events at parton level
(left) and at hadron level (right). The distributions are normalized to unit area.

Process CPU CPU (MP) GPU GPUx CPU / GPUx

signal 312 36.2 7.5 5.9 52.0

background 405 55.1 9.1 7.1 57.3

Table 3: Processing time required to evaluate the matrix elements for a single event at hadron
level, for the various configurations detailed in Table 1. Note that this includes a full 8-
dimensional integration over phase space for each event. Using GPU’s reduces the processing
time by at least 50×.

signal and background are shown in Figure 3. In this case, only a 6-dim phase space integral
has to be evaluated (instead of 8-dim in the case of the dilepton final state). The variable

q 
 

q’ 

q 
 

q’ 

Figure 3: Representative Feynman diagrams for tt̄H(→ bb̄) production (left) and the irreducible
tt̄bb̄ background (right) in the lepton + jets channel

transformation is much simpler. The results of the new study are summarized in Table 4.
Using GPU’s reduces the processing time by at least 100× for the lepton + jets final state. The
overall duty factor of the GPU is increased compared to the dilepton analysis to about 20%.
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Process CPU CPU (MP) GPUx CPU / GPUx

signal ≈1000 91 7.9 125

background ≈3800 347 35 109

Table 4: Processing time required to evaluate the matrix elements for a single event at hadron
level, for the various configurations detailed in Table 1. Note that this includes a full 6-
dimensional integration over phase space for each event. Using GPU’s reduces the processing
time by at least 100×.

4 Conclusions

The matrix element method can be computationally prohibitive for complex final states. The
tt̄H(→ bb̄) benchmark study in this paper has shown that by exploiting the parallel architec-
tures of modern GPU’s, computation time can be reduced by a factor ≥ 100 for the matrix
element method, at about 10-20% utilization of the GPU. It is anticipated that careful code
modifications can add significant further improvements in speed. This can be the subject of
future study. However, even with the performance gains in this benchmark study, it is clear that
for the MEM, the computing time required with O(10) GPU’s is equivalent to a medium-sized
computing cluster with O(400) cores (along with its required support and facilities infrastruc-
ture). This provides the potential to apply the method generally to searches and measurements
with complex final states in experimental particle physics.

The programs described in this work are generic in nature, such that GPU-capable MEM
code can be readily derived for an arbitrary 2 → N process with only few modifications to
accommodate transformations of variables or transfer functions. It is envisaged that future
work can automate the inclusion of NLO matrix elements and transformations of variables (as
in MadWeight) for the matrix element method, thereby providing an optimal methodology
for classification and parameter estimation in particle physics.
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Fast 3D particle tracking has been a challenge in particle physics for a long time. In
particular, the data rate from emulsion detectors is recently about 10-100 TB/day from
one microscope. Real-time 3D volume processing and track reconstruction of such a huge
data need a large amount of computation, in which the GPU technology plays an essential
role. A fast 4π solid angle particle tracking based on GPU technology has been developed
for the reconstruction of antiproton annihilations. The results in speed are compared
between the multithread CPU processing and the multi-GPU one. By employing multiple
GPUs, about two orders of magnitude faster processing has been achieved with an excellent
tracking performance in comparison with a single-thread CPU processing.

1 Introduction

The reconstruction of particle trajectory (or tracking) is one of the fundamental subjects in
experimental particle physics. Thanks to the development of detector technology, particle
detectors are tend to employ more and more detector elements and to use higher dimensional
data. The importance of 3D volume data processing is getting higher. Since 3D tracking
requires a few orders of magnitude larger computation than 2D tracking, it has been essential
to solve the computing issue with available computing resources.

Emulsion detector is one of the most classic detectors, however, physicists have attacked to
establish the fast 3D volume processing with this detector since many decades.

The basic detector element of emulsion detector is a silver bromide crystal with a typical
diameter of 200 nm. The crystals are uniformly distributed in the gelatin medium. An emulsion
volume of 1 cc (' an emulsion film of 100 cm2) consists of about 1014 crystals and each crystal
works as an independent particle detector. The position resolution of emulsion detector is as
good as 50 nm.

In the past, the readout of 1014 detectors and the reconstruction of the 3D tracks in emulsion
detectors were impossible because of lack of technologies. Due to the difficulty of automation,
the analysis had relied on human check on manual microscopes. Efforts to develop automated
scanning system has started in late 70’s. In order to read out the 3D information stored in
emulsion films, scanning microscopes take tomographic images by moving focal plane, and
then the tomographic images are processed in real-time manner. This is illustrated in Fig. 1.
The scanning speed progressed many orders of magnitudes after several generations [1, 2, 3].
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Figure 1: Schematic of scanning microscopes

Figure 2: Evolution of scanning speed

The progress of speed in an unit of surface area scanned per hour is shown in Fig. 2, which
features the different computing solutions available at those time. The data rate from camera
is recently reached to of the order of 1 GBytes/s. To reconstruct 3D tracks in this amount of
data, a powerful computing solution is mandatory.

GPU (Graphic Processing Unit) has been developed for the graphics, namely games. Yet,
it is recently opened for general purpose computing. A GPU has a number of processors of the
order of thousand and it can process tasks in parallel with the processors (parallel processing).
An application of GPUs is highly efficent as a computing solution for the case that the algorithm
can be parallelized, such as image processing or tracking.

On the other hand, emulsion detectors are intensively used in the field of antimatter physics,
especially in the measurement of gravity for antimatter and matter-antimatter annihilation
in the AEgIS experiment [4, 5, 6]. In such experimental conditions, the products from the
annihilation vertex are emitted isotropically as shown in Fig. 3. However, the conventional
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Figure 3: An antiproton annihilation vertex observed in the emulsion detector.

algorithms used in the systems in Fig. 2 reconstruct tracks in limited angular space of tanθ < 0.5
(θ - angle from the normal of emulsion surface) or, in other word, only 1/8 of full angular space.
Thus, a new tracking algorithm which covers full angular space is awaited to achieve a high
detection efficiency of antiproton annihilations.

A new algorithm is recently proposed and realized in [7] with a computing solution with
GPUs, which is the basis of this article. In this paper, we shortly recall the main feature of the
algorithm and report updated results.

2 Tracking algorithm and GPU implementation

The scanning microscope takes a set of tomographic images of 40 layers (a view) through an
emulsion layer of 50-micron thick as illustrated in Fig. 1. An image size is 1280 × 1024 pixels,
corresponding to 300 µm × 250 µm. Fig. 4 shows the flow of data processing to obtain 3D
position of grains. The volume data (a) is filtered in 3D (b) and then grains in the view are
recognized in 3D (c).

(a) (b) (c)

Figure 4: Processing of images. (a) Raw data image. (b) 3D-filtered image. (c) Recognized 3D
grains marked with a red cross.

Any two combinations of grains in a limited volume define lines (or seeds) by connecting
the two grains (Fig. 5 (a)). A cylinder along each seeds is defined and the number of grains in
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the cylinder is evaluated (Fig. 5 (b)). If the number of grains is bigger than a preset threshold
(e.g. 5 grains), the seed is classified as a tracks. The algorithm can cover all angular acceptance
with this seed formation.

Z

X

(a) (b)

Figure 5: Schematic of tracking algorithm. (a) For each grain (for example, the blue dot), seeds
for a track (blue lines) are defined by looping for grains within a given distance. (b) For each
seed (blue line formed by blue and red dots), the number of grains along the seed is counted.
If the number of grains is larger than a preset threshold, one can define it as a track.

The 3D volume processing (Fig. 4) and the processing of seeds (Fig.5 (b)) account for a large
part of computation time, however, they can be highly parallelized. These parts of algorithm
are implemented with the GPU programming.

The further detail of the algorithm can be found in [7].

3 Performance test

The performance of tracking, especially in terms of speed, is compared between the CPUs pro-
gramming and the GPUs programming. The code is written with C++ and with NVIDIA
CUDA libraries (version 5.5) [8] combined with CERN ROOT libraries [9]. A dedicated pro-
cessing server (Linux Mint 15) equipped with a recent CPU (i7-3930K, 3.2 GHz, 6 cores, 12
logical processors) with 3 state-of-the-art GPUs (NVIDIA GEFORCE TITAN, 837 MHz, 2688
cores, 6.144 GBytes on-board memory [10]) and with a fast memory (DDR3-2400) has been
tested for our purpose.

Obtained tracking time is summarized in Table 1 for a single CPU thread case, with and
without a GPU. The performance is also checked in two different samples that have different
number of grains in the view. ”Cosmic sample” was exposed to cosmic rays and it has about
5,000 grains per view. As underlined, the image filtering is the most dominant process for this
case. On the other hand ”Antiproton sample” was exposed to the antiproton beam at CERN
AD and has about 11,000 grains per view. In this case the 3D tracking process holds the major
processing time. For both cases, the processing time is remarkably accelerated by implementing
GPU-based computing by factors of 40 and 26, respectively.

A multithread programming was then implemented on the basis of the single CPU thread
programming. Each CPU thread is linked to one of the three GPU devices. One can use all the
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Cosmic sample (few grains) Antiproton sample (more grains)
Process CPU-based GPU-based Gain CPU-based GPU-based Gain

(s/view) (s/view) (s/view) (s/view)
Image filtering 3.388 0.051 × 66 3.396 0.051 × 66
3D grain recognition 0.157 0.012 × 13 0.181 0.023 × 13
3D tracking 0.274 0.033 × 8.3 6.999 0.330 × 21
Total processing time 3.819 0.096 × 40 10.576 0.404 × 26

Table 1: Processing time between the CPU-based and the GPU-based programs with a single
CPU thread.

GPUs by running several CPU-threads simultaneously. The result is shown in Figure 6. The
processing speed (or frequency) is almost proportional to the number of GPUs. The dashed
lines shows a fitted tendency with the formula given in the figure. It is well understandable by
taking account the overhead time in the process. The frequency can reach up to 15 Hz, which
is far enough for the data taking limitation of 5 Hz with the conventional mechanical hardware
for [3]. The gain in time for the antiproton sample between the single CPU thread process
(0.096 Hz) and the multi-GPU process (8.7 Hz, 3 GPU and 15 CPU threads) is calculated to
be 91.
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Figure 6: Comparison of scanning speed as a number of views processed per sec, as a function
of number of threads. Left: cosmic-ray sample (less grains), right: antiproton sample (more
grains).

4 Summary

Fast 3D particle full-angle tracking has been for a long time a challenge when using nuclear
emulsion detectors as high accuracy 3D tracking devices. Advances in the GPU technology
have opened the way for the actual realization of real-time fast processing.

The proposed algorithm with full angular acceptance, required for the analysis of antiproton
interactions, needs a large computing power compared to the conventional algorithms with a

GPUHEP2014 5

FAST 3D TRACKING WITH GPUS FOR ANALYSIS OF ANTIPROTON ANNIHILATIONS IN . . .

GPUHEP2014 123



narrower angular acceptance. Nevertheless, the processing speed reached to maximum 15 Hz,
which is sufficiently high for the current data taking limitation of 5 Hz.

This new tracking algorithm can be employed by any applications using nuclear emulsion
detectors which needs a fast 4π tracking, as the AEgIS experiment at CERN which needs a
high detection efficiency for antiproton annihilations.

The development of tracking system will further be extended for the next generation data
aquisition system which has about 2 GBytes/s output data rate (currently 0.25 GBytes/s).
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GPUs in gravitational wave data analysis

G. Debreczeni1

1 Wigner Research Centre for Physics of the Hungarian Academy of Sciences

Gravitational wave physics is in the doorstep of a new, very exciting era. When the
advanced Virgo and advanced LIGO detectors will start their operation, there will be
considerable probability of performing the first direct detection of gravitational waves
predicted almost 100 years ago by Einsten’s theory of General Relativity. However the
extraction of the faint signal from the noisy measurement data is a challanging task -
and due to the high arithmetic density of the algorithms - requires special methods and
their efficient, sophisticated implementation on high-end many-core architectures such as
GPUs, APUs, MIC and FPGAs.. The operation-level paralellizability of the algorithms
executed so far on single CPU core results - has already resulted - in nearly 2 order of
magnitude speedup of the analysis and can directly be trasnlated to detector sensitivity!
As such, the developed and applied computational algorithms can be regarded as part of
the instrument, thus giving thorough meaning to the notion of ”e-detectors”. In this talk
we will shortly present and discuss the many-core GPU algorithms used in gravitational
wave data analysis for extracting the continous waves emitted by isolated, spinning neutron
stars and the chirp-like signals of binary NS-NS or NS-BH systems with an outlook for
future possibilities.
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Accelerated Neutrino Oscillation Probability Cal-

culations and Reweighting on GPUs

Richard Graham Calland1
1University of Liverpool, Department of Physics, Oliver Lodge Bld, Oxford Street, Liverpool,
L69 7ZE, UK
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Neutrino oscillation experiments are reaching high levels of precision in measurements,
which are critical for the search for CP violation in the neutrino sector. Inclusion of mat-
ter effects increases the computational burden of oscillation probability calculations. The
independency of reweighting individual events in a Monte Carlo sample lends itself to par-
allel implementation on a Graphics Processing Unit. The library Prob3++ was ported to
the GPU using the CUDA C API, allowing for large scale parallelized calculations of neu-
trino oscillation probabilities through matter of constant density, decreasing the execution
time of the oscillation probability calculations by 2 orders of magnitude, when compared to
performance on a single CPU core. Additionally, benefit can be realized by porting some
systematic uncertainty calculations to GPU, especially non-linear uncertainties evaluated
with response functions. The implementation of a fast, parallel cubic spline evaluation on
a GPU is discussed. The speed improvement achieved by using the GPU calculations with
the T2K oscillation analysis is also noted.

1 Neutrino Oscillation Probability for Long Baseline Ex-
periments

It is established that neutrinos exhibit oscillation between flavour states [1][2]. The standard
formalism describes this phenomena using a unitary transition matrix (PMNS) to compute the
probability of a neutrino να to change to νβ . A neutrino travelling a distance L (km) from its
source has a probability to change flavour defined as

P (να → νβ) = δαβ − 4
∑

i>j

Re(U∗
αiUβiUαjU

∗
βj) sin2(

∆m2
ijL

4E
)

+2
∑

i>j

Im(U∗
αiUβiUαjU

∗
βj) sin(

∆m2
ijL

2E
)

(1)

where E is the neutrino energy, Uflavour,mass is the mixing matrix, ∆m2
ij is the difference

between mass states i,j and δαβ is the Kronecker delta function. However, when the neutrino
propagates through matter, an extra potential is added to the equation which manifests from the
forward scattering of νe on the ambient electrons in matter. This extra potential term requires
that the mass matrix of the Hamiltonian be re-diagonalized in order to find the eigenstates
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Figure 1: Effect of neutrino oscillation on a mock neutrino energy spectrum. Top plot shows
the νµ survival probability and the bottom plot shows the mock energy spectrum with and
without the survival probability applied.

in matter. The extra computation required to calculate matter effects can be costly, however
there is an analytical solution prescribed in [3] which is used in the work presented here.

2 The Tokai-to-Kamioka Experiment

The Tokai-to-Kamioka (T2K) experiment [4] is a second generation long baseline neutrino
oscillation experiment, designed to use an intense beam of neutrinos to make precision mea-
surements of the θ23 mixing angle, and to look for θ13. The experiment, which is located in
Japan, is comprised of 3 sections. The first is located on the east coast of Japan, where the
J-PARC accelerator produces a neutrino beam composed of mainly νµ by colliding protons onto
a graphite target. This beam is measured at the second stage, by a near detector (ND280) sit-
uated 280 m from the neutrino source. ND280 can make characterisation measurements of the
beam before it has the chance to undergo neutrino oscillation. This stage is important because
it can provide valuable constraints on the uncertainties in the neutrino beam flux and cross
section models. The final stage, takes place 295 km away at the Super-Kamiokande (SK) 50 kt
water Cherenkov detector, where neutrino oscillation parameters are measured by looking for
a disappearance of νµ-like events and an appearance of νe-like events.

Due to the setup of the experiment, there are multiple samples from multiple detectors,
which leads to a relatively complicated oscillation analysis involving many systematic uncer-
tainties.

3 Event-by-event Reweighting

Neutrino oscillation analyses in T2K are performed using a large sample of Monte Carlo (MC)
simulated events inside the near and far detectors to construct a PDF. The number of MC
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events is large due to the multiple interaction modes and reconstruction effects. The events are
produced assuming no neutrino oscillation has taken place, so the effect of neutrino oscillation
must be calculated as a weight for these MC events. This is visualized in Figure 1. In order to
infer the most probable values of the oscillation parameters, the PDF must be reweighted in
order to find the response of the detector simulation to varying values of oscillation parameters.
This reweighting can be done in two ways. The first, and simplest, is to construct templates
for the detector MC. This is essentially using a histogram with a suitable binning, filling the
histogram with the MC events and then using the bin centre to calculate a weight for the bin.
An alternative method is to keep all MC event information inside memory, and calculating a
weight for each MC event. These events can then be binned using the weights to compute
a binned likelihood in the same way as using templates. The obvious difference is that the
event-by-event method requires orders of magnitudes more calculations, because instead of
doing computations per bin, we are instead doing them per event. The advantages of using
this method, if one can overcome the computational challenges, are that there is no additional
loss of information by compiling events into bins; the shape information of the PDF is retained
inside the bin as described in Figure 2. In recent binning schemes used for T2K PDFs, it
was found that the difference in predicted number of events from reweighting differs by 1-2%
between template and event-by-event methods.

Another advantage of the event-by-event method is in the case where one constructs multiple
PDFs from the same set of MC events, as is the case for T2K, where different event topologies
are selected from the data based on a few selection criteria. As detector systematic uncertainties
are varied, this can cause events to move between sample selections. This systematic effect can
easily be modelled using the event-by-event method, but it is difficult to do so with a template
method due to the loss of MC information about the event category of each event. This, along
with parameters that may shift the kinematics of an event and cause the event to shift between
bins in a histogram, is a strong justification to retain all the relevant information about MC
events and reweight each event individually.

4 Calculation on GPU

Using the event-by-event method to reweight PDFs (and thus calculate the likelihood) has the
consequence of increasing the number of calculations involved by orders of magnitude. In T2K
neutrino oscillation analyses, the two largest contributions to CPU time are the evaluation of
the oscillation probability including matter effects, and the evaluation of cubic splines that are
used to encode the non-linearity of the cross section model on the PDF. These two tasks were
offloaded to a GPU using the CUDA toolkit version 5. For the oscillation probability calculation,
the library Prob3++ [5] is used to calculate these probabilities on CPU. This library was ported
to run on the GPU [6]. The structure of this calculation is as follows. First, the mass and mixing
matrices were computed on CPU and copied to GPU memory. Then, an array of neutrino
energies taken from the MC was copied to the GPU memory. An array of the same length as
the energy array was allocated on GPU memory to store the results. A GPU algorithm (kernel)
was then executed with each GPU thread operating on an element of the neutrino energy array.
The kernel calculates a weight using the event energy and information from the mass and mixing
matrices. The resulting weight is saved to the corresponding element in the weights array, which
is copied back to CPU memory when the kernel has finished processing. The time taken to
perform this oscillation probability calculation over varying numbers of events in a standalone
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Figure 2: A comparison of template and event-by-event reweighting methods. When calculating
weights using a reweighting function, the template method uses the bin centre to calculate a
single weight for the whole bin. In contrast, the event-by-event method calculates a weight for
each event, using the events energy value. The template method loses information about the
shape of the reweighting function, whereas the event-by-event method retains it.

program was studied, with results shown in Figures 3 and 4.

In addition to oscillation probability reweighting, the simulated MC events are also reweighted
according to a neutrino cross section model. This model is encoded with cubic splines to effi-
ciently describe the non-linearity of each parameter response without having to rerun the time
consuming simulation for every iteration of the fit. When cross section parameters are varied,
each response function must be evaluated to produce a new weight, on a per neutrino interac-
tion mode, per event basis. To improve the performance, the array of spline objects used in
the CPU code were reformatted into a structure of arrays to better suit the GPU architecture.
This structure is on the order of 1 Gb in size, and was copied only once to the GPU as a
read-only resource. At each iteration of the analysis, the new parameter values were copied to
GPU memory, and were used by the kernel to evaluate a single spline per GPU thread across
multiple threads simultaneously. Finally, the resulting weights of the splines were copied back
to CPU memory, where they were applied to the events during the construction of the PDF.
When compared to the performance of the original array of spline objects structure, the GPU
implementation saw a factor of 20 times speed up in a standalone benchmark. This benchmark
consisted of evaluating a large number of splines both sequentially (CPU) and simultaneously
(GPU) to compare execution times.

A validation study was performed for both the oscillation reweighting and the spline eval-
uation GPU algorithms. It was found that the relative difference between GPU and CPU
versions was on the order of 10−12 and 10−6 for oscillation reweighting and spline evaluation
respectively; both within acceptable tolerance for this application.

The benchmarks found in Figures 3 and 4 were executed on an Intel Xeon E5640 quad-core
processor clocked at 2.67 Ghz, using an NVIDIA M2070 GPU which has 448 cores clocked at

4 GPUHEP2014

RICHARD GRAHAM CALLAND

130 GPUHEP2014



Number of Oscillation Weight Calculations
1 10 210 310 410 510 610

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

-510

-410

-310

-210

-110

1

10
Single Core
CUDA
OpenMP

Figure 3: Time taken to evaluate the oscillation probabilities of batches of events, as a function
of batch size. Single core CPU time is compared with the CUDA implementation, and also a
multi-threaded version using OpenMP.

1.15 GHz. The code was compiled using the CUDA 5 toolkit and gcc version 4.6.3 with the
-O2 optimization flag enabled. The OpenMP benchmark was restricted to 4 cores, using the
same hardware as the single core benchmark.

5 Conclusion

When offloading both oscillation probability calculations with matter effects, and evaluation of
response functions to GPU, the T2K neutrino oscillation analysis saw approximately 20 times
speed up in total execution time compared to running everything on a single CPU core. There
is much scope to further improve the acceleration of the T2K neutrino oscillation analysis with
GPUs. The most obvious way is to perform all reweighting operations on the GPU, instead of
offloading two components. However, this may require significant reworking of existing analysis
code. Since the generation of the results in this study, the oscillation probability code has
been improved to fit the mass and mixing matrices inside constant memory on the GPU. This
increased the maximum observed speed increase factor in the standalone benchmark from 130
to 180.
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Sampling secondary particles in high energy physics

simulation on the GPU

S.Y. Jun1

1 Fermilab, USA

We present a massively parallel application for sampling secondary particles in high en-
ergy physics (HEP) simulation on a Graphics Processing Unit (GPU). HEP experiments
primarily uses the Geant4 toolkit (Geant4) to simulate the passage of particles through
a general-purpose detector, which requires intensive computing resources due to the com-
plexity of the geometry as well as physics processes applied to particles copiously produced
by primary collisions and secondary interactions. The combined composition and rejection
methods to sample secondary particles often used in Geant4 may not be suitable for optimal
performance of HEP events simulation using recent hardware architectures of accelerated
or many-core processors owing to the stochastic nature of the Monte Carlo technique. An
alternative approach based on a discrete inverse cumulative probability distribution is ex-
plored to minimize the divergence in thread level parallelism as well as to vectorize physics
processes for spatial locality and instruction throughput. The inverse cumulative distribu-
tion of the differential cross section associated with each electromagnetic physics process
is tabulated based on algorithms excerpted from Geant4 and a simple random sampling
technique with a linear interpolation is implemented for GPU. Validation and performance
evaluation with the alternative technique compared to the conventional composition and
rejection method both on GPU and CPU are presented.

Contribution not received.
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Implementation of a Thread-Parallel, GPU-Friendly

Function Evaluation Library

M.D. Sokoloff1

1 University of Cincinnati, USA

GooFit is a thread-parallel, GPU-friendly function evaluation library, nominally designed
for use with the maximum likelihood fitting program MINUIT. In this use case, it provides
highly parallel calculations of normalization integrals and log (likelihood) sums. A key
feature of the design is its use of the Thrust library to manage all parallel kernel launches.
This allows GooFit to execute on any architecture for which Thrust has a backend, cur-
rently, including CUDA for nVidia GPUs and OpenMP for single- and multi-core CPUs.
Running on an nVidia C2050, GooFit executes as much as 300 times more quickly for a
complex high energy physics problem than does the prior (algorithmically equivalent) code
running on a single CPU core. This talk will focus on design and implementation issues,
in addition to performance.

Contribution not received.
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Discovering Matter-Antimatter Asymmetries with

GPUs

Stefanie Reichert1 on behalf of the LHCb collaboration
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M13 9PL, United Kingdom
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The search for matter-antimatter asymmetries requires highest precision analyses and thus
very large datasets and intensive computing. This contribution discusses two complemen-
tary approaches where GPU systems have been successfully exploited in this area. Both
approaches make use of the CUDA Thrust library which can be used on supported GPUs.
The first approach is a generic search for local asymmetries in phase-space distributions
of matter and antimatter particle decays. This powerful analysis method has never been
used to date due to its high demand in CPU time. The second approach uses the GooFit
framework, which is a generic fitting framework that exploits massive parallelisation on
GPUs.

1 Introduction

In the neutral charm meson system, the mass eigenstates or physical particles |D1,2〉 with masses
m1,2 and widths Γ1,2 are a linear combination of the flavour eigenstates |D0〉 and |D̄0〉 which
govern the interaction. The linear combination |D1,2〉 = p|D0〉 ± q|D̄0〉 depends on complex
coefficients q, p satisfying the normalisation condition |q|2 +|p|2 = 1. The flavour eigenstates are
subject to matter-antimatter transitions, so-called mixing, through box diagrams as illustrated
in Fig. 1.
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d, s, b

c u
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�
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W± W±
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Figure 1: (Left) Box diagram for D0 − D̄0 mixing via intermediate W± bosons and (right) via
intermediate quarks.

The D0− D̄0 oscillation is driven by a non-zero difference in masses and widths of the mass
eigenstates ∆m = m2−m1 and ∆Γ = Γ2−Γ1, respectively. The mixing parameters x and y are
defined as x = ∆m/Γ and y = ∆Γ/(2Γ) where Γ denotes the width average Γ = (Γ1 + Γ2)/2 of
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the mass eigenstates. The mass eigenstates are eigenstates to the charge-parity (CP ) operator
if CP |D1,2〉 = ±|D1.2〉 is fulfilled. Three different types of CP violation can be distinguished.
CP violation in decay is implied if the decay amplitude of a D0 to a final state f and the
amplitude of the charge conjugated D̄0 → f̄ decay differ. In case of |q/p| 6= 1, the CP operator
transforms the mass eigenstates to states which are not CP eigenstates. This phenomenon is
know as CP violation in mixing. Furthermore, CP violation in decay and mixing can interfere.
In the charm sector, mixing is well established, while no evidence of CP violation has been
measured [1].

The mixing parameters in the charm sector are of the order O(10−3) due to the small mass
and width differences ∆m and ∆Γ of the mass eigenstates. Therefore, measurements of the
charm mixing parameters and searches for CP violation are experimentally challenging and are
required to be performed on large datasets. The datasets recorded at the LHCb experiment [2]
used for such measurements contain typically several millions of events. Most analysis methods
are CPU-expensive but are parallelisable and benefit from the massive parallelisation and speed-
up provided by the usage of GPUs. In particular, the presented methods rely on the CUDA
Thrust library [3] providing similar functionalities as the C++ Standard Template Library
(STL). Functions available in STL such as reduce are also part of the CUDA Thrust library
which also enables portability between GPUs and multicore CPUs.

2 Energy test for D0 → π+π−π0 using the CUDA Thrust
library

The energy test [4] is an unbinned model-independent statistical method to search for time-
integrated CP violation in D0 → π+π−π0 decays (charge conjugate decays are implied unless
stated otherwise). The method relies on the comparison of two D0 and D̄0 flavour samples
and is sensitive to local CP asymmetries across phase-space. The phase-space is spanned by
the invariant mass squared of the daughter particles, e.g. by m2(π+π0) and m2(π−π0). The
D0 → π+π−π0 decay is required to originate from a D∗+ → D0π+ decay. By determining the
charge of the soft pion of the D∗+ → D0π+ decay, the data are split in two independent samples
containing either D0 or D̄0 candidates. For both samples, a test statistic T is computed as

T ≈
n∑

i

n∑

j>i

ψ (∆~xij)

n2 − n +

n̄∑

i

n̄∑

j>i

ψ (∆~xij)

n̄2 − n̄ −
n∑

i

n̄∑

j

ψ (∆~xij)

nn̄
, (1)

where n(n̄) is the size of the D0(D̄0) sample, ψ (∆~xij) is a metric function and ∆~xij is the
distance in the 3-dimensional phase-space between events i and j. A Gaussian, given by

ψ (∆~xij) = e−∆~x2
ij/2σ

2

, (2)

is chosen as metric function. The width σ is tunable and indicates the radius in which the
method is sensitive to local phase-space asymmetries. Thus, σ should be larger than the res-
olution of ∆~xij and small enough to avoid a dilution of locally varying asymmetries. The
three terms in Eq. 1 are the average distance in the D0, D̄0 and mixed sample. In case of large
CP asymmetries, the T -value increases. The T -value computation uses thrust::transform reduce
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from the CUDA Thrust library to compute the sums in 1. The function thrust::transform reduce
performs a reduction operation, e.g. an addition, after an application of an operator to each
element of an input sequence. In this analysis, for each point, the Gaussian metric function
having been initialised with the position of event i is evaluated with respect to the position of
event j.

The measured T -value does not indicate the presence of CP violation on its own and needs
to be compared with the hypothesis of no CP violation. So-called permutation samples are gen-
erated where the flavour of each D0 and D̄0 candidate is reassigned randomly. The permutation
samples then reflect the no CP violation hypothesis. The T -value of each permutation sample
is calculated resulting in a distribution of T -values reflecting the no CP violation hypothesis. A
p-value for the no CP violation hypothesis is calculated as the fraction of permutation T -values
greater than the measured T -value. In case that the measured T -value lies outside the range
of the permutation T -value distribution, the latter is fitted with a generalised extreme value
function [5, 6]

f(x;µ, σ, ξ) = N

[
1 + ξ

(
x− µ
σ

)](−1/ξ)−1

exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}
, (3)

where N is the normalisation, µ the location, σ the scale and ξ the shape parameter. The
p-value is then defined as the fraction of the integral above the measured T -value. A statistical
uncertainty on the p-value is obtained by propagating the uncertainties on the fit parameters
or in case of counting as a binomial standard deviation. On a sample of 700,000 candidates,
which is of the same order as the analysed data set of 663, 000 selected events, the energy
test with a single permutation requires approximately 10 hours of CPU time whereas the GPU
implementation of the energy test runs in 11 minutes. To obtain a reliable p-value, around
1000 permutation samples reflecting the no CP violation hypothesis are required. The results
of the energy test on a data sample of Lint = 2 fb−1 recorded at a centre-of-mass energy of
8 TeV are summarised in Table 1 for various metric parameter values. Monte-Carlo studies
indicate that σ = 0.3 GeV2 yields the best sensitivity. The permutation T -value distribution
and the measured T -value are illustrated in Fig. 2 along with the visualisation of the asymmetry
significance which is obtained by assigning an asymmetry significance to each event similar to
the T -value extraction. The analysed data set are found to be consistent with a no CP violation
hypothesis at a probability of (2.6± 0.5)% [7].

σ [GeV2] p-value
0.2 (4.6± 0.6)× 10−2

0.3 (2.6± 0.5)× 10−2

0.4 (1.7± 0.4)× 10−2

0.5 (2.1± 0.5)× 10−2

Table 1: p-values for various metric parameter values. The p-values are obtained with the
counting method [7].
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Figure 2: (Left) Permutation T -value distribution and the resulting the fit function. The
measured T -value is indicated by the vertical line. (Right) Visualisation of local asymmetry
significances. The negative (positive) asymmetry significance is set for the D0 candidates having
negative (positive) contribution to the measured T -value, respectively. The results are given
for σ = 0.3 GeV2 [7].

3 Time-dependent amplitude analysis of D0 → K0
Sπ

+π−

with GooFit

A time-dependent amplitude analysis of D0 → K0
Sπ

+π− decays grants direct access to the
mixing parameters x and y and allows to search for CP violation in mixing. The three-body
decay D0 → K0

Sπ
+π− is treated as a two-body decay D0 → Rc through an intermediate

resonance R→ ab with the amplitude

MR = Z(J, L, l, ~p, ~q )BR→abL (|~q |) ·
TR(mab)B

D→Rc
L (|~p |), (4)

where the angular distribution of the final state particles is denoted by Z(J = 0, L, l, ~p, ~q ) [8].
For a D0 meson, J = 0, L and l are referring to the orbital angular momentum between R and c
and between a and b, respectively. The momenta of c and a in the rest frame of the intermediate
resonance R are denoted by ~p and ~q. The Blatt-Weißkopf barrier factors [9, 10] are denoted by
BL(q). The dynamical function TR is the propagator for the chosen line shape of the resonance,
e.g. the Gounaris-Sakurai propagator [11]. A model-dependence of the analysis arises from
the choice of intermediate resonances and their line shapes. The two most common models are
the so-called isobar model where the line shapes of the resonances in Table 2. are relativistic
Breit-Wigners with exception of the ρ(770) which is modelled by a Gounaris-Sakurai shape. An
alternative model where the K0

Sπ
± S-waves are described by the LASS parameterisation [12]

and the π+π− S-wave is formulated with the K-matrix algorithm LASS parameterisation and
K-matrix algorithm preserve unitarity by construction in opposition to the unitarity-violating
Breit-Wigner line shapes.
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Resonance R Mass [GeV] Width [GeV] Spin
R→ π+π−

ρ(770) 0.776 0.146 1
ω 0.783 0.008 1
f0(980) 0.975 0.044 0
f0(1370) 1.434 0.173 0
f2(1270) 1.275 0.185 2
σ1 0.528 0.512 1
σ2 1.033 0.099 0

R→ K0
Sπ

+

K∗(892)+ 0.894 0.046 1
K∗0 (1430)+ 1.459 0.175 0
K∗2 (1430)+ 1.426 0.099 2

R→ K0
Sπ
−

K∗(892)− 0.894 0.046 1
K∗0 (1430)− 1.459 0.175 0
K∗2 (1430)− 1.426 0.099 2
K∗(1680)− 1.677 0.205 1

non-resonant K0
Sπ

+π−

Table 2: Intermediate resonances contributing to
the isobar model with their mass, width and spin.
The numbers and the model are taken from the
D0mixDalitz model as implemented in EvtGen
[13].

The analysis uses the GooFit [14]
library to perform the time-dependent
Dalitz-plot (Tddp) amplitude analysis
fit. The GooFit package is a par-
allel fitting framework implemented in
CUDA and using the Thrust library.
GooFit can be run under OpenMP or
on GPUs supporting CUDA. In this
framework, the most commonly used line
shapes for resonance are available, e.g.
Breit-Wigner, Gounaris-Sakurai and the
LASS parameterisation as well as the
Blatt-Weißkopf barrier factors and an-
gular functions. The K-matrix algo-
rithm to describe the π+π− S-wave is un-
der development. In GooFit, the class
TddpPdf is dedicated to time-dependent
amplitude analyses. The user defines
the resonances and line shapes entering
the probability density function which is
then build in TddpPdf and is used as
fit model to extract the mixing param-
eters x and y. The TddpPdf class re-
quires the invariant mass squared of two
daughter pair combinations, the D0 de-
cay time and its uncertainty as well as
the event number as input. In addition to the amplitude model, background components, ef-
ficiencies and resolutions can be included in the fit. The framework allows to veto certain
regions in phase-space and the blinding of results. The Thrust library is used to compute
the amplitudes of the intermediate resonances and the matrix elements contributing to the
logarithm of the likelihood. In addition, the computation of the normalisation integral of the
fit model relies heavily on thrust::transform, thrust::transform reduce, thrust::make zip iterator
and thrust::make tuple. For example, thrust::transform reduce is used to loop over an input
sequence created by thrust::make zip iterator which yields a sequence of tuples from multiple
tuples returned by thrust::make tuple. For each element of this sequence, the phase-space in-
tegral is computed which is then added to a complex number to yield the total phase-space
integral. Due to the parallelisation with the methods from the Thrust library, the fit runs over
several hundred thousand or million of events in minutes instead of hours. In Fig. 3, the results
of an amplitude analysis fit of a toy data sample generated according to the isobar model with
x = y = 0.005 is shown.
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Figure 3: (Left) Toy data and (right) fit model of a toy data sample reflecting the 2012 data
taking conditions of LHCb including an efficiency parametrisation. The sample is generated
according to the isobar model with x = y = 0.005.

4 Conclusion

Searches for CP violation and measurements of the mixing parameters in the charm sector
require large statistics which will keep increasing in the future. The search for time-integrated
CP violation in D0 → π+π−π0 decays at LHCb with the energy test is the first analysis at
LHCb exploiting the potential provided by GPUs. The energy test could be applied to data
for the first time due to the massive parallelisation and reduction of the computing time. A
measurement of the mixing parameters x and y with a time-dependent amplitude analysis of
D0 → K0

Sπ
+π− decays is currently ongoing with the GooFit package.
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The Pierre Auger Observatory is the currently largest experiment dedicated to unveil the
nature and origin of the highest energetic cosmic rays. The software framework Offline has
been developed by the Pierre Auger Collaboration for joint analysis of data from different
detector systems used in the observatory. While reconstruction modules are specific to
the Pierre Auger Observatory components of the Offline framework are also used by other
experiments. The software framework has recently been extended to analyze also data
from the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger
Observatory. The reconstruction of the data from such radio detectors requires the repeated
evaluation of complex antenna gain patterns which significantly increases the required
computing resources in the joint analysis. In this contribution we explore the usability of
massive parallelization of parts of the Offline code on the GPU. We present the result of a
systematic profiling of the joint analysis of the Offline software framework aiming for the
identification of code areas suitable for parallelization on GPUs. Possible strategies and
obstacles for the usage of GPGPU in an existing experiment framework are discussed.

1 Introduction

Although cosmic rays have been intensively studied for more than 100 years, fundamental
questions about the phenomenon remain unclear. In particular, the origin, the acceleration
mechanism, and the chemical composition of the highest energetic cosmic rays with energies
up to several hundred EeV (1 EeV = 1018 eV) remain open questions. As the flux of the
highest energy cosmic rays is of the order of one particle per square kilometer per century,
direct observation is impracticable. Instead, the Earth’s atmosphere is used as a calorimeter
in which the cosmic rays are detected indirectly by the particle cascades, or ‘air showers’, they
induce. For detailed reviews on cosmic rays see e.g. references [1, 2].

The currently largest detector for cosmic rays at the highest energies is the Pierre Auger
Observatory in Argentina. The Pierre Auger Observatory [3] is designed as a hybrid of two
complementary detector systems. The ‘surface detector’ [4] consists of 1660 water-Cherenkov
stations that sample the secondary particles at the ground level. The stations are arranged in
a hexagonal grid that covers an area of 3000 km2. The surface detector array is surrounded by
27 telescopes stationed at four sites to detect the fluorescence light emitted by air molecules
that have been excited by the particle cascade. This ‘fluorescence detector’ [5] provides a
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direct calorimetric measurement independent of hadronic interaction models and thus a better
energy resolution than the surface detector. Furthermore, as it measures the development of the
shower in the atmosphere, it is sensitive to the mass of the primary cosmic ray. However, the
fluorescence detector can operate only during clear and moonless nights, whereas the surface
detector has no principal constraint on the uptime.

As complementary detector without principal time constraints, the Auger Engineering Radio
Array (AERA) [6] detects the radio pulses emitted by the particle cascades, due to geomagnetic
and charge-excess effects [7]. Currently, AERA consists of 124 stations in a hexagonal grid
covering an area of about 6 km2. Each station is equipped with an antenna designed for
polarized measurements from 30 to 80 MHz.

The Auger Offline Software Framework [8] provides the tools and infrastructure for the re-
construction of events detected with the Pierre Auger Observatory. Components of the frame-
work are also used by other experiments [9]. It is designed to support and incorporate the ideas
of physicists for the projected lifetime of the experiment of more than 20 years. This is achieved
by a strict separation of configuration, reconstruction modules, event and detector data, and
utilities to be used in the algorithms. The reconstruction of radio events detected with AERA is
fully integrated in the Auger Offline Software Framework which allows joint analyses of events
from all detector systems [10]. The main reconstruction algorithm for the radio reconstruction
and its performance profile is described in the next section.

2 Radio Reconstruction in the Auger Offline Framework

The main algorithm for the reconstruction of radio events implemented in several Offline mod-
ules is depicted in Fig. 1. After a trigger, the voltage traces of the two channels at each station
are read out, and, after noise filtering and signal enhancing, processed as follows. First, as an
initial estimate of the event timing in each station, the maxima of the voltage traces is used.
Second, from the timing information of the individual stations, the direction of the shower is
obtained by triangulation. Third, the antenna pattern for this direction is evaluated, and the
E-field trace at each station reconstructed from the voltage traces. Finally, the maximum of the
envelope of the E-field trace is used as updated timing information for a new iteration of the
procedure. On convergence, the timing information yields the incident direction of the primary
particle whereas the E-field distribution on the ground allows a derivation of the energy and
particle type of the cosmic ray.

The execution of this algorithm in Offline requires an uncomfortable amount of time. Using
the Linux kernel profiler ‘perf’ [11] we identified two main performance bottlenecks in this algo-
rithm. First, about 15% of the computation time is spent in calculating Fourier transformations
with the FFTW library [12]. Second, about 25% of the time is used for the interpolation of
the antenna patterns. All other parts of the algorithm use less than 5% of the time. The
same bottlenecks are identified using ‘google-perftools’ [13] or ‘Intel VTune amplifier’ [14] as
alternative profilers.

In the next sections we discuss the elimination of these bottlenecks by implementing the
relevant parts on the GPU using the Cuda framework. In both cases we followed a minimum
invasive approach that leaves the general interfaces in Offline intact. To select between the
CPU and GPU implementation, a preprocessor directive is used.
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Figure 1: Schematic of the individual steps in the Offline radio reconstruction.

3 Interpolations of Antenna Patterns

To reconstruct the electric field vector from the measured voltage traces the antenna pattern
in the direction of the electromagnetic wave must be known. The antenna pattern can be
conveniently expressed as a two dimensional complex vector, the ‘vector effective length (VEL)’.
For each antenna, the VEL is known for discrete frequencies and zenith and azimuth angles
from measurements or simulations. Between theses nodes the VEL has to be interpolated for
arbitrary directions.

The interpolation of textures is a core task of graphics cards, which have dedicated circuits
for the interpolation. The usage of these promises a great speedup, but is available for single
precision data of limited size only. In the baseline implementation, the antenna pattern is
evaluated in double precision. As a linear interpolation requires six elementary operations, the
maximum relative uncertainty from the limited floating-point precision can be estimated as
2.5×10−4 % in single precision. This is smaller than other uncertainties in the reconstruction
and thus negligible here. The largest antenna pattern considered here consists of complex data
for the vector effective length at 98 frequencies, 31 zenith angles, and 49 azimuth angles. In
single precision this corresponds to approximately 2.4 MB of data which is small compared to
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Figure 2: Calculation of the Hilbert envelope (a) using the CuFFT wrapper only and (b) using
a dedicated kernel.

the total available memory size of a few GB on modern GPUs and much below the maximal size
of a 3D texture of typically at least 2048×2048×2048 elements. The patterns for all antennas
used in AERA can be stored simultaneously on the device.

To speed up the interpolation on the CPU, the pattern has already been buffered in the
baseline implementation for look up on repeated access. In the GPU implementation this is
unnecessary. Here, the patterns are copied and converted to allow binding to texture memory
only once on first access.

4 Fourier Transformations and Hilbert Envelopes

In the baseline implementation in Offline, calls to the FFTW library are wrapped in an object-
oriented interface. The interface provides several distinct classes for the operation on real or
complex data of given dimensionality. Shared functionality is implemented in a base class and
propagated by inheritance. In the radio reconstruction, the wrapper operates within a container
that stores a trace simultaneously in the time and frequency domains. After modification of
either, the other is updated in a lazy evaluation scheme.

To calculate the FFT on the GPU, FFTW calls are replaced by calls to the CUDA FFT
library (CuFFT). In contrast to the CPU implementation, all instances of the GPU implemen-
tation share static memory on the GPU to avoid time consuming allocations. This is safe here as
memory copies are blocking and performed immediately before and after the FFT calculation.

However, in the reconstruction several FFTs are calculated in context of obtaining the
Hilbert envelope of the radio traces. The envelope E(t) of a trace x(t) is E(t) =

√
x(t)2 +H(x(t)2)

with the Hilbert transform of the signal H(x(t)). The Hilbert transformation shifts the phase of
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Figure 3: Summary of the speedup achieved in the individual improvements.

negative frequencies, i.e. for band-limited signal frequencies below the mid-frequency, by −90◦

and positive frequencies by +90◦. The GPU implementation as described above thus results
in a non-optimal memory access pattern for the envelope calculation as shown in Fig. 2 (a).
However, with a dedicated computing kernel not only can two memory copies be avoided, but
also the phase shift and summation are calculated in parallel (cf. Fig 2 (b)).

5 Discussion

The results obtained from the new GPU implementations are consistent with the results from
the baseline implementation. While the FFTs yield identical results on CPU and GPU, the
interpolation is not only a different implementation but also only in single precision. This
amounts to a relative difference in the directional antenna patterns between the individual
implementations of typically below ±0.8% and thus small compared to other uncertainties.

The performance improvements obtained by the modifications are summarized in Fig. 3.
As test systems we used here a typical recent desktop PC and a combined CPU/GPU cluster.
The desktop is equipped with an AMD A8-6600K processor and an NVIDIA GeForce 750
Ti graphics card. The cluster contains 4 Intel Xeon X5650 CPUs and 4 NVIDIA Tesla M2090
GPUs. On the desktop system the GPU implementation of FFT and the Hilbert transformation
yield a speedup of 1.3, doing also the interpolations on the GPU increased this speedup to
approximately 2. On the cluster system the total achieved speedup is 1.5. The lower speedup
on the cluster system is due to the higher relative performance of the cluster CPU and GPU
compared to the desktop system.

As only selected isolated parts of the code are moved to the GPU, the time used for comput-
ing on the GPU is low compared to the time needed for memory copy, and also only 7% of the
copy-time is overlapped by computing time. However, increasing the GPU utilization would
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require the traces to be kept permanently on the GPU so that more analysis steps can bene-
fit from porting to the GPU. This, however, would require non-trivial changes in the Offline

framework, in particular, modifications of the internal structure and interfaces.

6 Conclusion

The calculation of Fourier transformations and the interpolation of antenna response patterns
have been identified as bottlenecks in the AERA event reconstruction using a performance
profiler. Eliminating both by re-implementating the calculation in CUDA while keeping the
structure of Offline intact yields a speedup of 1.49 to 2.04 depending on the test system. The
largest speedup is obtained here on a typical desktop PC equipped with an entry level graphics
card. Considering the relative costs of about AC500 for a desktop PC and AC100 for an entry
level GPU, even such selected applications of GPGPU in existing frameworks are a possibility
to be considered in planning future computing strategies.
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An increasing number of massively parallel machines adopt heterogeneous node architec-
tures combining traditional multicore CPUs with energy-efficient and fast accelerators.
Programming heterogeneous systems can be cumbersome and designing efficient codes of-
ten becomes a hard task. The lack of standard programming frameworks for accelerator
based machines makes it even more complex; in fact, in most cases satisfactory performance
implies rewriting the code, usually written in C or C++, using proprietary programming
languages such as CUDA. OpenACC offers a different approach based on directives. Port-
ing applications to run on hybrid architectures “only” requires to annotate existing codes
with specific “pragma” instructions, that identify functions to be executed on accelerators,
and instruct the compiler on how to structure and generate code for specific target device.
In this talk we present our experience in designing and optimizing a LQCD code tar-
geted for multi-GPU cluster machines, giving details of its implementation and presenting
preliminary results.

1 Introduction

Lattice Quantum Chromodynamics (LQCD) simulations enable us to investigate aspects of
the Quantum Chromodynamics (QCD) physics that would be impossible to systematically
investigate in perturbation theory.

The computation time for LQCD simulations is a strong limiting factor, bounding for exam-
ple the usable lattice size. Fortunately enough, the most time consuming kernels of the LQCD
algorithms are embarassingly parallel, however the challenge of designing and running efficient
codes is not easy to met.

In the past years commodity processors were not able to provide the required computational
power for LQCD simulations, and several generations of parallel machines have been specifically
designed and optimized for this purpose [1, 2]. Today, multi-core architecture processors are
able to deliver several levels of parallelism providing high computing power that allow to tackle
larger and larger lattices, and computations are commonly performed using large computer
clusters of commodity multi- and many-core CPUs. Moreover, the use of accelerators such as
GPUs has been successfully explored to boost performamces of LQCD codes [3].
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More generally, massively-parallel machines based on heterogeneous nodes combining tra-
ditional powerful multicore CPUs with energy-efficient and fast accelerators are ideal targets
for LQCD simulations and are indeed commonly used. Programming these heterogeneous sys-
tems can be cumbersome, mainly because of the lack of standard programming frameworks for
accelerator based machines. In most of the cases, reasonable efficiency requires that the code
is re-written targeting a specific accelerator, using proprietary programming languages such as
CUDA for nVIDIA GPUs.

OpenACC offers a different approach based on directives, allowing to port applications
onto hybrid architectures by annotating existing codes with specific “pragma” directives. A
perspective OpenACC implementation of an LQCD simulation code would grant its portability
across different heterogeneous machines without the need of producing multiple versions using
different languages. However the price to pay for code portability may be in terms of code
efficiency.

In this work we explore the possible usage of OpenACC for LQCD codes targeting het-
erogeneous architectures, estimating the performance loss that could arise with respect to an
architecture-specific optimized code. To pursue this goal, we wrote the functions accounting
for most of the execution time in an LQCD simulation using plain C and OpenACC directives.
As well known, the most compute intensive computational kernel is the repeated application of
the Dirac operator (the so called D slash operator /D). We wrote and optimized the correspond-
ing routines and then compared the obtained performance of our C/OpenACC implementation
with an already existing state-of-the-art CUDA program [4].

In Sec. 2 and Sec. 3 we briefly review the OpenACC programming standard and the LQCD
methods respectively, while in Sec. 4 we provide the details of our implementation. In Sec. 5
we present our performance results.

2 OpenACC

OpenACC is a programming framework for parallel computing aimed to facilitate code devel-
opment on heterogeneous computing systems, and in particular to simplify porting of existing
codes. Its support for different architectures relies on compilers; although at this stage the
few available ones target mainly GPU devices, thanks to the OpenACC generality the same
code can be compiled for different architectures when the corresponding compilers and run-time
supports become available.

OpenACC, like OpenCL, provides a widely applicable abstraction of actual hardware, mak-
ing it possible to run the same code across different architectures. Contrary to OpenCL, where
specific functions (called kernels) have to be explicitly programmed to run in a parallel fashion
(e.g. as GPU threads), OpenACC is based on pragma directives that help the compiler identify
those parts of the source code that can be implemented as parallel functions. Following pragma
instructions the compiler generates one or more kernel functions – in the OpenCL sense – that
run in parallel as a set of threads.

OpenACC is similar to the OpenMP (Open Multi-Processing) language in several ways [5];
both environments are directive based, but OpenACC targets accelerators in general, while at
this stage OpenMP targets mainly multi-core CPUs.

Regular C/C++ or Fortran code, already developed and tested on traditional CPU archi-
tectures, can be annotated with OpenACC pragma directives (e.g. parallel or kernels clauses)
to instruct the compiler to transform loop iterations into distinct threads, belonging to one or
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more functions to run on an accelerator.
Various directives are available, allowing fine tuning of the application. As an example, the

number of threads launched by each device function and their grouping can be fine tuned by the
vector, worker and gang directives, in a similar fashion as setting the number of work-items and
work-groups in OpenCL. Data transfers between host and device memories are automatically
generated, when needed, entering and exiting the annotated code regions. Even in this case
data directives are available to allow the programmer to obtain a finer tuning, e.g. increasing
performance by an appropriate ordering of the transfers. For more details on OpenACC see [6].

3 Lattice QCD

Lattice QCD (LQCD) is a nonperturbative regularization of Quantum Chromodynamics (QCD)
which enables us to tackle some aspects of the QCD physics that would be impossible to sys-
tematically investigate by using standard perturbation theory, like for instance the confinement
problem or chiral symmetry breaking.

The basic idea of LQCD is to discretize the continuum QCD on a four dimensional lattice,
in such a way that continuum physics is recovered as the lattice spacing goes to zero. Fermions
are problematic in this respect: a famous no-go theorem by Nielsen and Ninomiya can be
vulgarized by saying that in the discretization procedure some of the properties of the fermions
will be lost; they will be recovered only after the continuum limit is performed. Several ways to
circumvent this difficulty exist and this is the reason for the current lattice fermions zoology:
Wilson, staggered, domain-wall and overlap fermions (see e.g. [7]). In the following we will
specifically refer to the staggered formulation, which is commonly adopted for the investigation
of QCD thermodynamics.

The discretized problem can be studied by means of Monte-Carlo techniques and, in order
to generate configurations with the appropriate statistical weight, the standard procedure is the
Hybrid Monte Carlo algorithm (HMC, see e.g. [7]). HMC consists of the numerical integration
of the equations of motion, followed by an accept/reject step. The computationally more
intensive step of this algorithm is the solution of linear systems of the form /Dψ = η, where η
is a vector of Gaussian random numbers and /D is the discretized version of the Dirac matrix,
whose dimension is given by the total lattice size, which is typically O(105− 106). By using an
even-odd sorting of the lattice sites, the matrix /D can be written in block form

/D =

(
m Doe

Deo m

)
, D†

oe = −Deo ,

where m is the fermion mass. The even-odd preconditioned form of the linear system is (m2 −
DeoDoe)ψe = ηe, where now ψe and ηe are defined on even sites only.

This is still a very large sparse linear problem, which can be conveniently solved by using
the Conjugate Gradient method or, more generally, Krylov solvers. The common strategy of
this class of solvers is the following: one starts from an initial guess solution, then iteratively
improves its accuracy by using auxiliary vectors, obtained by applying Doe and Deo to the
solution of the previous step.

From this brief description of the target algorithm it should be clear that, in order to have
good performances, a key point is the availability of very optimized routines for the Doe and
Deo operators. As a consequence these routines appear as natural candidates for a comparison
between different code implementations.
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Figure 1: Memory allocation diagrams for the data structures of vectors (left) and SU(3)
matrices (right). Each vector or matrix component is a double precision complex value.

Before going on to present some details about the code and the performances obtained, we
notice that both Doe and Deo still have a natural block structure. The basic elements of these
operators are SU(3) matrices and this structure can be used, e.g., to reduce the amount of data
that have to be transferred from the memory (the algorithm is strongly bandwidth limited).
The starting point for the development of the OpenACC code was the CUDA code described
in [4], which adopts all these specific optimizations.

4 Code Implementation

We coded the Deo and the Doe functions using plain C; OpenACC directives instruct the
compiler to generate one GPU kernel function for each of them. The function bodies of the
OpenACC version strongly resemble the corresponding CUDA kernel bodies, trying to ensure
a fair comparison between codes which perform the same operations.

For both the CUDA and OpenACC versions, each GPU thread is associated to a single
lattice site; in the Deo function all GPU threads are associated to even lattice sites, while in
the Doe function all GPU threads are associated to odd lattice sites. Consequently each kernel
function operates on half of the lattice points.

Data structures are allocated in memory following the SoA (Structure of Arrays) layout to
obtain better memory coalescing for both vectors and matrices as shown in Fig. 1. The basic
data element of both the structures is the standard C99 double complex.

Listing 1 contains a code snippet showing the beginning of the CUDA function implementing
the Deo operation. Note in particular the mechanism to reconstruct the x, y, z, t coordinates
identifying the lattice point associated to the current thread, given the CUDA 3-dimensional
thread coordinates (nt, nx, ny, nz are the lattice extents and nxh = nx/2).

Listing 1: CUDA

__global__ void Deo(const __restrict su3_soa_d * const u,
__restrict vec3_soa_d * const out,

const __restrict vec3_soa_d * const in) {

int x, y, z, t, xm, ym, zm, tm, xp, yp, zp, tp, idxh, eta;
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vec3 aux_tmp;
vec3 aux;

idxh = ((blockIdx.z * blockDim.z + threadIdx.z) * nxh * ny)
+ ((blockIdx.y * blockDim.y + threadIdx.y) * nxh)
+ (blockIdx.x * blockDim.x + threadIdx.x);

t = (blockIdx.z * blockDim.z + threadIdx.z) / nz;
z = (blockIdx.z * blockDim.z + threadIdx.z) % nz;
y = (blockIdx.y * blockDim.y + threadIdx.y);
x = 2*(blockIdx.x * blockDim.x + threadIdx.x) + ((y+z+t) & 0x1);

...

Listing 2 shows the OpenACC version of the same part of the Deo function. The four for
loops, each iterating over one of the four lattice dimensions, and the pragma directive preceding
each of them are clearly visible. In this case the explicit evaluation of the x, y, z, t coordinates
is not needed, since we use here standard loop indices; however we can still control the thread
blocks size using the vector and gang clauses. In particular, DIM BLK X, DIM BLK Y and
DIM BLK Z are the desired dimensions of the thread blocks. Since we execute the code on an
nVIDIA GPU, as for the CUDA case, also in this case, each GPU thread is actually addressed
by 3 coordinates.

Listing 2: OpenACC

void Deo(const __restrict su3_soa * const u,
__restrict vec3_soa * const out,

const __restrict vec3_soa * const in) {

int hx, y, z, t;

#pragma acc kernels present(u) present(out) present(in)
#pragma acc loop independent gang(nt)
for(t=0; t<nt; t++) {

#pragma acc loop independent gang(nz/DIM_BLK_Z) vector(DIM_BLK_Z)
for(z=0; z<nz; z++) {

#pragma acc loop independent gang(ny/DIM_BLK_Y) vector(DIM_BLK_Y)
for(y=0; y<ny; y++) {

#pragma acc loop independent vector(DIM_BLK_X)
for(hx=0; hx < nxh; hx++) {

...

We experimented with other potentially useful optimizations, e.g. combining the Deo and
Doe routine in a single function Deoe and mapping it onto a single GPU kernel, but the per-
formance was roughly one order of magnitude lower, mainly because of overheads associated to
register spilling.

5 Results and Conclusions

We prepared a benchmark code able to repeatedly call the Deo and the Doe functions, one after
the other, using the OpenACC implementation or the CUDA one. The two implementations
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were compiled respectively with the PGI compiler, version 14.6, and the nVIDIA nvcc CUDA
compiler, version 6.0.

The benchmark code was run on a 324 lattice, using an nVIDIA K20m GPU; results are
shown in Tab. 1, where we list the sum of the execution times of the Deo and Doe operations in
nanoseconds per lattice site, for different choices of thread block sizes. All computations were
performed using double precision floating point values.

Deo + Doe Funtions

Block-size CUDA OpenACC

8,8,8 7.58 9.29
16,1,1 8.43 16.16
16,2,1 7.68 9.92
16,4,1 7.76 9.96
16,8,1 7.75 10.11
16,16,1 7.64 10.46

Table 1: Execution time in (nsec per lattice site) of the Deo + Doe functions, for the CUDA
and OpenACC implementations running on an nVIDIA K20m GPU and using floating point
double precision throughout.

Execution times have a very mild dependence on the block size and for the OpenACC
implementation are in general slightly higher; if one considers the best thread block sizes both
for CUDA and OpenACC, the latter is ' 23% slower.

A slight performance loss with respect to CUDA is expected, given the higher level of
the OpenACC language. In this respect, our results are very satisfactory, given the lower
programming efforts needed to use OpenACC and the increased code maintainability given by
the possibility to run the same code on CPUs or GPUs, by simply disabling or enabling pragma
directives. Moreover, OpenACC code performance is expected to improve in the future also
due to the rapid development of OpenACC compilers, which at the moment are yet in their
early days.

The development of a complete LQCD simulation code fully based on OpenACC is now in
progress.
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Lattice Quantum Chromodynamics simulations typically spend most of the runtime in
inversions of the Fermion Matrix. This part is therefore frequently optimized for various
HPC architectures. Here we compare the performance of the Intel

R©
Xeon Phi

TM

to current
Kepler-based NVIDIA

R©
Tesla

TM

GPUs running a conjugate gradient solver. By exposing
more parallelism to the accelerator through inverting multiple vectors at the same time,
we obtain a performance greater than 300 GFlop/s on both architectures. This more than
doubles the performance of the inversions. We also give a short overview of the Knights
Corner architecture, discuss some details of the implementation and the effort required to
obtain the achieved performance.

1 Introduction

In finite temperature Quantum Chromodynamics (QCD) fluctuations of conserved charges,
baryon number (B), electric charge (Q) and strangeness (S), are particular interesting observ-
ables. They can be measured in experiments at the Relativistic Heavy Ion Collider (RHIC) and
the Large Hadron Collider (LHC) and have also been calculated in Lattice QCD (LQCD) with
increasing precision [1]. They are derived from generalized susceptibilities

χBQSmnk (T ) =
1

V T 3

∂m+n+k lnZ
∂ (µB/T )

m
∂ (µQ/T )

n
∂ (µS/T )

k

∣∣∣∣∣
~µ=0

, (1)

where Z denotes the partition function of the medium at temperature T and volume V .

In LQCD the required derivatives of Z w.r.t. the chemical potentials µ can be obtained by
stochastically estimating traces over combinations of the inverse and derivatives of the Fermion
Matrix M with a sufficiently large number of random vectors η, e.g.

Tr

(
∂n1M

∂µn1
M−1

∂n2M

∂µn2
. . .M−1

)
= lim
N→∞

1

N

N∑

k=1

η†k
∂n1M

∂µn1
M−1

∂n2M

∂µn2
. . .M−1ηk . (2)

To control the errors we use 500-1500 random vectors on each gauge configuration. Depending
on the desired highest derivative degree this involves several inversion of the Fermion Matrix
for each random vector.
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#rhs 1 2 3 4 5 6 8

Flop/byte (full) 0.73 1.16 1.45 1.65 1.80 1.91 2.08
Flop/byte (r14) 0.80 1.25 1.53 1.73 1.87 1.98 2.14

Table 1: The arithmetic intensity of the HISQ Dslash for different number of right-hand sides
(rhs) using full or reduced 14 float storage (r14) for the Naik links.

For reasons of the numerical costs, staggered fermions are the most common type of fermions
for thermodynamic calculations on the lattice. We use the highly improved staggered fermion
(HISQ) action [2]. In terms of the smeared links U and Naik links N the Dslash operator reads

wx = Dx,x′vx′ =

4∑

µ=0

[(
Ux,µvx+µ − U†x−µ,µvx−µ

)
+
(
Nx,µvx+3µ −N†x−3µ,µvx−3µ

)]
. (3)

Here N and U are complex 3×3 matrices and v, w are complex 3-dimensional vectors. Within
the inversion the application of the Dslash operator typically consumes more than 80% of
the runtime. This part already has a low arithmetic intensity (see Tab. 1) and the average
arithmetic intensity (Flop/byte) is further decreased by the linear algebra operation in the
conjugate gradient. Thus, the achievable performance is clearly bound by the available memory
bandwidth. Given its massively parallel nature and the bandwidth hunger it is well suitable for
accelerators. Lattice QCD simulations make extensive use of GPUs for several years now [3].
The MIC architecture is also gaining more attraction and codes are being optimized [4]. A
common optimization to reduce memory accesses in LQCD is to exploit available symmetries
and reconstruct the gauge links from 8 or 12 floats instead of loading all 18 floats. For improved
actions these symmetries are often broken and thus we can only reconstruct the Naik links from
9 or 13/14 floats.

For our and many other applications a large number of inversions are performed on a single
gauge configuration. In this case, one can exploit the constant gauge field by grouping the
random vectors in small bundles, thus applying the Dslash for multiple right-hand sides (rhs)
at once: (

w(1)
x , w(2)

x , . . . , w(n)
x

)
= Dx,x′

(
v
(1)
x′ , v

(2)
x′ , . . . , v

(n)
x

)
. (4)

This increases the arithmetic intensity of the HISQ Dslash as the load of the gauge field occurs
only once for the n rhs. Increasing the number of rhs from 1 to 4 already results in an improve-
ment by a factor of more than 2. In the limiting case of assuming the gauge fields do not have
to be loaded at all, the highest arithmetic intensity that can be reached is ∼ 2.75. At n = 8
we have reached already ∼ 75% of the limiting peak intensity, while for 1 rhs we only obtain
25−30%. For an increasing number of rhs the memory transfers caused by loading the gauge
fields are no longer dominating and thus also the impact of reconstructing the Naik links is less
pronounced. Note that all numbers given here, as well as the performance data in the following,
are for single-precision computations. However, the arguments work also for double-precision
and the arithmetic intensity, in this case, is just half of the one in the single-precision case. For
the full inverter the linear algebra operations in the conjugate gradient do not allow for the
reuse of any constant fields. They therefore limit the achievable speedup.

We summarized some technical data of the accelerators we use for our comparison in Table 2.
In the following we will only discuss our implementation for the Intel

R©
Xeon Phi

TM

. Information
about our GPU implementation can be found in [5].
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5110P 7120P K20 K40

Cores / SMX 60 61 13 15
(Threads/Core) / (Cores/SMX) 4 4 192 192
Clock Speed [MHz] 1053 1238/1333 706 745/810/875
L1 Cache / Core [KB] 32 32 16-48 16-48
L2 Cache [MB] 30 30.5 1.5 1.5
Memory Size [GB] 8 16 5 12
peak fp32/64 [TFlop/s] 2.02/1.01 2.42/1.21 3.52/1.17 4.29/1.43
Memory Bandwidth [GB/s] 320 352 208 288

Table 2: The important technical data of the accelerators we have used in our benchmarks.

2 MIC

The Intel
R©

Xeon Phi
TM

is an in-order x86 based many-core processor [6]. The coprocessor runs a
Linux µOS and can have up to 61 cores combined via a bidirectional ring (see Fig. 1). Therefore,
the memory transfers are limited by concurrency reaching only 149 GB/s on a 7120P running
a stream triad benchmark [7]. Each core has a private L1 data and instruction cache and a
globally visible L2 cache. In the case of a local L2 cache miss, a core can cross-snoop another’s
core L2 cache and if the data is present avoid a direct memory access. Each core has thirty-
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Figure 1: Visualization of the bidirectional ring on the die and the microarchitecture of one
core showing the Scalar Processing Unit (SPU), Vector Processing Unit (VPU) and the cache
hierarchy. The latter is kept fully coherent through global distributed tag directories (TD).

two 512 bit zmm vector registers and 4 hardware context threads. To fully utilize the Many
Integrated Core (MIC) it is, especially for memory-bound applications, necessary to run with
four threads per core. This offers more flexibility to the processor to swap the context of a
thread, which is currently stalled by a cache miss. The MIC has its own SIMD instruction
set extension IMIC with support for fused multiply-add and masked instructions. The latter
allows to conditionally execute vector instructions on single elements of a vector register. The
coprocessor can stream data directly into memory without reading the original content of an
entire cache line, thus bypassing the cache and increasing the performance of algorithms where
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the memory footprint is too large for the cache.

Implementation: We have parallelized our program with OpenMP and vectorized it using
low-level compiler functions called intrinsics. These are expanded inline and do not require
explicit register management or instruction scheduling through the programmer as in pure
assembly code. There are 512 bit intrinsics data types for single- and double-precision accuracy
as well as for integer values. More than 32 variables of a 512 bit data type can be used
simultaneously. With only 32 zmm registers available in hardware, the compiler is, in this case,
forced to use “spills”, i.e. temporarily storing the contents of a register into L1 cache, and
reloading the register when the data is required later, thereby increasing memory bandwidth
pressure and cache pollution. When using intrinsics the software has to be designed in a register
aware manner; only the explicit management of the registers is taken over by the compiler. We
found that the compiler is only able to optimize code over small regions. Thus, the order of
intrinsics can have an influence on the achieved performance, thereby making optimizations
more difficult. Nonetheless, the use of intrinsics for the Dslash kernel is lightweight requiring
only a subset of 9 instructions. Due to the different links needed for the nearest and third-nearest
neighbor term we implemented both in separate kernels, thereby reducing cache pollution and
simplifying cache reuse for the vectors. For the global sums inside the linear algebra kernels we
use the OpenMP reduction clause. In order to avoid explicit barriers, each thread repeats the
calculation of the coefficients necessary for the CG in a thread local variable.

Site fusion: One problem of using 512 bit registers involving SU(3) matrix-vector products
is that one matrix/vector does not fit into an integer number of zmm registers without padding.
Because of this, it is more efficient to process several matrix-vector products at the same time

︸

︷︷

︸

sites

( )
,
,
,

,
,
, ( )× matrix

real imag

vector

Figure 2: Visualization of a fused matrix-vector product using the 16-fold vectorization scheme.
Each lane corresponds to one zmm register, which holds the same element of all 16 sites.

using a site fusion method. A naive single-precision implementation could be to create a “Struct
of Arrays” (SoA) object for 16 matrices as well as for 16 vectors. Such a SoA vector object
requires 6 zmm registers when it is loaded from memory. One specific register then refers to the
real or imaginary part of the same color component gathered from all 16 vectors, thus each
vector register can be treated in a “scalar way” (see Fig. 2). These SoA objects are stored in
an array using a site ordering technique. Our Dslash kernel runs best with streaming through
xy-planes and is specifically adapted for inverting multiple right-hand sides. Therefore, we use
a 8-fold site fusion method, combining 8 sites of the same parity in x-direction, which makes
the matrix-vector products less trivial and requires explicit in-register align/blend operations.
By doing so, we reduce the register pressure by 50% compared to the naive 16-fold site fusion
method, leaving more space for the intermediate result of the right-hand sides for each direction
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Figure 3: Performance comparison of the 8-fold and 16-fold vectorization scheme measured on a
5110P with enabled ECC. The dashed lines correspond to kernels without software prefetching.

µ. This is why the 8-fold site fusion is 55% faster compared to the 16-fold scheme at 4 rhs (see
Fig. 3). For one right-hand side this optimization is insignificant since the 16-fold matrix-vector
product requires only 30 of the 32 in hardware available zmm registers.

Prefetching: For indirect memory access, i.e. if the array index is a non-trivial calculation
or loaded from memory, it is not possible for the compiler to insert software prefetches. The MIC
has a L2 hardware prefetcher which is able to recognize simple access pattern. We found that it
does a good job for a linear memory access. Thus, there is no need for software prefetching by
hand inside the linear algebra operations of the CG. However, the access pattern of the Dslash
kernel is too complicated for the hardware prefetcher. Therefore, it is required to insert software
prefetches using intrinsics. The inverter runs 2× faster with inserted software prefetches. We
unroll the loop over all directions and prefetch always one µ-term ahead. The first right-hand
side vector and link of the first µ-term are prefetched at the end of the previous site loop
iteration. Considering that there is no reuse of gauge links, it is more efficient to prefetch these
into the non-temporal cache. For the vectors we use temporal prefetch hints. It is important
to note that software prefeteches are dropped if they cause a page table walk and in order to
counterbalance the increased TLB pressure from the multiple right-hand sides, we store, for
each lattice site, all rhs contiguously in memory. This approach is 15% faster for large lattices
compared to an implementation which stores each right-hand side in a separate array.

3 Comparison

For the Xeon Phi
TM

we used the Intel
R©

Compiler 14.0 and MPSS 3.3 with disabled instruction
cache snooping, huge pages and a balanced processor affinity. For the GPU part we used the
NVIDIA

R©
CUDA 6.0 toolkit. For the K40 we enabled GPU boost at the highest possible clock

rate 875 MHz. In all benchmarks we left ECC enabled.

In the left panel of Fig. 4 we show the performance as a function of the number of rhs. The
maximum number of rhs is limited by memory requirements. We observe roughly the behavior
as expected from the increased arithmetic intensity. Comparing the results using four right-
hand sides to one right-hand side we find a speedup of roughly 2.05 for the full CG, very close to
the increase of 2.16 in arithmetic intensity for the Dslash. Despite the linear algebra operations
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Figure 4: Performance of the HISQ inverter on different accelerators for a 643×16 lattice as a
function of the number of rhs (left) and for 4 rhs as a function of the lattice size (right).

that limit the obtainable speedup this is still about 95% of the expected effect. Independent of
the number of rhs the ordering with decreasing performance is K40, 7120P, 5110P, K20 with
the relative performance roughly given by 1.4, 1.2, 1.1, 1.0 (normalized to K20).

In the right panel we show the performance with 4 rhs as a function of the lattice size.
Ignoring the smallest size, the K40 is always superior while the 7120P is faster than the K20.
The 323×64 lattice seems to be more expedient for the SIMT model of the GPU.
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QCDGPU is an open-source tool for Monte Carlo lattice simulations of the SU(N) gluo-
dynamics and O(N) models. In particular, the package allows to study vacuum thermo-
dynamics in external chromomagnetic fields, spontaneous vacuum magnetization at high
temperature in the SU(N) gluodynamics and other new phenomena. The QCDGPU code
is implemented in the OpenCL environment and tested on different OpenCL-compatible
devices. It supports single- and multi-GPU modes as well as GPU clusters. Also, the
QCDGPU has a client-server part for distributed simulations over VPN. The core of Monte
Carlo procedure is based on the PRNGCL library, which contains implementations of the
most popular pseudorandom number generators. The package supports single-, mixed- and
full double-precision including pseudorandom number generation. The current version of
the QCDGPU is available online.

1 Introduction

Intensive development of computational methods, along with a rapid progress of computer
technology has opened up the possibility of studying many problems of quantum field theory
that can not be resolved within the analytical approach. One of such computational meth-
ods is lattice Monte Carlo (MC) method, which significantly expanded our understanding of
many high-energy phenomena. Lattice MC simulations are based on the procedure of infinite-
dimensional path integral calculation with the finite sums on a discrete space-time lattice. Due
to locality of basic algorithms, the method is well suited for massively parallel computational
environment. Therefore the advent of graphics processing units (GPU) as affordable computa-
tional platform reasonably causes a great interest.

Historically, NVIDIA CUDA has become the first widespread platform for general purpose
computing on GPUs. However, the requirement of cross-platform compatibility yields to the
development of the new open standard computational language OpenCL. Currently the share
of OpenCL usage reaches 30% of all scientific researches involving GPUs [1].

Nowadays, there are several software packages to provide MC lattice simulations on GPUs (for
example, [2], [3], [4], [5] and [6]). Nevertheless, existing software tools cannot cover many
modern high-energy physics problems like investigations of O(N) scalar models or study of
SU(N) vacuum in (chromo)magnetic fields. Therefore, we have developed a new software pack-
age, QCDGPU to provide the possibility of such kind of explorations. The general aim of
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the QCDGPU software [7] is the production of lattice gauge field configurations for O(N) and
SU(N) (with or without (chromo)magnetic fields) models with further statistical processing of
measurable quantities on GPUs.

2 Structure of QCDGPU

A full platform-independence principle is taken as a basis while constructing the QCDGPU
package. Correspondingly, OpenCL was chosen as a GPGPU platform for the package to
provide independence on GPU hardware vendors. Host code is implemented in C++ language
with minimal external library dependence, which ensures it runs equally well on Windows and
Linux operating systems.

Figure 1: Structure of the QCDGPU package

From the programming point of view the QCDGPU package is a set of independent modules
that provide different functions. The structure of QCDGPU is shown as a schematic diagram
in Fig. 1.

The core of the package is the CLInterface module which unifies the interaction of the host
code with different computing devices. It performs initialization and finalization of computing
devices, prepares and adjusts memory objects and OpenCL-kernels for execution, controls and
schedules the program flow, etc. All references to memory objects and kernels are organized
through integer identifiers. This approach removes direct dealing with OpenCL types and
structures, which essentially simplifies programming.

Another important function of the CLInterface module is a caching of previously compiled
OpenCL programs to reduce startup time of their execution by creating .bin-files with compiled
code for a particular device with distinct computational parameters. The reason to imple-
ment an external caching is caused by the fact that not all OpenCL SDK vendors provide
correct caching and tracking of dependent source code files. Compilation-specific and addi-
tional parameters (like computing platform and device, program options, etc.) are written to
the corresponding .inf-files. The uniqueness and code modification is controlled by MD5-hash
calculation for each OpenCL source code. Any code or compiler parameters changing leads to a
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new rebuilding of the program with corresponding .bin- and .inf-files generation. These files are
created for a new startup parameters set. If MD5 and other parameters fit the existing .inf-file,
the CLInterface module uses the previously built program from .bin-file. If only MD5-hash is
changed (that means kernel source code update), old .bin and .inf files are overwritten. Such
a technique provides significant runtime speedup for real MC simulations, because usually a
limited set of parameters is used to perform such computer experiments.

Moreover, instant profiling of kernels and host-device data transfer are also performed with
the module CLInterface. Due to a slightly slowing up of the package by profiling, it is turned off
by default. Device errors handling is performed with CLInterface too. All errors are collected
in .log-file. In case of critical errors the program stops.

Model description block is represented by the SUNCL and ONCL modules, which describe
SU(N) and O(N) models, correspondingly. The quantum fields in the SU(N) case are represented
by N × N complex matrices living on lattice links. Not all the components of these matrices
are independent, so it reduces desired storing data. In the O(N) model case the scalar fields are
N -vectors placed in lattice sites. While organizing such matrices and vectors, it is taken into
account a common GPU memory architecture that is optimized for the storage of 4-vectors.
Such storage format provides additional significant speedup for a program on all computing
devices. The whole lattice is a multidimensional set of data that is presented in the QCDGPU
package in the following way. The first dimension (fastest index) enumerates lattice site. The
next dimension contains the spatial directions of lattice links (in the case of O(N) models this
is absent). The last dimension (slowest index) is connected with the gauge group.

The lattice update is realized by decomposing sites in odd and even ones (checkerboard
scheme), and, if necessary, into separate parts to handle big lattices. For SU(N) link update
a (pseudo)heat-bath algorithm [8, 9] is used, while for O(N) update an improved Metropolis
algorithm [10] is implemented.

Pseudorandom numbers for MC simulations are produced with the PRNGCL library [11].
The most widely used generators in HEP lattice simulations are realized in it (RANMAR,
RANECU, XOR7, XOR128, MRG32K3a and RANLUX with various luxury levels). Since
almost all realized generators (apart from MRG32k3a) have not a general scheme for multi-
thread execution, parallelization is made by the random seeding method – each computing
thread uses its own seed table, which is uniquely initialized during startup. Initialization of
PRNG is made by one integer parameter RANDSERIES. If it is set to zero, system time is
chosen for its value. PRNGCL library provides very important feature for MC simulations –
repeatability of results on different hardware and operating systems. PRNGCL possesses the
possibility to produce pseudorandom numbers with single or double precision to study tiny
effects on a lattice.

The possibility to work with big lattices is implemented in QCDGPU through dividing the
whole lattice into several parts (Big lattice module). Each part can be simulated on one or
several devices. In the case of a multi-GPU system or heterogeneous GPU cluster, dividing
the lattice into unequal parts provides the possibility to hide the differences in performance of
the different devices. The slowest device gets the smallest lattice part, while the most powerful
device operates with biggest lattice portion. The division is implemented along the x spatial
axis, because the package is designed mainly for investigation of finite temperature effects,
where Lt < Ls, Lt/s being the lattice size in the temporal and spatial directions, respectively.

GPUHEP2014 3

QCDGPU: AN OPEN-SOURCE OPENCL TOOL FOR MONTE CARLO LATTICE . . .

GPUHEP2014 165



In order to hide data transfer among computing devices, additional checkerboard decom-
position is used: the odd and even parts of the lattice are updated alternately. In this case,
the information exchange of lattice boundary layers is performed in asynchronous mode – while
even sites are being updated, transfer of the information at the boundary layer sites takes place
and vice versa. That is why it is preferable to divide the lattice into an even number of parts.

In the Data analysis module the statistical analysis of the data collected during one program
run is performed. The averages and variances over each run of measured quantities are cal-
culated here. The Data analysis module also provides data distribution analysis for particular
measurements.

The Results checking module serves to control the correctness of obtained results. It compares
the measurements on the last gauge configuration obtained on GPU with results of traditional
sequential approach on CPU. For deep debugging and dynamical comparison of results the
Results checking module can independently produce lattice gauge configurations on the same
pseudorandom numbers as the device. This module is turned off by default to speed up the
program and can be activated.

One of the most widely spread error while developing lattice-based programs is incorrect
linking among different lattice sites. Obviously, such an error may bring unnecessary lattice
connections and lead to nonphysical results. To overcome such problems the QCDGPU package
provides additional lattice initialization with the so-called GID update. Unlike “cold” (or-
dered) and “hot” (disordered) starts, in this case the lattice is filled with predefined numbers
(GID start), which are uniquely determined with each computing thread. Update is also per-
formed with some predefined numbers instead of PRNs. To exclude rounding errors in the
heat-bath procedure, the expression for the coefficients of the identity matrix of SU(2) sub-
groups is changed and the obtained configuration is always accepted. This method provides a
good possibility to compare MC simulation results with some alternative realization of the key
procedures (for example, mathematical packages).

3 Run description

In actual calculations it is convenient to run QCDGPU in pair with an external program GPU-
dispatcher, which prepares the init.dat file with run parameters (like lattice geometry, gauge
group, precision and so on). init.dat is an ordinary text file containing those parameters in the
form PARAMETER = value. The complete list of run parameters may be found in the poster [12].

The program QCDGPU is run in the standard way, QCDGPU root directory> ./QCDGPU

init.dat. During execution it creates several files programi.bin and programi.inf, where i is
index number of the binary file. The .bin files contain compiled OpenCL kernels. Additional
information needed for those programs is written in the .inf files.

The possibility of regular saving of the program state, including the state of pseudorandom
number generators, is realized in QCDGPU for resuming the interrupted simulation. It allows
to interrupt the simulation at any time, and provides basic fault tolerance (power or hardware
failure). Saving frequency can be set manually. Saved .qcg-file with the computational state is
portable – the computation can be continued on another device.

The result of the program execution is written to the modeln-yy-Month-dd-hh-mm-ss.txt file,
which contains run parameters, average over run values of measured quantities, their variances
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over run, the table of averaged over configuration quantities. If Results checking module is on
then CPU comparison is included in the output file.

After program execution the file finish.txt is created. It prevents QCDGPU from premature
run. To start the program one more time, this file must be removed. GPU-dispatcher creates
a new init.dat file, removes finish.txt, and QCDGPU runs with new startup parameters. Such
asynchronous task scheduling via operating system tools causes extremely low CPU load in
stand-by mode.

Using QCDGPU in pair with GPU-dispatcher allows to perform MC simulations on several
hosts at the same time. Each copy of the main computational program is launched on the corre-
sponding host, while parameters passing and launch control are carried out by GPU-dispatcher.
It sequentially looks through folders and sets a new task for the first free host.

4 Performance results

To estimate the performance of the QCDGPU package, several devices were used: NVIDIA
GeForce GTX970, NVIDIA GeForce GTX980 (NVIDIA CUDA SDK 7.0), AMD Radeon R9
270X, AMD Radeon HD7970 (AMD APP SDK 3.0 Beta), Intel Xeon Phi 31S1P and Intel
Xeon CPU E5-2609 (Intel OpenCL SDK 1.2 4.6.0.92). In Table 1 the timings for one sweep in
seconds are presented for SU(3) gauge theory for three lattice sizes for single, mixed and double
precisions. The mixed precision means that all calculations are done with double precision
except for PRNs production. Each sweep consists of the lattice update by multihit heat-bath
method (10 hits are set) and measurement of the Wilson action.

Single Mixed Double

Device
Lattice

164 244 324 164 244 324 164 244 324

NVIDIA GTX980 0.01 0.04 0.13 0.02 0.08 0.25 0.03 0.20 0.69
NVIDIA GTX970 0.01 0.06 0.18 0.02 0.10 0.34 0.04 0.27 0.94
AMD R9 270X 0.02 0.10 0.32 0.05 0.22 0.68 0.14 0.82 2.65
AMD HD7970 0.02 0.08 0.26 0.03 0.14 0.46 0.12 0.66 2.28
E5-2609 CPU 0.19 0.93 2.89 0.23 1.14 3.56 0.59 3.60 11.77
Intel Xeon Phi 0.47 2.29 7.18 0.57 2.65 8.20 1.81 11.3 36.9

Table 1: Timings (in seconds) of one sweep for SU(3) gluodynamics

It can be seen that the computing time depends linearly on the lattice volume for almost all
devices. Despite of significant difference in the peak performance for modern GPUs, QCDGPU
shows much better ratio of double/single precision timings. The run on Intel Xeon Phi is
performed just to test compatibility of the QCDGPU package, the program is not optimized
for Intel MIC architecture.

5 Conclusions

QCDGPU package is a new software tool for MC lattice simulations on OpenCL-compatible
computing devices. It provides a possibility to study vacuum thermodynamics in extreme
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conditions and measuring of nonconventional quantities like Polyakov loop and action spatial
distribution, Cartesian components of SU(N) electromagnetic field tensor. QCDGPU is also
applicable for simulating scalar O(N) model in the quantum field theory on GPUs.

Underlying full platform-independence principle makes it possible the usage of the QCDGPU
package on different OpenCL-compatible computing hardware as well as for most popular op-
erating systems without any source code modifying. Additionally, the package almost does not
load the central processor. Together with platform-independence it provides a great opportunity
to use the package in local networks as a background software for lattice simulations.

The package demonstrates the best performance results in multi-GPU simulations for trivial
parallelization of a task. This approach consists of whole lattice simulation with certain set of
adjustable parameters by each involved computing device. The main bottleneck of GPU com-
puting is still relatively low throughput of host-to-device connection. Moreover, interconnection
between computing nodes in GPU cluster possesses even lower throughput then host-to-device
connection. Obviously, it is better to carry out simulations directly in device memory to elimi-
nate data transfer to/from device. However, for large lattices this is impossible due to the lack
of device memory and the only way is to separate lattices into several parts on one host system.

The package instantly provides data production with single, mixed and double precision.
The usage of double precision on a regular basis may lead to unnecessary waste of computing
time. To overcome this issue internal pseudorandom number generators are built to provide dou-
ble precision numbers from numbers with single precision by applying a special procedure [13].

Undoubtedly, QCDGPU package is continuously developing to provide additional features
that can improve performance and extend the class of tasks solvable with the package. One of
such features is autotuning of start-up parameters with internal micro-benchmarks of involved
computing devices.

The source codes of the current version of the QCDGPU package and some examples of result
files are publicly available [7].
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We present the Lattice QCD application CL2QCD, which is based on OpenCL and can

be utilized to run on Graphic Processing Units as well as on common CPUs. We focus

on implementation details as well as performance results of selected features. CL2QCD

has been successfully applied in LQCD studies at �nite temperature and density and is

available at http://code.compeng.uni-frankfurt.de/projects/clhmc.

1 Lattice QCD at Finite Temperature

Lattice QCD (LQCD) successfully describes many aspects of the strong interactions and is the
only method available to study QCD from �rst principles. The idea is to discretize space-time
on a N3

σ ×Nτ hypercube with lattice spacing a and treat this system with numerical methods.
State-of-the-art lattice simulations require high-performance computing and constitute one of
the most compute intensive problems in science. The discretization procedure is not unique
and several di�erent lattice theories of QCD have been developed. It is important, in general,
to cross check each result using di�erent formulations.

The QCD phase diagram is of great interest both theoretically and experimentally, e.g. at
the dedicated programs at RHIC at Brookhaven, LHC at CERN or at the future FAIR facility
in Darmstadt1. On the lattice, studies at �nite temperature T are possible via the identi�cation
T = (a(β)Nτ )

−1. Thus, scans in T require simulations at multiple values of the lattice coupling
β. In addition, to employ a scaling analysis, simulations on various spatial volumes N3

σ are
needed (to avoid �nite size e�ects one typically uses Nσ/Nτ ≈ 3). Hence, studies at �nite T
naturally constitute a parallel simulation setup. Currently, these investigations are restricted
to zero chemical potential µ, as the sign-problem prevents direct simulations at µ > 0. To
circumvent this issue one can use reweighting, a Taylor series approach or one can employ a
purely imaginary chemical potential µI .

On the lattice, observables are evaluated by means of importance sampling methods by
generating ensembles of gauge con�gurations {Um} using as probability measure the Boltzmann-
weight p[U, φ] = exp {−Se�[U, φ]}. Expectation values are then

〈K〉 ≈ 1

N

∑

m

K[Um] .

These ensembles are commonly generated using the Hybrid-Monte-Carlo (HMC) algorithm [1],
which does not depend on any particular lattice formulation of QCD.

1See http://www.bnl.gov/rhic/, http://home.web.cern.ch/, and http://www.fair-center.de .
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LOEWE -CSC SANAM
GPU nodes 600 40 304
GPUs/node 1 × AMD 5870 2 × AMD S10000 2 × AMD S10000
CPUs/node 2 × Opteron 6172 2 × Intel Xeon E5-2630 v2 2 × Xeon E5-2650

Table 1: AMD based clusters where CL2QCD was used for production runs.

The fermions enter in the e�ective action Se� via the fermion determinant detD, which
is evaluated using pseudo-fermions φ, requiring the inverse of the fermion matrix, D−1. The
fermion matrix D is speci�c to the chosen discretization. The most expensive ingredient to
current LQCD simulations is the inversion of the fermion-matrix

Dφ = ψ ⇒ φ = D−1 ψ ,

which is carried out with Krylov subspace methods, e.g. conjugate gradient (CG). During the
inversion, the matrix-vector product Dφ has to be carried out multiple times. The performance
of this operation, like almost all LQCD operations, is limited by the memory bandwidth. For
example, in the Wilson formulation, the derivative part of D, the so-called 6D, requires to read
and write 2880 Bytes per lattice site in each call, while it performs only 1632 FLOPs per site,
giving a rather low numerical density ρ (FLOPs per Byte) of ∼ 0.57. In the standard staggered
formulation, the situation is even more bandwidth-dominated. To apply the discretization of
the Dirac operator on a fermionic �eld (DKS φ) 570 FLOPs per each lattice site are performed
and 1584 Bytes are read or written, with a consequent smaller ρ of ∼ 0.35. This emphasizes
that LQCD requires hardware with a high memory-bandwidth to run e�ectively, and that a
meaningful measure for the e�ciency is the achieved bandwidth. In addition, LQCD functions
are local, i.e. they depend on a number of nearest neighbours only. Hence, they are very well
suited for parallelization.

2 OpenCL and Graphic Cards

Graphics Processing Units (GPUs) surpass CPUs in peak performance as well as in memory
bandwidth and can be used for general purposes. Hence, many clusters are today accelerated
by GPUs, for example LOEWE -CSC in Frankfurt [2] or SANAM [3] (see Table 1). GPUs
constitute an inherently parallel architecture. As LQCD applications are always memory-
bandwidth limited (see above) they can bene�t from GPUs tremendously. Accordingly, in
recent years the usage of GPUs in LQCD simulations has increased. These e�orts mainly rely on
CUDA as computing language, applicable to NVIDIA hardware only2. A hardware independent
approach to GPU applications is given by the Open Computing Language (OpenCL)3, which is
an open standard to perform calculations on heterogeneous computing platforms. This means
that GPUs and CPUs can be used together within the same framework, taking advantage of
their synergy and resulting in a high portability of the software. First attempts to do this in
LQCD have been reported in [4].

An OpenCL application consists of a host program coordinating the execution of the actual
functions, called kernels, on computing devices, like for instance GPUs or a CPUs. Although the

2See https://developer.nvidia.com/cuda-zone and https://github.com/lattice/quda for the QUDA library.
3See https://www.khronos.org/opencl .
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hardware has di�erent characteristics, GPU programming shares many similarities with parallel
programming of CPUs. A computing device consists of multiple compute units. When a kernel
is executed on a computing device, actually a huge number of kernel instances is launched.
They are mapped onto work-groups consisting of work-items. The work-items are guaranteed
to be executed concurrently only on the processing elements of the compute unit (and share
processor resources on the device).

Compared to the main memory of traditional computing systems, on-board memory capac-
ities of GPUs are low, though increasing more and more4. This constitutes a clear boundary
for simulation setups. Also, communication between host system and GPU is slow, limiting
workarounds in case the available GPU memory is exceeded. Nevertheless, as �nite T studies are
usually carried out on moderate lattice sizes (in particular Nσ � Nτ ), this is less problematic
for the use cases CL2QCD was developed for.

3 CL2QCD Features

CL2QCD is a Lattice QCD application based on OpenCL, applicable to CPUs and GPUs.
Focusing on Wilson fermions, it constitutes the �rst such application for this discretization
type [5]. In particular, the so-called Twisted Mass Wilson fermions [6, 7], which ensure O(a)
improvement at maximal twist, are implemented. Recently, the (standard) formulation of stag-
gered fermions has been added. Improved gauge actions and standard inversion and integration
algorithms are available, as well as ILDG-compatible IO5 and the RANLUX Pseudo-Random
Number Generator (PRNG) [8]. More precisely, CL2QCD provides the following executables.

• HMC: Generation of gauge �eld con�gurations for Nf = 2 Twisted Mass Wilson type or
pure Wilson type fermions using the HMC algorithm [1].

• RHMC: Generation of gauge �eld con�gurations for Nf staggered type fermions using
the Rational HMC algorithm [9].

• SU3HEATBATH: Generation of gauge �eld con�gurations for SU(3) Pure Gauge The-
ory using the heatbath algorithm [10, 11, 12].

• INVERTER:Measurements of fermionic observables on given gauge �eld con�gurations.

• GAUGEOBSERVABLES: Measurements of gauge observables on given gauge �eld
con�gurations.

The host program of CL2QCD is set up in C++, which allows for independent program parts
using C++ functionalities and also naturally provides extension capabilities. Cross-platform
compilation is provided using the CMake framework.6 All parts of the simulation code are
carried out using OpenCL kernels in double precision. The OpenCL language is based on
C99. In particular, concrete implementations of basic LQCD functionality like matrix-matrix
multiplication, but also more complex operations like the 6D or the (R)HMC force calculation,
are found in the kernel �les. The kernels are in a certain way detached from the host part as
the latter can continue independently of the status of the kernel execution. This nicely shows

4For instance, the GPUs given in Table 1 have on-board memory capacities of 1, 12 and 3 GB, respectively.
5Via LIME, see http://usqcd.jlab.org/usqcd-docs/c-lime .
6See http://www.cmake.org .
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Figure 1: Performace of Wilson 6D kernel for various lattice sizes on di�erent devices in double
precision.

the separation into the administrative part (host) and the performance-critical calculations
(kernels).

OpenCL kernels are compiled at runtime which is mandatory as the speci�c architecture is
not known a priori. On the one hand, this introduces an overhead, but on the other hand allows
to pass runtime parameters (like the lattice size) as compile time parameters to the kernels,
saving arguments and enabling compiler optimization for speci�c parameter sets. In addition,
the compiled kernel code is saved for later reuse, e.g. when resuming an HMC chain with the
same parameters on the same architecture. This reduces the initialization time. Kernel code
is common to GPUs and CPUs, device speci�cs are incorporated using macros. It is ensured
that that memory objects are treated in a Structure of arrays (SOA) fashion on GPUs, which
there is crucial for optimal memory access as opposed to Array of structures (AOS).

In general, it is desireable to be able to test every single part of code on its own and to
have as little code duplication as possible. This is at the heart of the Test Driven Development
[13] and Clean Code [14] concepts, which we follow during the development of CL2QCD. Unit
tests are implemented utilizing the BOOST7 and CMake unit test frameworks. Regression
tests for the OpenCL parts are mandatory due to the runtime compilation. In particular, as
LQCD functions are local in the sense that they depend only on a few nearest neighbours, one
can calculate analytic results to test against and often the dependence on the lattice size is
easily predictable. Another crucial aspects to guarantee maintainability and portability of code
is to avoid dependence of the tests on speci�c environments. For example, this happens when
random numbers are used (e.g. for trial �eld con�guration). If this is the case, a test result then
depends not only on the used PRNG but also on the hardware in a multi-core architecture.

4 Performance of 6D
Our Wilson 6D implementation, which is crucial for overall performance, shows very good per-
formance on various lattice sizes (Figure 1) and outperforms performances reported in the

7See http://www.boost.org .
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Figure 2: HMC performance for di�erent Setups A, B and C (setup A having the smallest
fermion mass) for Nτ = 8, Nσ = 24. The HMC is compared on di�erent GPUs and compared
to a reference code [15] running on one LOEWE -CSC node.

literature (see [5]). We are able to utilize ∼ 80% of the peak memory bandwidth on the AMD
Radeon HD 5870, Radeon HD 7970 and FirePro S10000. Note that the code runs also on
NVIDIA devices as shown in the �gure, however, with lower performance since AMD was the
primary development platform and no optimization was carried out here.

The staggered DKS implementation, which plays the same role as 6D regarding the overall
speed of the code, shows also good performance on various lattice sizes. We are able to utilize
∼ 70% of the peak memory bandwidth on the AMD Radeon HD 5870 and AMD Radeon HD
7970. Due to its recent development, the implementation of the staggered code can be further
optimized. So far no other benchmark for a possible comparison is present in the literature.
Again, the code runs also on NVIDIA devices, though also here the performance is lower for
the same reasons explained above regarding the Wilson 6D.

5 Algorithmic Performance

The full HMC application also performs very well compared to a reference CPU-based code
tmLQCD [15] (see Figure 2). The tmLQCD performance was taken on one LOEWE -CSC node.
Compared to tmLQCD, the older AMD Radeon HD 5870 is twice as fast. The newer AMD
FirePro S10000 again doubles this performance. This essentially means that we gain a factor
of 4 in speed, comparing a single GPU to a whole LOEWE -CSC node. In addition, it is
interesting to look at the price-per-�op, which is much lower for the GPUs used then for the
used CPUs.

As on-board memory is the biggest limiting factor on GPUs, using multiple GPUs is of great
interest [16]. In CL2QCD it is possible to split the lattice in time direction [17].

6 Conclusions and Perspectives

We presented the OpenCL-based LQCD application CL2QCD. It has been successfully applied in
�nite temperature studies on LOEWE -CSC and SANAM supercomputers (e.g. [18]), providing
a well-suited basis for future applications. CL2QCD is available at

http://code.compeng.uni-frankfurt.de/projects/clhmc .
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Additional features will be added to CL2QCD according to the needs of the physical studies.
In the near future, these will cover the extension of Wilson fermions to Nf = 2+1 �avours and
the implementation of the clover discretization. Adding to that, optimizations of performances
of staggered fermions and the inclusion of improved staggered actions are planned.
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We adopt CUDA-capable Graphic Processing Units (GPUs) for Landau, Coulomb and
maximally Abelian gauge fixing in 3+1 dimensional SU(3) and SU(2) lattice gauge field
theories. A combination of simulated annealing and overrelaxation is used to aim for the
global maximum of the gauge functional. We use a fine grained degree of parallelism to
achieve the maximum performance: instead of the common 1 thread per site strategy we
use 4 or 8 threads per lattice site. Here, we report on an improved version of our publicly
available code (www.cuLGT.com) which again increases performance and is much easier to
include in existing code. On the GeForce GTX 580 we achieve up to 470 GFlops (utilizing
80% of the theoretical peak bandwidth) for the Landau overrelaxation code.

1 Introduction

In lattice QCD, gauge fixing is necessary to study the fundamental (gauge-variant) two point
functions of QCD and to compare with continuum results. Lattice gauge fixing is an optimiza-
tion problem with very many degrees of freedom and many local maxima. Each local maximum
corresponds to a so-called Gribov copy. These Gribov copies may have an effect on gauge-variant
quantities. One way to get a unique gauge copy is to search for the global maximum of the
functional. This task is very time-consuming and an efficient implementation on modern hard-
ware is desirable. Since the optimization algorithms are nicely parallelizable, graphic processing
units (GPUs) are perfectly suited for these algorithms. Here, we report on latest improvements
to cuLGT, a CUDA-based software for lattice gauge fixing that evolved from the first GPU
gauge fixing code presented in [1]. In its first version, cuLGT offered standalone applications
for Landau, Coulomb and maximally Abelian gauge fixing in 3+1 dimensional SU(3) gauge
theories using a combination of overrelaxation and simulated annealing [2]. One of the aims
of cuLGT2 was to offer the possibility to integrate the gauge fixing routines in existing lattice
QCD frameworks, like the MILC code [3]. In the following, we will restrict the discussion to
Landau gauge and the overrelaxation algorithm. For a more complete treatment we refer to
the original work [2].

An alternative GPU gauge fixing software using a Fourier accelerated steepest descent al-
gorithm is available from the authors of [4].
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2 Lattice Gauge Fixing

On the lattice, a link variable Uµ(x) ∈ SU(Nc) transforms with respect to gauge transformations
g(x) ∈ SU(Nc) as

Uµ → Ugµ = g(x)Uµ(x)g†(x+ µ̂).

The continuum Landau gauge condition,

∂µAµ(x) = 0,

translates on the lattice to the discrete derivative

∆(x) =
∑

µ

(Aµ(x)−Aµ(x− µ̂)) = 0, (1)

where the connection between the continuum gauge fields Aµ(x) and the lattice links is estab-
lished by

Aµ(x) =
1

2iag

[
Uµ(x)− U†

µ(x)
]
traceless

.

In each local maximum of the Landau gauge fixing functional

FU [g] =
1

NdNcV

∑

x

∑

µ

Re tr
[
g(x)Uµ(x)g†(x+ µ̂)

]
(2)

the lattice Landau gauge condition (1) is satisfied. In the normalization of (2), Nd = 4 denotes
the number of space-time dimensions and V = N3

sNt is the lattice volume. Instead of consid-
ering the complete functional (2), we rewrite it in a sum of local terms by factoring out the
gauge transformation at lattice point x,

FU [g] =
1

2NdNcV

∑

x

Re tr [g(x)K(x)] .

Then, we optimize

Re tr [g(x)K(x)] = Re tr

[
g(x)

∑

µ

[
Uµ(x) + U†

µ(x− µ̂)
]
]
. (3)

with respect to g(x). All other (inactive) gauge transformations are set to the identity. The
local functional (3) only depends on links that start or end at lattice site x.

The local maximum at each site can be found directly as

g(x) = K†(x)/
√

detK†(x)

for the gauge group SU(2). For Nc > 2 one iterates over the SU(2) subgroups. To overcome
the problem of critical slowing down, the authors of [5] proposed to apply an overrelaxation
update by replacing g(x) by gω(x) with ω ∈ [1, 2). Since only transformations at neighboring
sites interfere, we can use a checkerboard layout and sweep first over the black and then over
the white lattice sites. The algorithm is then iterated until the discrete gauge condition (1) is
satisfied up to a given numerical precision.
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3 GPU optimizations

Most GPU applications in lattice QCD are bound by the bandwidth of global device memory.
Therefore, the highest focus should be on ideal memory usage. For an overview of optimization
techniques for lattice QCD we refer to [6]. In the following, we will shortly summarize the
optimizations that led to the performance of cuLGT1. In Sec. 4 we will report on the improved
code cuLGT2.

3.1 Pre-cuLGT (first version)

For maximal throughput the memory access should be coalesced, i.e. consecutive threads should
read from consecutive memory addresses. Therefore, we first reorder the lattice into its black
and white sublattices according to the checkerboard layout. Within each sublattice we order
data such that the site index runs faster than Lorentz and matrix indices.

In order to save bandwidth we do not load full Nc ×Nc matrices from global memory, but
only parts of it. Then, we use the properties of the gauge group to reconstruct the full matrix
in registers/local memory. For the gauge group SU(3) we use a 12 parameter representation,
i.e. the first 2 rows of the matrix.

With these optimizations we already get a remarkable speedup of a factor of ∼ 30 over a
single core CPU implementation1 for the SU(3) overrelaxation code. The performance of 120
GFlops is of course far away from the theoretical peak performance of this GPU, however the
correct measure of the utilization of the GPU is the achieved memory throughput. Therefore,
on the r.h.s. of Fig. 1 we show the throughput in percent of the theoretical peak bandwidth.
For this version of the code we only use 20% of the theoretical bandwidth2.

3.2 cuLGT1

Register pressure turned out to be the main performance bottleneck in the first version of the
code. There we used one thread to calculate the update of a site. A simple calculation shows
that we would already need 144 registers for storing the 8 links that are involved in a site
update (and additional registers are needed for temporary storage in the computation). Since
the register limit of GPUs of the Fermi generation is 63 registers (32 bit) per kernel, a lot
of data is spilled to the slow global memory. To relax the register pressure we introduced a
8-thread-per-site strategy in [2], where we keep one link (18 parameters) in each thread. The
communication among these 8 threads (summation of links to get K(x) and distribution of the
result g(x)) is done via shared memory. With this optimization we increase performance by a
factor of three, using more than 60% of the bandwidth. This version of the code is currently
available on our website.

4 cuLGT2

With the development of cuLGT2 we wanted to solve several structural problems of cuLGT1:
(a) the parameterization of links was hard-coded, switching to other parameterization would

1We used our own reference CPU code which runs slightly faster than the publicly available MILC code [3].
However, for a fair comparison of CPU vs. GPU performance we would need a highly optimized multi-threaded
CPU code.

2With the 12 parameter representation.
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Figure 1: Evolution of the performance of cuLGT from the first version to cuLGT2 for the SU(3)
Landau gauge overrelaxation code (324 lattice in single precision) on a GeForce GTX 580. The
CPU performance is from a single core of an Intel Core i7-2600.

have needed a lot of code changes; (b) related to the former point, SU(2) and SU(3) implemen-
tations needed a lot of code duplication; (c) switching from the 8-threads-per-site strategy to 4
threads per site was not easily possible; (d) all these points prevented to implement a tool to
automatically choose the optimal kernel settings for different GPUs, a technique that is already
successfully used in the QUDA library [7].

To systematically solve these issues we decided to completely rewrite major parts of the
code. In the following, we leave out most details of the implementation but focus only on the
link management. This part might be useful for many other lattice GPU applications, since
it allows developers to use high level constructs for writing GPU optimized code. A multi-
GPU version of cuLGT2 is not yet available. We refer to cuLGT1 for lattice sizes that need
multi-GPU.

4.1 Link management

Already in cuLGT1 we used two separate classes to represent a link in global memory SU3<Link>

and local memory SU3<Matrix>. The former takes care of the memory pattern (details about
available memory patterns in [2]) and allows to access a link by specifying the site and the
Lorentz index. The data is stored in a linear float or double array of length L = V Nd(2N

2
c ),

where 2N2
c is the number of parameters of the Nc × Nc complex matrix. For using the 12

parameter representation one just reads/stores the first two rows of the matrix. Other repre-
sentations where the parameters are not just a subset of the full matrix, like the minimal 8
parameter representation, are not provided. Changing the datatype of the global array was
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also not possible3.

With cuLGT2, we decided to introduce an additional abstraction that easily allows changing
how links are represented in memory. An implementation of a ParameterizationType defines
the datatype and the number of elements. For transformations from one representation to
another we define a mediator that overloads the assignment operator for the specific types.
Links in global memory (GlobalLink) are now defined with two template parameters to specify
the memory pattern and the parameterization. The LocalLink takes only the parameterization
type as template parameter. Two examples for ParameterizationTypes for SU(3) are

class SU3Full
{

typedef float TYPE;
const static int SIZE = 18;

}

class SU3Vector4
{

typedef float4 TYPE;
const static int SIZE = 3;

}

on the l.h.s. a 18 parameter representation with floats, usually used in LocalLink; on the
r.h.s. a 12 parameter representation as three float4, usually used in GlobalLink. A (simplified)
example code to perform a gauge transformation is

1 typedef GlobalLink<GPUPattern,SU3Vector4> GLOBALLINK;
2 typedef LocalLink<SU3Full> LOCALLINK;
3 void transformLink(Site s, int dir, LOCALLINK gLeft, LOCALLINK gRight)
4 {
5 GLOBALLINK global(s, dir);
6 LOCALLINK local;
7 local = global;
8 local = gLeft*local*gRight.hermitian();
9 global = local;

10 }

In line 1 and 2 the parameterizations for the GlobalLink and LocalLink are defined. Changing
the gauge group to SU(2) would only require to set appropriate SU(2) parameterizations here.
In line 7 a GlobalLink is assigned to a LocalLink. The full matrix is implicitly reconstructed.
In line 8 the link is transformed. LocalLink overloads the multiplication operator and defines
a function to compute the hermitian conjugate. The actual implementation of these operations
is in the class of the ParameterizationType. In line 9 the modified link is written back to
global memory, discarding the third line.

4.2 Performance

Although the primary design goal of cuLGT2 was not on performance improvements, we got
a speedup compared to cuLGT1. The main improvement in Fig. 1 comes from the use of the
4-threads-per-site strategy instead of 8 threads per site. In Fig. 2 we compare the performance
of the code on different GPUs. Only on the Tesla K20s 8-threads-per-site performs better. We
do not yet know why this happens and why the result is that bad compared to the GTX Titan.
Additional tuning is needed for the K20s.

3Using for example float4/double2 instead of float/double would improve bandwidth utilization for mem-
ory accesses that cannot be coalesced, like access to links that are neighbors of the current site Uµ(x+ µ̂).
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Figure 2: Performance of the cuLGT2 SU(3) Landau gauge overrelaxation code (324 lattice)
on different GPUs in SP (left), mixed precision (middle) and DP (right)

5 Summary

With the development of cuLGT2 we successfully solved several design issues of cuLGT1. The
gauge fixing software is now well modularized which allows us to run the gauge fixing routines
from the MILC code. Additionally, the software automatically chooses the optimal kernel setup
for different architectures at runtime by trying (a) 4 or 8 threads per site update, (b) different
register limits by setting launchbounds() (c) switching texture loads on or off. With the
4-threads-per-site strategy and the improved link management the performance of the code
was remarkably improved.
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Novel GPU features: Performance and Produc-

tivity.

P. Messmer1

1 NVIDIA

The huge amount of computing power needed for signal processing and off-line simulation
makes High-Energy Physics an ideal target for GPUs. Since the first versions of CUDA,
considerable progress has been made in demonstrating the benefit of GPUs for these pro-
cessing pipelines and GPUs are now being deployed for production systems. However, early
experiments also showed some of the challenges encountered in HEP specific tasks, includ-
ing memory footprint, complex control flow, phases of limited concurrency and portability.
Many of these concerns have been addressed with recent changes to the GPU hardware
and software infrastructure: Unified memory, dynamic parallelism, and priority streams
are just some of the features at the developers disposal to fully take advantage of the
available hardware. In addition, recently added boards like the TK1 processor for embed-
ded high performance, low power applications enable now CUDA accelerated applications
from the sensor to the offline simulations. In this talk I will present some of the latest
additions to the GPU hardware, provide an overview of the recent changes to the software
infrastructure and will walk through features added in the latest CUDA version.

Contribution not received.
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Commodity embedded technology and mobile GPUs

for future HPC systems

F. Mantovani1
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Around 2005-2008, (mostly) economic reasons led to the adoption of commodity GPU in
high-performance computing. This transformation has been so effective that in 2013 the
TOP500 list of supercomputers is still dominated by heterogeneous architectures based
on CPU+coprocessor. In 2013, the largest commodity market in computing is not the
one of PCs or GPUs, but mobile computing, comprising smartphones and tablets, most of
which are built with ARM-based System On Chips (SoCs). This leads to the suggestion
that, once mobile SoCs deliver sufficient performance, mobile SoCs can help reduce the
cost of HPC. Moreover mobile SoCs embed GPUs that are in many cases OpenCL/CUDA
capable, therefore most of the computing experience gained over these years can be highly
beneficial.

Since the end of 2011 the Mont-Blanc project is tackling the challenges related to the use
of mobile SoCs in an HPC environment, developing a prototype, evaluating heterogeneous
CPU+GPU architectures and porting libraries and scientific applications to ARM based
architectures. In view of the experiences within the Mont-Blanc project at the Barcelona
Supercomputing Center, this contribution will show preliminary results about performance
evaluation of heterogeneous CPU+GPU computation on mobile SoCs and will describe
possibilities and challenges involved in developing high-performance computing platforms
from low cost and energy efficient mobile processors and commodity components.

Contribution not received.
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Graphics Processing Units (GPUs) can speed up the numerical solution of various problems
in astrophysics including the dynamical evolution of stellar systems; the performance gain
can be more than a factor 100 compared to using a Central Processing Unit only. In this
work I describe some strategies to speed up the classical N -body problem using GPUs. I
show some features of the N -body code HiGPUs as template code. In this context, I also
give some hints on the parallel implementation of a regularization method and I introduce
the code HiGPUs-R. Although the main application of this work concerns astrophysics, some
of the presented techniques are of general validity and can be applied to other branches of
physics such as electrodynamics and QCD.

1 Introduction

The N -body problem is the study of the motion of N point-like particles interacting through
their mutual forces that can be expressed according to a specific physical law. In particular,
if the reciprocal interaction is well approximated by the Newton’s gravity law, we refer to the
classical, gravitational N -body problem. The differential equations that describe the kinematics
of the N -body system are





r̈i = −G
N∑
j=1
j 6=i

mj

rij3
rij

ri (t0) = ri,0 i = 1, 2, ..., N

ṙi (t0) = ṙi,0

(1)

where t is the time, ri, ṙi and r̈i are the position, the velocity and the acceleration of the
i-th particle, respectively, G is the universal gravitational constant, mj indicates the mass of
the particle j, ri,0 and ṙi,0 represent the initial position and velocity and rij is the mutual
distance between particle i and particle j. Although we know that the solution of the system
of equations (1) exists and is unique, we do not have its explicit expression. Therefore, the
best way to solve the N -body problem is numerical. The numerical solution of the system
of equations (1) is considered a challenge despite the considerable advances in both software
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development and computing technologies; for instance, it is still not possible to study the
dynamical evolution of stellar systems composed of more than ∼ 106 objects without the need
of theoretical approximations. The numerical issues come mainly from two aspects:

• ultraviolet divergence (UVd): close encounters between particles (rij → 0) produce a
divergent mutual force (Fij →∞). The immediate consequence is that the numerical time
step must be very small in order to follow the rapid changes of positions and velocities
with sufficient accuracy, slowing down the integration.

• infrared divergence (IRd): to evaluate the acceleration of the i-th particle we need to take
into account all the otherN−1 contributions because the gravitational force never vanishes
(Fij → 0 ⇔ rij → ∞). This implies that the N -body problem has a computational
complexity of O

(
N2
)
.

To control the effects of the UVd and smooth the behavior of the force during close encounters,
a parameter ε (softening parameter) is introduced in the gravitational potential. This leads to
an approximate expression for the reciprocal attraction which is

Fi = −G mimj

(rij2 + ε2)
3
2

rij. (2)

In this way, the UVd is artificially removed paying a loss of resolution at spatial scales compa-
rable to ε and below. An alternative approach concerns the usage of a regularization method,
that is a coordinate transformation that modifies the standard N -body Hamiltonian removing
the singularity for rij = 0. We briefly discuss this strategy in Sec. 3.

On the other hand, the issues that come from the IRd can be overcome using:

1. approximation schemes: the direct sum of inter-particle forces is replaced by another
mathematical expression with lower computational complexity. To this category belongs,
for instance, the tree scheme, originally introduced by Barnes and Hut, which is one of
the most known approximation strategies [1];

2. hardware acceleration: it is also possible to use more efficient hardware to speed up the
force calculation maintaining the O

(
N2
)

computational complexity of the problem.

For what concerns hardware advances, Graphics Processing Units (GPUs) can act as com-
puting accelerators of the evaluation of the mutual forces. This approach is extremely efficient
because a GPU is a highly parallel device which can have up to ∼ 3,000 cores and run up to
∼ 80,000 virtual units (GPU threads) that can execute independent instructions at the same
time. Since the evaluations of mutual distances can be executed independently, a GPU per-
fectly matches the structure of the N -body problem. Nowadays, the overwhelming majority of
N -body simulations are carried out exploiting the GPU acceleration.

2 The direct N-body code HiGPUs

In this section I give an overview of the most common strategies adopted to numerically solve
the N -body problem using a GPU. I describe the HiGPUs code as an example of GPU optimized
N -body code [2]. HiGPUs1 is a direct summation N -body code that implements a Hermite 6th

1http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html
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order time integrator. It is written combining utilities of C and C++ and it uses CUDA (or
OpenCL), MPI and OpenMP to exploit GPU workstations as well as GPU clusters. The main
features of HiGPUs and of other GPU optimized N -body codes are the following:

1. THE HERMITE ALGORITHM: the Hermite time integrators (4th, 6th and 8th
order) represent the state of the art of direct N -body simulations( [4], [3]). In particu-
lar, the 4th order scheme is, by far, the most widely used algorithm in this context be-
ing particularly efficient in terms of ratio between computing time and accuracy. The Her-
mite integrators are based on Taylor series of positions and velocities and their most im-
portant feature is that they have high accuracy even though they need to evaluate the dis-
tances between particles just once per time step. This is a huge advantage in using Her-
mite integrators if we consider that, for example, a standard Runge-Kutta method needs
to evaluate accelerations 4 times per integration step and it is “only” 4th order accurate.

Figure 1: The effects of the Bfactor opti-
mization on the performance of a GeForce
GTX TITAN Black (measured in billions
of floating point operations per second,
GFlops) as a function of the number of par-
ticles that need to be updated (according to
the block time steps distribution). The re-
sults were obtained using the N -body code
HiGPUs with N ' 260, 000.

2. BLOCK TIME STEPS: stars in an N -body
system can have very different accelerations; this
corresponds to have a large variety of evolutionary
time-scales. In this context, it is convenient to as-
sign to all the objects their own time step which
becomes a function of the physical parameters that
describe the kinematic state of the corresponding
particle. In order to avoid time synchronization
issues among the N bodies and to simplify the
parallelization process, the time step is forced to
be a power of two. Thus, particles are sub-divided
in several groups (blocks) that share the same time
step [4]. In this way we need to update positions
and velocities only of m ≤ N particles per time
step; in particular, bodies with smaller time steps
will be updated more often than particles with big-
ger time steps for which the kinematic state will be
estimated using Taylor expansions only. This im-
plies that the computational complexity per time
step is reduced from O

(
N2
)

to O (mN).

3. THE Bfactor VARIABLE: another im-
portant aspect concerns the GPU load. For exam-
ple, a GeForce GTX TITAN Black GPU can run
a maximum of 30,720 threads in parallel, there-
fore we need to fittingly distribute the work load
to fully exploit this kind of GPU. When using the
block time steps strategy it is quite common to have m < 30, 720 therefore we introduce the vari-
able Bfactor that can increase the number of running threads and further split and distribute
the work load among the GPU cores. For instance, if we have m < 30, 720 and Bfactor= B we
run mB threads and each thread calculates the accelerations due to N/B bodies. The optimal
Bfactor value must be determined step by step. We show in Fig. 1 the differences in terms of
GPU performance running a typical N -body simulation with and without the Bfactor variable.
It is evident that, for a GeForce GTX TITAN Black, when the particles that must be updated
are m . 30, 720 we obtain significantly higher performance when the Bfactor optimization is
turned on. A similar optimization strategy can be found in [5].
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Figure 2: Left panel: speed up of the code HiGPUs as a function of the number of used GPUs
for different N -body systems with 3.2 × 104 . N . 8 × 106. The dashed line corresponds to
the maximum computing efficiency (linear speedup). Right panel: performance (in TFlops) of
HiGPUs running on single, different GPUs. For the scalability tests we used the IBM Data-
Plex DX360M3 Linux Infiniband Cluster provided by the Italian supercomputing consortium
CINECA.

4. PRECISION: it is well known that the maximum theoretical performance of all the
GPUs in double precision (DP) is lower than their capability to execute single precision (SP)
operations. For N -body problems it is important to use DP to calculate reciprocal distances
and to cumulate accelerations in order to reduce round-off errors as much as possible. All the
other instructions (square roots included) can be executed in SP to speed up the integration.
Some authors use an alternative approach based on an emulated double precision arithmetic
(also known as double-single precision or simply DS). In this strategy a DP variable is replaced
with two, properly handled, SP values; in this way only SP quantities are used against a slightly
larger number of operations that must be executed [6].

5. SHARED MEMORY: the GPU shared memory (SM) is a limited amount of memory
(in general . 65kB) and it is shared between all the GPU threads in the same block and can
be used for fast data transactions (on average, SM is about 10 times faster than “standard”
memory). During the evaluation of the N -body accelerations, the best strategy is to cyclically
load SM until all the pair-wise forces are computed.

2.1 Performance results

Fig. 2 shows the scalability of the code HiGPUs on a GPU cluster (left panel) and its performance
using single, different GPUs (right panel). Form Fig. 2, it is apparent that GPUs are extremely
well suited to solve the N -body problem: we reach a computing efficiency of ∼ 92% using 256
GPUs and ∼ 8 million bodies and a sustained performance of ∼ 1.4 TFlops on just one GPU
(GeForce GTX TITAN Black). More details can be found in [2] and [7].
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Figure 3: Left panel: trajectories obtained for the modified version of the Pythagorean 3-
body problem, where the three particles are replaced with three binaries, using a regularized
algorithm. Three binary systems, indicated with (1,2), (3,4) and (5,6), are initially placed at
the vertices of a right triangle with null velocities. During the dynamical evolution, the particles
1, 2, 3 and 6 are ejected form the system with high velocities (outside directions are indicated
with arrows) while particles 4 and 5 form a very hard binary. Right panel: relative energy
variation during the integration of the Pythagorean problem.

3 Regularization

Close encounters between (two or more) particles are critical in N -body simulations because
of the UVd of the gravitational force. An attempt to remove the small-scale singularity of the
interaction potential is referred as an attempt of regularization. The Burdet-Heggie method
( [8], [9]), the Kustaanheimo-Stiefel algorithm [10] or the Mikkola’s algorithmic formulation
(MAR, [11]) are some of the most famous examples of regularization. In general, all these
methods are quite expensive in terms of implementation effort and computing time but, if we
use them to integrate few bodies only, they become both faster and much more accurate than
standard N -body integrators. It is not convenient to implement regularization methods on a
GPU because of their mathematical construction and because they can integrate, in general,
a maximum of few tens of bodies. Nevertheless, during the dynamical evolution of an N -
body system, we can identify the groups of particles that are in tight systems or that are
experimenting a close encounter, and regularize them. This process can be done in parallel
by the CPU, by means of OpenMP, establishing a 1 to 1 correspondence between groups that
must be regularized and CPU threads. At the same time, given that the GPU kernels are
asynchronous, the regularization process can be performed while the GPU works in background.
This describes the parallel scheme adopted to implement the MAR in the code HiGPUs-R which
is still under development. A test application to demonstrate the advantages of regularization is
shown in Fig. 3. It represents a modified version of the so called Pythagorean 3-body problem
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(e.g. [12]) integrated with HiGPUs-R. Standard N -body integrators, such as the Hermite 4th
order scheme, cannot evolve this system, because either the time step becomes prohibitively
small throughout the dynamical evolution, or, if we fix a minimum time step, the solution is
completely inaccurate. The only chance is to use a regularized code which is very fast (∼ 10
seconds of simulations to obtain the trajectories in the left panel of Fig. 3) and maintains a
very good total energy conservation (see the right panel of Fig. 3).

4 Conclusions

In this work I have presented and discussed the main strategies adopted to speed up the nu-
merical solution of the N -body problem using GPUs. I have also shown the main advantages in
using regularization methods and described a new parallel scheme to implement the Mikkola’s
algorithmic regularization in the context of a GPU N -body code. I have used the direct N -
Body code HiGPUs as reference and I have given an overview of the code HiGPUs-R that is a new
regularized version of HiGPUs. The development of fast and regularized N -body codes such as
HiGPUs-R is of fundamental importance to investigate a large number of astrophysical problems
(ranging from the dynamical evolution of star clusters to the formation of double black hole
binaries).
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Fast 3D cone-beam CT reconstruction is required by many application fields like medical
CT imaging or industrial non-destructive testing. We have used GPU hardware and CUDA
platform to speed-up the Feldkamp Davis Kress (FDK) algorithm, which permits the
reconstruction of cone-beam CT data. In this work, we present our implementation of
the most time-consuming step of FDK algorithm: back-projection. We also explain the
required transformations to parallelize the algorithm for the CUDA architecture. Our FDK
algorithm implementation in addition allows to do a rapid reconstruction, which means
that the reconstruction is completed just after the end of data acquisition.

1 Introduction

There are a lot of application areas that benefit of the GPU computing, among them we find
the image reconstruction in medical physics applications [1]. In the last years, the computa-
tional complexity of image reconstruction has increased with the progress in imaging systems
and reconstruction algorithms. Moreover, fast image reconstruction is required in an imag-
ing diagnostic department to allow the technologist to review the images while the patient
is waiting or to obtain the output in real-time imaging applications. Many researchers have
worked to accelerate Cone-Beam CT (CBCT) reconstruction using various accelerators, such
as GPU [3, 4, 5, 6], Cell Broadband Engine (CBE) [7], and field programmable gate array
(FPGA) [8]. The Common Unified Device Architecture (CUDA) [2] is a software development
platform, invented by nVIDIA, that allows us to write and execute general-purpose appli-
cation on graphics processing unit (GPU). Scherl et al. [4] have developed one of the first
GPU-accelereted CT reconstruction using CUDA and they have compared the performance
results of CUDA implementation with the CBE ones concluding that the CUDA-enable GPU
is well suited for high-speed CBCT recontruction. In this paper, we propose a CUDA based
method capable of accelerating CBCT reconstruction based on FDK algorithm, showing some
optimization techniques for the backprojection step.

2 Theory

The ideal geometry for cone-beam CT, see Fig.1, is made by an x-ray source that moves on a
circle through the x-y plane around z, the axis of rotation. The (u,v,w) denotes the rotated
reference frame, where β is the angle of rotation, Rs is the radius of the source circle, while Rd
is the source to detector distance. The line from the x-ray source through the origin O hits the
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detector at the origin of its 2D-coordinate system (u,v) and is orthogonal to the detector plane.
The CT measurement can be converted to a form that is closely modeled by a line integral

Figure 1: Cone-beam CT geometry.

through the continuous object function

g(u, v, β) =

∫ ∞

0

f(~ro(β) + αθ̂)dα (1)

where f(~r) represents the object function, the x-ray attenuation coefficient, and the data func-

tion g(u, v, β) is the line integral through the object in the direction of unit vector θ̂ from the
source location ~ro(β). For the model considered here, the detector is taken to be a flat panel
array with bin location (up, vp)

~do(up, vp, β) = (Rd −Rs)(−sinβ, cosβ, 0) + up(cosβ, sinβ, 0) + vp(0, 0, 1) (2)

The goal of image reconstruction is to find f(~r) from the knowledge of g(u, v, β).

2.1 FDK algorithm

The FDK algorithm [9] reconstructs the function f(~r) accurately only in the plane of trajectory.
Outside of this plane, the algorithm approximate f(~r). The FDK algorithm applies a filtered
backprojection technique to solve the reconstruction task in a computationally efficient way.
Due to its efficiency it has been implemented successfully on almost ever commercially available
medical CT image system and still maintain its state of the art status in modern computed
tomography. The FDK algorithm is organized in three steps:
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1. cosine weighting:

g1(u, v, β) = g(u, v, β)
Rd√

R2
d + u2 + v2

(3)

2. ramp filtering:
g2(u, v, β) = g1(u, v, β)⊗ hramp(u) (4)

3. backprojection:

f̂(x, y, z) =
1

2

∫ 2π

0

(
Rs

Rs − xsinβ + ycosβ
)2g2(u, v, β)dβ (5)

Typically, the algorithm input data consist of K-projections, the size of each projection is
Nu ×Nv, the output data is N3-voxel volume V.

3 Materials and Methods

The CUDA programming model assumes that both the host (CPU) and the device (GPU)
maintain their own separate memory spaces, referred to as host memory and device memory,
respectively. Since a CUDA kernel works only on data present in device memory and due to
the limited GPU memory capacity, it is not easy to store the entire volume and the projections
in device memory. For example: a 5123 voxel volume requires al least 512 MB of memory
space, so we have decided to store the entire volume (or a 5123 portion if the volume size is
greater than 5123) in device memory and to load the projections into device memory when
needed and remove it after its backprojection. Our first implementation of FDK algorithm

Figure 2: Overview of implemented naive method.

on CUDA-enabled GPU is a naive method, as shown in fig. 2, we transfer the first projection
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P1 to the device global memory and perform the cosine weighting, the ramp filtering and the
backprojection steps to the volume V in the device global memory. This operation is repeated
on the remaining projections to obtain the final accumulated volume. The naive code assigns
in the backprojection step every voxel to a different CUDA threads. Two data sets have been
chosen for testing the naive implementation in CUDA:

- dataset 1 consists of 200 projections acquired on 360◦ circular scan trajectory. The size
of each projection is 1024x512.

- dataset 2 consists of 642 projections acquired on 360◦ circular scan trajectory. The size
of each projection is 256x192.

Reconstruction tests have been performed on a desktop PC: it is equipped with a Intel Core i7-
3770 CPU, 16 GB main memory and a nVIDIA GeForce GTX-Titan with 4GB device memory.
Our implementation runs on Linux with CUDA v5.5. The filtering step has been implemented
by using the CUFFT library of CUDA package. Table 1 shows the execution time needed for the
CUDA implementation of FDK algorithm compared with the OpenMP [10] implementation.

step1 [s] step2 [s] step3 [s] Total [s]
CUDA
dataset1 0.57 5.69 8.05 14.31
dataset2 0.45 1.81 3.1 5.36
OpenMP
dataset1 0.67 5.09 206.95 212.71
dataset2 0.21 1.26 80.96 82.43

Table 1: Execution time of CUDA implementation compared to OpenMP. step 1: cosine weight-
ing, step 2: ramp filtering, step 3: backprojection.

The results obtained show a remarkable time speed-up in the backprojection step imple-
mented in CUDA by factor ≈ 25 respect to the OpenMP implementation, while the other ones
are comparable. Starting from these results we have worked on the optimization of the back-
projection step, a memory intensive operation, by using the techniques suggested in the CUDA
programming guide [2]. The two techniques used are:

1. Memory coalescing: we organize the threads inside a block to access contiguous memory
location and each thread computes the backprojection of a given number of voxels along
z. This approach allows to save the number of add-multiply operations by incrementing
the (u,v) coordinates.

2. Global memory access reduction: we use kinds of memory that have a cache mecha-
nism ( texture and constant memory). Moreover, texture memory has a GPU’s hardware
bilinear interpolation mechanism that speeds up the calculation of update voxel value.
Also, we increase the number of projections processed by a single thread to reduce the
number of access to volume global memory.

We have accomplished the task of backprojection optimization on CUDA-enabled GPU by using
RabbitCT [11] an open platform for worldwide comparison in backprojection performance. We
have implemented two new versions for the backprojection kernel, the version v1 where we
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introduce the use of constant and texture memory on GPU, and the version v2 where in addition
we load more projections in texture memory before the backprojection step. A processed dataset
of a rabbit, suitable for cone beam 3D reconstruction, is available for testing the own kernel
implementation. It consist of N=496 projection images In, the size of a projection image is
1248x960 pixels. The performance results of the new kernels respect to the naive kernel, named
v0, are shown in table 2. Both the new versions of backprojection kernel show an improvement

Version Size Time [s] Occupancy Error [HU] GUPs
v0 512 10.32 84 0.03 6.01
v1 512 4.77 89 0.16 12.90
v2 512 3.0 95 0.16 20.67

Table 2: Comparison of execution time, percentage of GPU occupancy , reconstruction error
in Hounsfield Unit (HU), billion of voxel updates per second (GUPs), for the various version of
backprojection kernel on the RabbiCT dataset.

in the execution time, the speed-up of version v1 is of a factor 2 and the speed-up of version
v2 is of a factor 3 with a moderate increase of reconstruction error. At the end of optimization
step the new backprojection kernels have been integrated in CBCT reconstruction code.

4 Results and Discussion

The reconstructed images of dataset 1 obtained by using CUDA and OpenMP implementation
of the FDK method are shown in figure 3. The maximum relative difference between the

Figure 3: Comparison between GPU and CPU reconstructed CBCT images of dataset 1.

corresponding pixels in the reconstructed volumes, defined in eq. 6, is less than 9.0× 10−3.

max
(x,y,z)∈V

|ICUDA(x, y, z)− IOMP (x, y, z)|
IOMP (x, y, z

(6)
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The total execution times of various CUDA implementation of FDK reconstruction software
are in table 3 compared to the OpenMP implementation.

v0 [s] v1 [s] v2 [s] OpenMP [s]
dataset1 14.31 8.49 7.68 212.7

Table 3: Total execution time of various versions of CUDA implementation of the FDK recon-
struction algorithm compared with the OpenMP implementation.

Using GPU + CUDA in CBCT reconstruction we are able to accelerate the reconstruction
process of a factor greater than 25. On dataset 1 the reconstruction time is less than 8 s
for a volume of 5123, and this result suggests CUDA implementation permits a real time
reconstruction of CBCT data.
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The application of graphics processing units (GPUs) for diffusion-weighted Nuclear-Magnetic-
Resonance (DW-NMR) images reconstruction by using non-Gaussian diffusion models is
presented. The image processing based on non-Gaussian models (Kurtosis and Stretched
Exponential) currently are time consuming for any application in realtime diagnostics.
Non-Gaussian diffusion imaging processing was implemented on the massively parallel
architecture of GPUs, by employing a scalable parallel Levenberg-Marquardt algorithm
(GPU-LMFit) optimized for the Nvidia CUDA platform. Our results demonstrate that it
is possible to reduce the time for massive image processing from some hours to some sec-
onds, finally enabling automated parametric non-Gaussian DW-NMR analyses in realtime.

1 Introduction

In this contribution we focused on the application of graphics processing units (GPUs) accel-
erated computing in reconstruction of diffusion weighted Nuclear-Magnetic-Resonance (DW-
NMR) images by using non-Gaussian diffusion models, such as the diffusional kurtosis imaging
(DKI) [1] and the stretched exponential model imaging (STREMI) [2], which allow to increase
the sensitivity and specificity of the DW-NMR maps in healthy [3, 4, 5] and pathological sub-
jects [6, 7]. However, the post-processing of DW-NMR images based on these models currently
requires too long times for any realtime diagnostics. Typically, for the elaboration of diffusion
maps, 106-107 voxels have to be managed. For each voxel a typical algorithm used to obtain
non-Gaussian maps calculates at least three parameters by non-linear functions optimization.
This is computationally demanding and takes some hours on recent multi-core processors(i.e.
CPU Intel Xeon E5 and E7) to obtain a whole brain map. The aim of this work is to implement
non-Gaussian diffusion imaging processing on the massively parallel architecture of GPUs and

GPUHEP2014 1GPUHEP2014 199



optimize different aspects to enable on-line imaging.
To achieve this goal, diffusion images were acquired in a fixed mouse brain and two different
algorithm to reconstruct DKI and STREMI maps were implemented on GPU. Successively,
diffusion images were processed and non-Gaussian diffusion maps were obtained by using both
the conventional currently used algorithm working on CPU and the new algorithms, based on
a highly parallelized Levenberg-Marquardt (LM) method on GPU.
More specifically, we are concerned with a model-based approach for extracting tissue struc-
tural information from DW-NMR imaging data. Non-linear relations describing the DW-NMR
signal attenuation have to be fitted to experimental dataset voxel-by-voxel by using the LM
algorithm.
Certain features of the proposed implementation make it a good candidate for a GPU-based
design: a) Independence between voxels across the three-dimensional brain volume allows voxel-
based parallelization, b) Within each voxel, certain computation steps of data analysis are in-
trinsically iterative and independent, allowing further parallelization (i.e. fitting parameters
estimation), c) Relatively simple mathematical operations are needed and these can be handled
effectively by the GPU instruction set and d) Memory requirements are moderate during each
step of the algorithm.

2 Theory

Non-Gaussian DW-NMR models. Describing water molecules displacement with a Gaus-
sian Motion Propagator, NMR signal decay recorded using a diffusion-sensitized sequence may
be expressed as a b-value function according to the following equation [8]:

S(b) = S(0) exp(−bD) (1)

where D is the apparent diffusion coefficient and b = (Γδg)2∆eff with Γ the nuclear spin
gyromagnetic ratio, g the diffusion sensitizing gradient strength, δ the diffusion sensitizing
gradient duration and ∆eff the effective diffusion time, depending on the particular diffusion
sensitized sequence used. In 3D space, observing diffusion displacement in a generic direction
and working in an anisotropic environment, D is no more a scalar, but a tensor (DT) and
the coupling of non diagonal terms in DT has to be taken into account. Nevertheless, due to
proprieties of Fourier Transform and Gaussian Propagator, the mono-exponential form of the
signal decay can be conserved by introducing the so called b-factor [9]:

ln

(
S(b)

S(0)

)
= −

3∑

i,j=1

bi,jDi,j (2)

where bi,j = (Γδ)2∆eff

∫ tseq
0

dt(
∫ t
0
dt′g(t′)g(t′)T )i,j is the correspondent term of b-factor

matrix to the relative term of DT. Due to its propriety, DT is diagonalizable to obtain scalar
invariant quantities as MD and FA and the reference frame in which DT is diagonal.
The formalism exposed is based on the assumption that molecular diffusion occurs in a ho-
mogeneous environment, implying a linear relationship between mean square displacement and
diffusion time. However, in a complex system with pores and traps on many length scales, this
simple relation is lost and Eqs.1 and 2 are no longer valid [10, 11]. We refer to these cases
as “non-Gaussian” diffusion process. In the last decade several different approaches have been
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introduced in NMR field to describe DW-NMR signal decay in case of non-Gaussian diffusion.
Here we treat two of the most employed ones: (i) the DKI [1] and (ii) the STREMI [2, 10].
(i) DKI is based on the assumption that DW-NMR signal can be described by the following
relation [1]:

S(b)

S(0)
=
{[

exp
(
−bDapp + b2Aapp

)]2
+ η2

}1/2

(3)

where η is the background noise, and Aapp = 1
6D

2
appKapp, with Dapp and Kapp the apparent

diffusion coefficient and the apparent diffusional kurtosis, estimated in the direction parallel to
the orientation of diffusion sensitizing gradients, respectively.
(ii) The STREMI assumes the following relation to describe the signal decay [2, 10]:

ln(
S(b)

S(0)
) = −

3∑

i=1

(b∗i )
γiAi (4)

where Ai is the generalized diffusion coefficient estimated along the direction identified by
the ith eigenvector of DT, named ~εi; γi is the stretching exponent estimated along the ith
direction of DT reference frame (being between 0 and 1); and b∗i is the projection of bvalue

along ~εi (with components ε1i, ε2i, ε3i, in the laboratory reference frame), i.e. b∗i = ~b · ~εi.

3 Materials and Methods

DW-NMR data acquisition. An ex vivo healthy mouse brain, fixed in paraformaldehyde
and stored in PBS [12], was scanned at 7.0T (BRUKER Biospec). An imaging version of
PGSTE sequence was performed with TE/TR = 25.77/4000ms, ∆/δ = 40/2ms, number of
averages NA = 14; 16 axial slices with thickness STH = 0.75mm, field of view FOV = 6cm,
matrix 128x128 with in plane resolution of 470µm2 were acquired with 10 b-values ranging from
100 to 8000s/mm2 along 30 no-coplanar directions plus 5 b = 0s/mm2

DW-NMR data analysis. Both DKI parametric maps (Kapp-maps) and STREMI para-
metric maps (γ-maps) were estimated in each direction parallel to the orientation of diffusion
sensitizing gradient, but Kapp-maps were obtained by fitting on a voxel-by-voxel basis Eq.(3) to
the DW image signal intensities (for b ≤ 3000s/mm2), while γ-maps, were obtained by similar
procedure, using Eq.(4).
Finally, the non-Gaussian diffusion parametric maps MK and Mγ were computed by averaging
across the 30 directions in the corresponding Kapp- and γ-maps, respectively.

GPU implementation. A modern GPU device can have a number of ”multiprocessors”
(MP), each of which executes in parallel with the others. Using the Nvidia compute unified
device architecture (CUDA), multiple thread blocks (and thus multiple fittings) can execute
concurrently with many parallel threads on one multi-processor. Here we implemented an
efficient and robust fitting algorithm, based on a highly parallelized LM method on GPU. The
LM algorithm is based on an iterative numerical optimization procedure that minimizes the sum
of squared model residuals. The function we used to perform LM fittings on GPU device is the
single precision GPU-LMFit function, introduced and described in details elsewhere [13]. GPU-
LMFit uses a scalable parallel LM algorithm optimized for using the Nvidia CUDA platform.
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Figure 1: Comparison between CPU and GPU non-Gaussian diffusion maps reconstruction.
Reported maps were obtained by using the lsqcurvefit on Intel Xeon E5- E5430 CPU and
GPU-LMFit on Nvidia Quadro K2000 GPU (see Table 1 for details).

The code kernel calls GPU-LMFit to perform the LM algorithm on each CUDA block, which
is mapped to a single voxel. Because the processing of different voxels is totally independent,
the CUDA blocks do not need to synchronize, and the kernel launches as many blocks as voxels
contained in a particular slice to speed up performance.
The code was optimized to be fully integrated within Matlab (The Mathworks, Natick, MA,
USA) scripts.
A multi-core central processing unit (CPU) Intel Xeon E5430 processor at 2.66GHz with 8
thread, and a Nvidia GPU Quadro K2000, with 2Gb of dedicated memory, supporting 1024
threads per block and a maximum number of 64 registers per thread, were used for the analysis
and the cross-comparison of CPU and GPU performance. In particular, lsqcurvefit function
with Parallel Computing Toolbox was used to test multi-core CPU performance.
Each analyzed DW-NMR image dataset is of ∼ 150 Mb, and requires that the total number
of fittings to be performed to create a single image of the non-Gaussian parametric map is in
the range of (0.5− 5)x106. In the kernel function, we choose to distribute the computation in
4096 CUDA blocks, each of which has 8 threads concurrently executing to compute a fitting.
Therefore, the kernel function was called multiple times in the program to complete all fittings
for an image, and each call to this function requires 7-15 Mb global memory on GPU.

4 Results and Discussion

Non-Gaussian diffusion parametric mapsMγ andMK, obtained by using lsqcurvefit on multiple
CPU threads and GPU-LMFit on GPU, are displayed in Figure 1. The specific performances
of the CPU and GPU employed are reported in Table 1, while the cross-comparison between
lsqcurvefit and GPU-LMFit results is reported in Figure 2.

The Figures 1 and 2 show that the GPU approach for STREMI is in agreement with con-
ventional CPU one. Conversely, for DKI, GPU-LMFit slightly overestimates MK values with
respect to lsqcurvefit. However, it is important to note that MK-maps obtained by GPU-LMFit
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Figure 2: Cross-comparison between lsqcurvefit and GPU-LMFit results. The frequency his-
tograms of the difference between Mγ (left) and MK (right) values derived with GPU-LMFit
and lsqcurvefit are computed from all the voxels of the parametric maps comprised within the
ex vivo mouse brain investigated.

show a contrast-to-noise ratio different from the lsqcurvefit ones (see Figure 1): they better dis-
criminate between white and gray matter regions within mouse brain, even if they are more
grainy and noisy than the lsqcurvefit ones. The grainy and noisy characteristic of these maps
can be due to the single precision implementation of the GPU-LMFit function. Indeed, each
Kapp-map is obtained by fitting, voxel-by-voxel, Eq.3 to get the two constants Dapp and Aapp.

Then, Kapp is estimated by keeping the ratio: Kapp =
6Aapp

D2
app

. It is therefore clear that using

single or double precision operators in Kapp estimation can make the difference. In particular,
the lsqcurvefit is a double precision Matlab function, while the GPU-LMFit version used here
is single precision. Therefore, further developments are actually in progress to release a double
precision version of GPU-LMFit, in order to increase the quality of non-Gaussian diffusion maps
obtained on GPU.
Finally, from Table 1 it is possible to appreciate the relative speed-up obtainable by using

GPU-LMFit, which for a medium level GPU like the Quadro K2000 is ∼ 240x. In terms of
computational time, this speed-up factor means that the GPU implementation reported here
allows to reduce the time for massive image processing from some hours to some seconds (see

Performance Parameters CPU GPU
Average Speed (fit/sec.) 50 12000
Computational Time (sec.) 7200 30
Speed-up factor 1 240

Table 1: Comparison of CPU and GPU performance in non-Gaussian diffusion maps recon-
struction.
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Table 1). Moreover, numerical simulations were performed on high level Nvidia GPU, the
Nvidia Titan, to test the additional speed-up factor obtainable by employing one of the most
powerful GPU now available (results not reported here). Simulation results suggest that an
additional speed-up factor of 6.6x with respect to the Nvidia Quadro K2000 GPU is achievable
by using the Nvidia Titan GPU. This demonstrates that automated parametric non-Gaussian
DW-NMR analysis in realtime is now really possible by using the GPU approach proposed in
this work.

5 Conclusion

In this contribution we focused on the application of GPUs in the reconstruction of DW-NMR
images based on non-Gaussian diffusion models. This application can benefit from the im-
plementation on the massively parallel architecture of GPUs, optimizing different aspects and
enabling online imaging. A pixel-wise approach by using a fast, accurate and robust parallel LM
minimization optimizer, called GPU-LMFit, was implemented in CUDA and fully integrated in
Matlab. Our results show that the GPU application proposed here can further improve the effi-
ciency of the conventional LM model fittings, reducing the time for DW-NMR image-processing
from hours to seconds, finally enabling automated parametric non-Gaussian DW-NMR analysis
in realtime. Moreover, another important feature of the architecture of the proposed approach
is that it can allow multiple GPUs applications [13], where the measured experimental data in
the host computer memory is separately passed to the global memories of multiple GPUs, and
then the host program launches the kernel functions on each GPU device. Therefore, another
natural development of this work, behind the upgrade to the double precision version, is the
multiple GPUs application in order to further improve the efficiency of the LM model fittings
with GPU-LMFit.
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Introduction. Recently new Nuclear-Magnetic-Resonance (NMR) methods have been devel-
oped to measure physical parameters that are directly correlated with properties of biological
tissues, such as the Diffusional Kurtosis Imaging (DKI) [1] and the Stretched Exponential Model
Imaging (STREMI) [2]. Such methods are based on non-Gaussian diffusion measurements.
These techniques are particularly interesting because they allow to increase the sensitivity and
specificity of the NMR imaging for healthy and pathological cerebral conditions [3, 4, 5, 6].
The DKI is essentially based on the assumption that DW-NMR signal can be described by the
following relation [1]:

S(b)

S(0)
=
{[

exp
(
−bDapp + b2Aapp

)]2
+ η2

}1/2

(1)

where η is the background noise, Aapp = 1
6D

2
appKapp, with Dapp and Kapp respectively the

apparent diffusion coefficient and the apparent diffusional kurtosis, estimated in the direction
parallel to the orientation of diffusion sensitizing gradients, and b = (Γδg)2∆eff with Γ the
nuclear spin gyromagnetic ratio, g the diffusion sensitizing gradient strength, δ the diffusion
sensitizing gradient duration and ∆eff the effective diffusion time, depending on the particular
diffusion sensitized sequence used.
On the contrary, the STREMI assumes the following relation to describe the signal decay [2, 7]:

S(b)

S(0)
= exp [−(b)γA] (2)

where A is the generalized diffusion coefficient and γ is the stretching exponent, being between
0 and 1.
Currently, the post-processing of NMR images based on these new techniques requires a too
long time ( 2 hours on a multi-core Intel Xeon E5430 CPU) for any use in realtime diagnostics.
In this contribution we focused on the application of graphics processing units (GPUs) acceler-
ated computing to improve the speed in reconstruction of diffusion weighted nuclear magnetic
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resonance (DW-NMR) images by using non-Gaussian diffusion models. The aim of this work
is to use model-related numerical simulations of DW-NMR signal in realistic conditions, to
estimate the possible speed-up factor achievable by using GPU computing for non-Gaussian
diffusion mapping.

Methods. Synthetic DW-NMR data generation. Brain regions characterized by highly co-
herent axonal bundles, with different geometrical organization were considered to simulate
DW-NMR signal from water molecules diffusing within a realistic medium. In human brain
such a region can be identified by the Corpus Callosum (CC) that, according to the estimated
axonal diameter distributions within it, can be mainly subdivided into two regions: the first,
characterized by denser and smaller axons, includes the genu and splenium (GS-CC); the other,
characterized by less dense and bigger axons, includes the body (B-CC).
To simulate DW-signal, a Monte-Carlo (MC) simulation was implemented in C++. A total of
104 point like spins were randomly placed in a 2D plane of 0.5x0.5 mm2, resembling a voxel of
the DW-NMR image dataset. A random walk at a rate ∆t ∼ 2.5x10−5 s per step, with bulk
diffusivity (D0) set to 1.4x10−3 mm2/s and particle step size ∆x = (4D0∆t)1/2 was performed
between randomly packed axons. Axonal diameter distribution and density were numerically
reproduced within each voxel of the synthetic image. Specifically, the chosen mean axon diam-
eter ±SD and axon density percentage were: 2± 0.5 µm, ∼ 0.50, for G-CC and S-CC; 6± 1.5
µm, ∼ 0.35 for B-CC. Assuming axons as infinitely long coaxial cylinders, the DW-NMR signal
decay for each voxel of the synthetic image due to a Pulsed Field Gradient Stimulated Echo
sequence (PGSTE) was simulated through spin phase accumulation. The DW-NMR signal
for the whole image was obtained by averaging the signal from each voxel. The parameters
of the sequence were chosen to be similar to those of experiments we performed and report
elsewhere [5]. We simulated different synthetic images, at different resolutions: 32x32, 64x64,
128x128, 256x256, 512x512, 1024x1024 and 2048x2048, to test the performance of CPU and
GPU in analyzing images at different resolutions using a voxel-by-voxel fitting approach.
Synthetic DW-NMR data analysis. DKI and STREMI metrics were estimated by fitting on a
voxel-by-voxel basis Eqs.(1) and (2) to the synthetic DW image signal intensities, respectively.
This procedure was performed for all the image resolution investigated.
Here we used an efficient and robust fitting algorithm, named GPU-LMFit, based on a highly
parallelized Levenberg-Marquardt (LM) method on GPU, introduced and described in details
elsewhere [8]. GPU-LMFit uses a scalable parallel LM algorithm optimized for using the Nvidia
CUDA platform. The code kernel calls GPU-LMFit to perform the LM algorithm on each
CUDA block, which is mapped to a single voxel. Because the processing of different voxels is
totally independent, the CUDA blocks do not need to synchronize, and the kernel launches as
many blocks as voxels contained in a particular slice to speed up performance. The code was
optimized to be fully integrated within Matlab (The Mathworks, Natick, MA, USA) scripts. A
multi-core central processing unit (CPU) Intel Xeon E5430 processor at 2.66GHz with 8 thread,
an Nvidia GPU GeForce GT650m and an Nvidia GPU Titan were used for the analysis and
the cross-comparison of CPU and GPU performance. In particular, lsqcurvefit function with
Parallel Computing Toolbox was used to test multi-core CPU performance.

Results and Discussion. An example of two simulated voxels with realistic geometry and
local magnetic field inhomogeneities; the resulting DW-NMR signal and the fitted curves is
reported in Figure 1-a), b) and c). The results of the performance test, obtained for each
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synthetic image resolution, is instead reported in Figure 1-d).
Numerical results reported in Figure 1-d) suggest that for typical clinical images, whose

resolution ranges from 64x64 to 256x256, an expected speed-up factor of ∼ 100x (for the Nvidia
GeForce GT650m) and ∼ 1000x (for the Nvidia Titan) with respect to CPU performance is
achievable by using massive parallel GPU computing to perform non-linear fitting of non-
Gaussian diffusion models to DW-NMR dataset. Despite the results presented here are based
on a simplistic simulation, where several effects including noise are neglected, they are in good
agreement with experimental results. In real experiments, noise effects is not negligible, specially
at high b-values, and can decrease the performance of both the CPU and GPU algorithms used.
Indeed, high noise fluctuations in experimental data may introduce many spurious local minima
in the likelihood function to be minimized in fitting routine. This implies that conventional
fitting pipeline, based on LM algorithm, often fail in finding the global minimum, becoming
strongly dependent on the fitting parameters initialization. Further investigations are therefore
in progress in order to optimize the LM based fitting algorithms to make them less sensitive to
noise fluctuations.

Conclusion. In this contribution we focused on the application of GPUs in the reconstruction
of DW-NMR images based on non-Gaussian diffusion models. By using model-related numerical
simulations, the performances of LM based fitting algorithm on CPU and GPU were tested for
synthetic images at different resolutions and on two different GPUs: a low and a high-level
Nvidia GPU. Our numerical results suggest that the implementation of LM algorithm on GPU
makes it excellent for extensive GPU-based applications such as massive MRI processing, further
improving the efficiency of the conventional LM model fittings on CPU. Specifically, an expected
speed-up factor of ∼ 100x (for the Nvidia GeForce GT650m) and ∼ 1000x (for the Nvidia Titan)
with respect to CPU (Intel Xeon E5430) performance is achievable by using massive parallel
GPU computing. These results strongly suggest the GPU computing as a powerful tool for
enabling automated parametric non-Gaussian DW-NMR analysis in realtime.
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Figure 1: a-b) Local axonal geometry and magnetic field inhomogeneities strength spatial
distribution computed with ∆χH2O−TISSUE = −0.010 ppm (in IS) and static magnetic field of
3.0 T, for a representative voxel selected within GS-CC and B-CC, respectively, depicted in the
WM maps reported in insets. c) S(b)/S(0), as a function of b, for the two representative voxels
in GS-CC (circles) and B-CC (squares). Straight lines represent Eq.(1) (red) and (2) (blue),
fitted to the simulated data. As comparison, dotted black lines represent the curves of equation
−bDapp, with Dapp values estimated by the fitting procedures to the data until b ≤ 2000
s/mm2. d) Performance test of the low-level, high-level Nvidia GPUs and high performance
CPU described in the main text, for different values of image resolutions (matrix dimension).
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The strong force is one of the four fundamental interactions of nature (along with gravity,
electromagnetism and the weak nuclear force). It is the force that holds together protons and
neutrons in the atomic nucleus. The strong interaction is described by Quantum Chromody-
namics (QCD) [1], a quantum field theory with local gauge invariance, given by the SU(3)
group symmetry. A unique feature of the strong force is that the particles that feel it directly
(quarks and gluons) are completely hidden from us, i.e. they are never observed as free particles.
This property is known as color confinement and makes QCD much harder to handle than
the theories describing the weak and electromagnetic forces. Indeed, it is not possible to study
QCD analytically in the limit of small energies, or large spatial separations, which corresponds
to several processes of interest, including the mechanism of color confinement. To gain insight
into these issues, physicists must rely on numerical simulations performed on supercomputers.
These studies are carried out using the lattice formulation of QCD [2, 3, 4, 5, 6]. Similar
studies are done also for other non-Abelian SU(N) gauge theories.

A propagator of a field is a two-point function, i.e. a correlation function between values
of the field at two different points in space-time [7]. In quantum mechanics, the propagator
determines the evolution of the wave function of a system and, for a particle, it gives the
probability amplitude of propagating from a point in space-time to another [8]. More generally,
Green’s functions (i.e. n-point functions) carry all the information about the physical and
mathematical structure of a quantum field theory. Thus, the study of the long-range —or
infrared (IR)— behavior of propagators and vertices is an important step in our understanding
of QCD. In particular, the confinement mechanism for color charges could manifest itself in the
IR behavior of (some of) these Green’s functions.

For gauge theories, such as QCD, the local gauge invariance implies that Green’s functions
are usually gauge-dependent quantities and can be evaluated only after a specific gauge condi-
tion is imposed. Among the possible choices, the so-called Landau (or Lorenz) gauge condition
is particularly interesting, since it preserves the relativistic covariance of the theory. The status
of lattice studies of IR propagators in Landau gauge has been reviewed in [9].

On the lattice, the minimal Landau gauge condition is usually implemented by (numer-
ically) finding local minima of a functional [10]. As a consequence, in this gauge, the path
integral over gauge-field configurations is restricted to the set of transverse configurations for
which the so-called Landau-gauge Faddeev-Popov matrix (FP) is semi-positive-definite [11].
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Thus, this matrix should encode all the relevant (non-perturbative) aspects of the theory, re-
lated to the color-confinement mechanism.

For a given (thermalized and gauge-fixed) lattice gauge-field configuration Uµ(x) ∈ SU(N),
with µ = 0, 1, 2 and 3, the FP matrixMU in minimal Landau gauge is defined by its action on
a function γc(x) as (see, for example, [12] and [13])

(MUγ)
b

(x) =
∑

µ

Γbcµ (x) [ γc(x) − γc(x+ eµ) ] + Γbcµ (x− eµ) [ γc(x) − γc(x− eµ) ]

+f bdc
[
Adµ(x) γc(x+ eµ) − Adµ(x− eµ) γc(x− eµ)

]
.

Here, b, c, d = 1, . . . , N2− 1 are color indices, f bcd are the (anti-symmetric) structure constants
of the SU(N) gauge group, Adµ(x) are the gauge fields defined by the relation

Adµ(x)λd =
Uµ(x)− U†

µ(x)

2iag0

∣∣∣∣∣
traceless

,

where λd are the generators of the SU(N) group, g0 is the bare coupling constant, a is the
lattice spacing and

Γbcµ (x) =
1

8
Tr
( {

λb,λc
} [
Uµ(x) + U†

µ(x)
])
.

We note that, in the SU(2) case, one finds Γbcµ (x) = δbc TrUµ(x)/2 and f bcd=εbcd, where εbcd is
the completely anti-symmetric tensor. Also, note that the FP matrix MU becomes the lattice
Laplacian if Γbcµ (x) = δbc and Adµ(x) = 0.

The inverse of the FP matrix enters the evaluation of several fundamental Green’s functions
of the theory, such as the ghost propagator, the ghost-gluon vertex, the Bose-ghost propagator,
etc. These functions can be computed on the lattice through Monte Carlo simulations
[14]. However, the numerical inversion of the FP matrix is rather time consuming, since it
is a very large (sparse) matrix with an extremely small (positive) eigenvalue, thus requiring
the use of a parallel preconditioned conjugate-gradient (CG) algorithm [15]. Moreover,
this inversion has to be done in double precision and, for each lattice configuration, one has
to consider hundreds of different sources, corresponding to different kinematic combinations.
One should also stress that, in a lattice simulation, one cannot study momenta smaller than
2π/L, where L is the lattice side. Thus, numerical studies of Green’s functions in the IR limit
(small momenta) require very large lattice volumes and a careful extrapolation of the data to
the infinite-volume limit. In fact, inversion of the FP matrix is the performance bottleneck for
these numerical studies.

In this study we considered four preconditioned conjugate-gradient algorithms. In particular,
for the preconditioner matrix P we used:

i) the diagonal elements (with respect to color and space-time indices) of the FP matrix,

ii) the diagonal elements (with respect to space-time indices only) of the FP matrix,

iii) the usual lattice Laplacian [16, 17],
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iv) the FP matrix with Adµ(x) = 0.

In the former two cases described above, the inversion of P can be done exactly and it does not
require inter-GPU communication. On the other hand, for the latter two choices, we employed
a (non-preconditioned) CG algorithm. We tested the above choices for the preconditioning step
using double and single precision. For the last two cases (choices iii and iv) we also considered
two different stopping criteria for the CG algorithm used to invert the preconditioner matrix
P. The code has been written using CUDA and MPI and tested on multiple GPUs (Tesla S1070
and Tesla K20) interconnected by InfiniBand.
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Figure 1: Weak scaling using lattice volumes V = L4 = 164 and 324 with 1 and 16 Tesla S1070
GPUs, respectively. The data correspond to the CG algorithm without preconditioning (+),
with preconditioning iii (×), iv (∗), iii in single precision (�) and iv in single precision (�).

Our results can be seen in the three plots in Figs. 1 and 2. In particular, we show the
processing time for one CG iteration as a function of the lattice side for a fixed lattice vol-
ume/number of GPUs ratio (weak scaling, Fig. 1) and as a function of the number of GPUs
at a fixed lattice size L (strong scaling, Fig. 2). One clearly sees that the overhead due to
the inversion of the preconditioner matrix P is quite large for the cases iii and iv (see Fig. 1).
However, this overhead can be drastically reduced by applying the preconditioner step in single
precision (see again Fig. 1). Moreover, this reduction in the processing time for one CG itera-
tion does not affect the convergence properties of the method, i.e. the number of CG iterations
necessary to satisfy a given convergence criterion is essentially unchanged when moving from
double to single precision. From Fig. 2 we also see that the overhead due to inter-GPU com-
munication is not particularly critical for the algorithms considered, even when the inversion of
the preconditioner matrix P requires inter-GPU communication and for a rather small lattice
volume, at least when going from 1 to 4 GPUs.

Of the four preconditioners considered here, the last two are quite effective in reducing the
number of CG iterations, typically by a factor of 3–4. We plan to study other precondition-
ers for the FP matrix, including the so-called even-odd preconditioning, and to fine-tune the
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Figure 2: Strong scaling using lattice volume V = 324 with, respectively, 1,2,4,8,16 Tesla GPUs
(left plot) and 1,2,4 Kepler GPUs (right plot). The data correspond to the CG algorithm
with preconditioning i (+), with preconditioning iv (×) and with preconditioning iii in single
precision (∗).

implementation of the various algorithms.
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Implementation of a Data Transfer Method for

GPU-based Online Tracking for the PANDA Ex-

periment

L. Bianchi1

1 Forschungszentrum Jlich, Germany

The PANDA experiment (antiProton ANnihilation at DArmstadt) is a new hadron physics
experiment currently being built at FAIR, Darmstadt (Germany). PANDA will study
fixed target collisions of phase space-cooled antiprotons of 1.5 to 15 GeV/c momentum
with protons and nuclei at a rate of 20 million events per second. To distinguish between
background and signal events, PANDA will utilize a novel data acquisition mechanism.
Instead of relying on fast hardware-level triggers initiating data recording, PANDA uses
a sophisticated software-based event filtering scheme involving the reconstruction of the
whole incoming data stream in realtime. A massive amount of computing power is needed
in order to sufficiently reduce the incoming data rate of 200 GB/s to 3 PB/year for per-
manent storage and further offline analysis. An important part of the experiment’s online
event filter is online tracking, giving the base for higher-level discrimination algorithms.
To cope with PANDA’s high data rate, we explore the feasibility of using GPUs for online
tracking. This talk presents the status of the three algorithms currently investigated for
PANDA’s GPU-based online tracking; a Hough transform, a track finder based on Rie-
mann paraboloids, and a novel algorithm called the Triplet Finder. Their performances
and different optimizations are shown. Currently having a processing time of 20 s per
event, the Triplet Finder in particular is a promising algorithm making online tracking on
GPUs feasible for PANDA.

Contribution not received.
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Photon Propagation with GPUs in IceCube

Dmitry Chirkin1 for the IceCube collaboration∗
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A typical muon event in IceCube creates in excess of 107 Cherenkov photons in the sensitive
wavelength range, presenting a considerable computational challenge when more than a
billion of such muons need to be simulated to represent just a few days of the detector
data. However, we note that describing propagation of a large number of photons in a
transparent medium is a computational problem of a highly parallel nature. All of the
simulated photons go through the same stages: they are emitted, they may scatter a
few times, and they get absorbed. These steps, when performed in parallel on a large
number of photons, can be done very efficiently on a GPU. The IceCube collaboration uses
parallelized code that runs on both GPUs and CPUs to simulate photon propagation in
a variety of settings, with significant gains in precision and, in many cases, speed of the
simulation compared to the table lookup-based code. The same code is also used for the
detector medium calibration and as a part of an event reconstruction tool.

1 Introduction

50 m

1450 m

2450 m 

2820 m

IceCube Array
 86 strings including 8 DeepCore strings 
5160 optical sensors

DeepCore 
8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower

324 m 

IceCube Lab

IceTop
81 Stations
324 optical sensors

Bedrock

Amanda II Array
(precursor to IceCube)

IceCube (shown on the right, see [1]) is
a cubic-kilometer-scale high-energy neu-
trino observatory built at the geographic
South Pole. IceCube uses the 2.8 km
thick glacial ice sheet as a medium for
producing Cherenkov light emitted by
charged particles created when neutri-
nos interact in the ice or nearby rock.
Neutrino interactions can create high-
energy muons, electrons or tau leptons,
which must be distinguished from a
background of downgoing atmospheric
muons based on the pattern of emitted
Cherenkov light. The photons that reach
the detector have wavelengths in the vis-
ible range (300 to 550 nm), are emitted
at the Cherenkov angle of about 41◦, and
are subject to both scattering (with scattering length varying between values of 5 to 90 m within
the detector volume) and absorption (20-280 m) [2]. Since scattering and absorption lengths

∗http://icecube.wisc.edu
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are comparable to each other, and to the typical distances at which the events are observed
(20-150 m), existing analytical approximations (single scattering or, on the other end, diffusive)
cannot be used, and the photons must be propagated individually in the simulation. Results of
such propagation can optionally be tabulated, but the parameter space that must be explored
in such an approach is large (in 8 dimensions or more), necessitating certain simplifications.
Additionally, the tables are slow to generate, quite large, and may still suffer from certain issues
(e.g., related to binning or interpolation strategy).

2 Photon Propagation Software

The photon propagation code (PPC) [3] was initially written to study the feasibility of direct
photon propagation for simulation of events in IceCube. The simple nature of photon propa-
gation physics allowed us to focus on the code optimization, to make sure the simulation ran
as fast as possible. The simulation was written in C++, then re-written entirely in Assembly
for the 32-bit i686 architecture with SSE1 vector optimizations. The Assembly version of the
program used the SSE instructions for updating photon direction when scattered and for locat-
ing the optical sensors near the photon segment, while the calculation of the scattering angle
was performed by keeping all intermediate variables inside the registers of the float point unit
(FPU) stack. The calculation speed improved by 25-37% compared to the C++ version.

Shortly thereafter we were able to demonstrate that significant acceleration of the photon
propagation by factors of 150 or more (compared to running on a single CPU core) is possi-
ble by using graphics processing units (GPUs). We confirmed this with a version of software
that employs the Nvidia GPUs (graphics processing units) via the CUDA2 programming in-
terface, and a second version that uses OpenCL3, supporting both Nvidia and AMD GPUs,
and also multi-CPU environments. The IceCube collaboration also uses a software module
called CLSIM4 that was independently written for OpenCL, and verified to produce results
statistically indistinguishable from those produced with PPC.

The reason for the substantial acceleration of our simulation on GPUs is the highly parallel
nature of the simulation of the photon propagation. All of the simulated photons go through
the same steps before getting absorbed or hitting a sensor (see Figure 1): photon propaga-
tion between the scattering points, calculation of the scattering angle and new direction, and
evaluation of whether the current photon segment intersects with any of the optical sensors
of the detector array. The GPUs are designed to perform the same computational operation
in parallel across multiple threads. Each thread works on its own photon for as long as the
photon exists. When the photon is absorbed or hits the detector the thread receives the new
photon from a pool of photons for as long as that pool is not empty. Although a single thread
runs slower than a typical modern computer CPU core, running thousands of them in parallel
results in the much faster processing of photons from the same pool on the GPU.

1Streaming SIMD Extensions, an extension to the CPU instruction set that operates on vector data.
2Compute Unified Device Architecture, a programming model by Nvidia that provides access to the comput-

ing features of their GPU cards.
3Open Computing Language, a framework for accessing features of devices working on multiple data elements

in parallel. This includes devices like CPUs, GPUs, and accelerator cards from multiple manufacturers.
4OpenCL-based photon-tracking simulation modeling scattering and absorption of light in ice or water.
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Figure 1: Parallel nature of the photon propagation simulation: tracking of photons entails
the computationally identical steps: propagation to the next scatter, calculation of the new
direction after scatter, and evaluation of intersection points of the photon track segment with
the detector array. These same steps are computed simultaneously for thousands of photons.

3 Simulation with photon propagation code

The direct photon simulation software is typically used in the two scenarios shown in Figure
2. In the first scenario the in-situ light sources of the detector are simulated for calibrating the
detector and the properties of the surrounding ice. It is possible to very quickly re-simulate
the detector response to a variety of ice scattering and absorption coefficients which are finely
tabulated in depth bins. This allows for these coefficients to be fit directly, by finding the
combination that is a best simultaneous fit to all of the in-situ light source calibration data
[2]. For the 10 meter depth bins, 200 coefficients are fitted (with scattering and absorption
defined in 100 layers spanning 1 km of depth of the detector), with nearly a million possible ice
parameter configurations tested in less than a week on a single GPU-enabled computer. This
method is intractable with a table-based simulation, as each new parameter set would require
generation of the new set of parametrization tables, each generation taking on the order of a
week of computing time on a ∼ 100-CPU cluster.

Figure 2: Typical simulation scenar-
ios: photons emitted by the detector are
tracked as part of the calibration proce-
dure (left). Cherenkov photons emitted by
a passing muon and cascades along its track
are tracked to simulate the typical IceCube
events (right).

In the second scenario the Cherenkov photons
created by the passing muons and cascades are
simulated as part of the larger simulation of the
detector response to atmospheric and other fluxes
of muons and neutrinos. The simulation is able
to account for some effects that are difficult to
implement with the table-based simulation, be-
cause their simulation would lead to additional
degrees of freedom, thus increasing the size of the
parametrization effort and tables many-fold. One
of these is the tilt of the ice layers, i.e., depen-
dence of the ice parameters not only on the depth,
but also on the xy surface coordinates [2]. An-
other effect, recently discovered, is ice anisotropy
[4], which manifests itself as a roughly 13% varia-
tion in scattering length depending on the orien-
tation.
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4 IceCube GPUs

The IceCube collaboration operates or otherwise has access to multiple GPU clusters. Recent
work on fitting the ice was done at a cluster of 32 Nvidia 690 (2 GPUs each) and 32 AMD 7970
cards (for 96 GPUs altogether). The fitting works by simulating several slightly different ice
configurations, waiting for the results, and finding the best configuration. Then creating several
slightly modified configurations (based on the best configuration calculated in the previous step),
and so on.

Card Performance TDP
AMD 7970 1.77 250
AMD 7950 1.57 200
Nvidia 690 2 300
Nvidia 680 1 195
Nvidia 660 0.62 140
Nvidia 650 ti 0.43 110
Nvidia m2070 0.66 225

Table 1: Relative performance of the
tested GPU cards. TDP is the manu-
facturer’s specified maximum card heat
generation in Watts.

We have studied the relative performance of dif-
ferent GPU cards currently in use within our collab-
oration and summarize our findings in Table 1.

To optimize the use of the GPU-enabled comput-
ers further we employ the DAG5 tools. This involves
separating simulation segments into tasks, and as-
signing these tasks to DAG nodes. DAG assigns
separate tasks to different computer nodes; execu-
tion of photon propagation simulation is performed
on dedicated GPU nodes.

5 Concluding remarks

We report on a photon propagation tool that re-
places the older table-based approach in certain sit-
uations, while achieving more precision, better description of the physics of the process and
shorter run time. This tool is capable of running on both CPU cores and GPU hardware,
achieving significant speed up (factors in excess of ∼ 100) on the latter.
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It is well-known that in extreme conditions the behavior of a system is different than in
standard ones, see for example [1]. The presence of external (chromo)magnetic field is a par-
ticular case of these nonstandard conditions. One of the most powerful methods to investigate
quantum field theory (also in extreme conditions) is the lattice Monte Carlo (MC) approach,
which allows to investigate problems which cannot be solved analytically. Lattice methods be-
came popular with the increase in performance of computers and the use of GPUs significantly
increases the computing performance.

Major research collaborations develop software for MC simulations (see, for example, [2] for
a review) that is adopted for their tasks and hardware. However, due to the severe competition
between hardware manufacturers, cross-platform principles have to be considered while creating
such type of programs.

The open-source package QCDGPU is a package that enables to perform MC lattice simula-
tions of SU(N) gauge theories and O(N) models on AMD and nVidia GPUs. The main feature
of the package is the possibility of investigating physical phenomena in presence of an external
chromomagnetic field. All functions needed for MC simulations are performed on GPU. The
CPU part of the program computes averages of measured quantities over the MC run, prepares
the computational device, provides input/output functions, etc. The GPU kernels are imple-
mented in OpenCL to enable execution on devices by various vendors. The host part of the
code is written in C++. The package is optimized for execution on GPUs, but can also run on
CPUs.

QCDGPU performs gauge configuration production as well as the measurements of the
lattice observables. In particular, the package allows to measure the most common lattice
observables: mean values of plaquette and action, the Wilson loop, the Polyakov loop, its square
and 4-th power. Also some nonconventional measurements are implemented: measurement of
components of the Fµν tensor, spatial distribution of the Polyakov loop and action. The last
quantities are useful for the investigation of phenomena in presence of external chromomagnetic
fields.

The QCDGPU package allows to investigate SU(N) gluodynamics in n-dimensional space.
By default the 4D hypercubic lattice is considered but the number n can be changed through
the run parameters.

The standard Wilson action for lattice SU(N) theories is considered,

SW = β
∑

x,ν>µ

(
1− 1

N
Re TrUµν(x)

)
,
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summation is performed on all the lattice sites and on all the pairs of space-time directions µ
and ν, β = 2N/g2 is inverse coupling, Uµν(x) is the plaquette in the point x = (x, y, z, t),

Uµν(x) = Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν (x), (1)

µ̂ is the unit vector in direction µ. The field variables Uµ(x) are SU(N) matrices. For SU(2)
and SU(3) groups the following symmetry properties are used to represent link variables:

SU(2) : U =

(
u1 u2
−u2∗ u1∗

)

SU(3) : U =



u1 u2 u3
v1 v2 v3
w1 w2 w3


 , ~w = ~u ∗ × ~v ∗.

So SU(2) matrices are defined through 4 real numbers and SU(3) matrices are defined through
12 reals instead of 18. Due to the GPU architecture, those matrices are represented as the
appropriate number of 4-component vectors. For SU(2) this is one double4 (float4) structure,

U.uv1 = (Re u1, Im u1, Re u2, Im u2),

while in SU(3) case three such structures are needed for one matrix:

U.uv1 = (Re u1, Re u2, Re u3, Re v3);

U.uv2 = (Im u1, Im u2, Im u3, Im v3);

U.uv3 = (Re v1, Re v2, Im v1, Im v2).

Other matrix elements are calculated during execution, when they are needed.
For link update the standard multi-hit heat-bath algorithm [3, 4] is implemented. To par-

allelize lattice update the checkerboard scheme is used.

One of the main purposes of QCDGPU is to enable the investigation of phenomena in
external chromomagnetic field. The external Abelian chromomagnetic field is realized through
twisted boundary conditions (t.b.c.) [5]. This approach is similar to one used in [6]. The field
is introduced as additional flux through plaquettes. This allows to work with the external field
as with a continuous quantity. The t.b.c. have the following form:

U ′µ(Nx − 1, y, z, t) = Uµ(Nx − 1, y, z, t)Ω, Ω = eiϕδµ2, ∀ y, z, t,

ϕ = a2NxH is the field flux in z direction through the Nx × 1 stripe of plaquettes, see Fig. 1.

tw
is

t

Figure 1: Chromomagnetic flux ϕ through a stripe of plaquettes
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This method is valid for values of the external field flux small enough to neglect the commutators
with the external field.

The possibility of varying the external field flux in the QCDGPU package allows to study
the dependence of the deconfinement phase transition temperature, the gluon magnetic mass,
etc., on the applied external field. One more problem that can be investigated with QCDGPU
is the vacuum magnetization in SU(N) gluodynamics.

A general approach to investigate this phenomenon on the lattice is to find the (global)
minimum of the action as function of the applied external field. A non-trivial minimum of the
action means that a non-zero chromomagnetic field exists in the ground state.

The possibility of vacuum magnetization was investigated recently for SU(3) lattice gluo-
dynamics [5]. The simulations were performed on 4 × 163 lattice at β = 6. There are two
neutral chromomagnetic field components in this group. They correspond to the 3-rd and 8-th
Gell-Mann matrices. So the action was considered as function of two field variables. Three
sections of this 2D surface were investigated: ϕ8 = 0, ϕ3 = 0 and ϕ8 = 6.17ϕ3, to compare
results with [7]. For the section ϕ8 = 0 the non-trivial minimum of the action was obtained at
95% confidence level (Fig. 2).

0.002 0.006 0.010

2.43082

2.43080

2.43078

2.43076

2.43074

Figure 2: Dependence of action S on applied external field flux ϕ3 at ϕ8 = 0. The bars
correspond to the 95% CI in the bins, the horizontal stripe is zero level (mean value and 95% CI),
the thick curve corresponds to the χ2-fit result. 95% CI for the position of the minimum is
shown by the hatched background

From χ2 analysis the following estimates and 95% confidence interval (CI) were obtained
for generated field:

ϕ3 =
(
7.48+11.3

−4.11
)
× 10−3 or H3 =

(
488+734
−268

)
MeV2.

The estimated temperature is T ' 370 MeV.

Also the possibility of direct measurement of the Cartesian components of the SU(N) elec-
tromagnetic field tensor Fµν is implemented in the QCDGPU package. The expansion of the
plaquette (1) for small lattice spacing,

Uµν(n) = 1 + ia2F bµν(n)λb − 1

2
a4F bµν(n)F b

′
µν(n)λbλb

′
+O(a5), (2)
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where λb are the gauge group generators, is used to extract the field strength. This is done by
multiplying (2) by the generators λb, and taking the trace [8]:

a2F bµν = −iTr
[
Uµνλ

b
]

+O(a4). (3)

This function of the QCDGPU package provides an alternative approach to investigate the
vacuum magnetization phenomenon [8]. The method is based on a study of the distribution
function of the total chromomagnetic field strength H. This total field consists of the condensed
~Hc and “quantum” parts. The Cartesian components of ~H are obtained directly from MC run
by Eq. (3). They are supposed to be Gaussian ones with mean values ~Hc and variance σ2. The
variance can be obtained as usual sample variance over the MC run. Thus, the absolute values
of the field ~H have the following distribution (in dimensionless units):

p(η) =
16η

ζπ3/2
e−ζ

2/4e−4η
2/π sinh

2ζη√
π
,

η = H/H0, ζ = Hc

√
2/σ, H0 = 4σ/

√
2π is the mean value of H at Hc = 0. Consequently, the

mean value of η is

η̄ =
16

ζπ3/2
e−ζ

2/4

∫ ∞

0

η2e−4η
2/π sinh

2ζη√
π
dη = f(ζ).

This can be associated with its estimator from lattice simulations and f(ζ) must be inverted
numerically to calculate the condensate field.

The open-source QCDGPU package is developed as a tool for MC lattice simulations of
SU(N) gluodynamics in external chromomagnetic field. The package performs gauge configu-
rations production as well as measurements. All procedures for MC simulations are realized
in OpenCL and are optimized for execution on GPUs. CPU performs only averaging of mea-
sured quantities over run and auxiliary work for the interaction with the compute device. Apart
from common lattice quantities, QCDGPU provides measurement of several non-standard ones.
This allows to investigate such problems as the dependence of different quantities on the applied
chromomagnetic field, spontaneous vacuum magnetization, etc. The introduction of fermionic
fields is among the plans for future developments.

References
[1] M. N. Chernodub, Phys. Lett. B 549 146 (2002), arXiv:hep-ph/0208105.

[2] V. Demchik and N. Kolomoyets, Comput. Sci. Appl. v. 1, no. 1, 13 (2014), arXiv:1310.7087 [hep-lat].

[3] A. D. Kennedy and B. J. Pendleton, Phys. Lett. B 156 393 (1985).

[4] N. N. Cabibbo and E. Marinari, Phys. Lett. B 119 387 (1982).

[5] V. I. Demchik, A. V. Gulov, N. V. Kolomoyets, to be published

[6] M. Vettorazzo and P. de Forcrand, Nucl. Phys. B 686 85 (2004), arXiv:hep-lat/0311006.

[7] V. V. Skalozub and A. V. Strelchenko, Eur. Phys. J. C 33, 105 (2004), arXiv:hep-ph/0208071.

[8] V. Demchik, A. Gulov and N. Kolomoyets, arXiv:hep-lat/1212.6185v1 (2012).

[9] P. Cea and L. Cosmai, arXiv:hep-lat/0101017.

4 GPUHEP2014

NATALIA KOLOMOYETS, VADIM DEMCHIK

224 GPUHEP2014



Fast algorithm for real-time rings reconstruction.
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The GAP project is dedicated to study the application of GPU in several contexts in which
real-time response is important to take decisions. The definition of real-time depends on
the application under study, ranging from answer time of µs up to several hours in case
of very computing intensive task. During this conference we presented our work in low
level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and
specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6].
Apart from the study of dedicated solution to decrease the latency due to data transport
and preparation, the computing algorithms play an essential role in any GPU application.
In this contribution, we show an original algorithm developed for triggers application, to
accelerate the ring reconstruction in RICH detector when it is not possible to have seeds
for reconstruction from external trackers.

1 Introduction

Low level trigger RICH reconstruction is very challenging. But the possibility to use in trig-
ger decisions the information coming from Cherenkov rings, would be very useful in building
stringent conditions for data selection. Standard algorithms are difficult to use in an on-line
environment: some of them requires an external seed, some of them is not adequate in terms of
resolution and noise immunity, all of them are too slow. In particular, in high intensity experi-
ments high data rate requires fast data processing setting the maximum complexity allowed for
the on-line reconstruction algorithms. The recent development in high throughput processors
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provides new opportunities in using information coming from rings in RICH detectors directly in
the first trigger level. The GPUs (Graphics Processing Units), in particular, are designed with
a parallel architecture in order to exploit the huge computing power offered by a big number of
computing cores working together on the same problem. This kind of structure (the so called
SIMD (Single Instruction Multiple Data)) allows the design of new parallel algorithms suitable
for pattern recognition and ring fitting, with very high computing throughput and relatively
small latency. In this paper we will discuss a new algorithm heavily based on the possibility to
run concurrently several computing threads on the same processor. The GPU implementation
of this algorithm and the results in terms of performances will be discussed.

2 Requests for an on-line ring reconstruction

Most of standard single ring algorithms [7] can not be trivially used in real-time application.
The geometrical fits, like for instance Gauss-Newton, Chernov-Lesort and others, are very
accurate, but most of them require an initial seed to start, while the algebraic fits, like for
instance Taubin, Crawford and others, are less accurate, but usually faster. In both cases it is
not easy to extend the ring reconstruction to a multi-ring problem. Specialized algorithms, like
Hough transform, fitQun, APfit, based on likelihood and similar, are usually slow with respect
to the requirements imposed by high intensity experiments. A good algorithm candidate to be
used in low level trigger applications should have the following characteristics:

• seedless,

• multi-Ring reconstruction,

• fast enough to cope with event rate of tens of MHz,

• accurate (events reconstruction with offline resolution).

In addition, depending on the specific experiment requirements, noise immunity and stability
of the fitting time with respect to the complexity should be required. Presently no suitable
algorithms are available on the market.

3 A physics case: the NA62 RICH

As physics case for the study described in this paper, we consider the NA62 RICH detector.
The NA62 experiment at CERN [8] has the goal of measuring the branching ratio of the ultra-
rare decay of the charged kaon into a pion and a neutrino anti-neutrino pair. The main interest
in this decay is linked to the high precision theoretical prediction of its branching ratio, at
the level of few percent, since it is almost free of non-parametric theoretical uncertainties.
Because of this, a precise measurement with a sample of 100 events would be a stringent test
of the Standard Model, being also highly sensitive to new physics. The trigger is a key system
to obtain such a result. In its standard implementation, the FPGAs on the readout boards
of each sub-detector participating to the L0 trigger, compute simple trigger primitives. The
maximum latency allowed for the synchronous L0 trigger is related to the maximum data storage
available on the data acquisition boards; its value was chosen to be rather large in NA62 (up
to 1 ms). Such a time budget allows in principle the use of more complex but slower trigger
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implementations at this level. This would have the benefit of increasing the trigger selectivity
for the K+ → π+νν̄ process, and would allow the design of new trigger condition to collect
additional physics processes.

The NA62 RICH [9] is a 17 meters long, 4 meters in diameter, 1 atm Neon filled detector,
used to distinguish pions and muons in the 15-35 GeV/c range. The Cherenkov light is focused
on two spots equipped with about 1000 small (16 mm in diameter) phototubes each. The ring
maximum radius is about 20 cm, while the average number of hits is 20 per ring. Typical NA62
events are one charged particle in final state (K+ → π+π0 and K+ → µ+ν), but interesting
three tracks events are also possible (K+ → π+π+π−, Lepton Flavor Violation modes, etc.).

4 The Almagest

Most of the algorithms mentioned above are efficient for single rings. A strategy to implement
a multi-rings reconstruction should use a two step process: first collect the hits (pattern recog-
nition) from the same circle and then perform the fit. Obviously the pattern recognition is the
most time consuming and difficult part. We present a new idea based on elementary geometry
to address this problem.

In his treatise on astronomy, the Almagest, Ptolemy derived several geometrical results. In
particular, in Euclidean geometry, one of Ptolemy’s theorems connects the lengths of the four
sides and the two diagonals of a cyclic quadrilateral, that is quadrilateral whose vertexes all
lie on a single circle. In a convex quadrilateral, if the sum of the products of its two pairs of
opposite sides is equal to the product of its diagonals, then the quadrilateral can be inscribed in
a circle. In the particular case shown in figure 1, the theorem states that:

AC ·BD = AB · CD +BC ·DA

This is an useful condition for our problem, since it does not require any other information but
the distances between hits inside the RICH. Using this theorem it is possible to decide if a point
should be considered for a single ring fit or not. Assuming that the maximum number of hits
coming from the NA62 RICH is 64, checking all the combinations of all the hits in groups of
four (more than 600000), to decide if the points belong to the same ring, is unfeasible in on-line
reconstruction.

To reduce the number of tests, one possibility is to choose few triplets, i.e. a set of three hits
assumed to belong to a single ring, and iterate through all the other hits while checking whether
Ptolemy’s relation is satisfied. In this way, in the worst case scenario of a 64 hit NA62 event,
the number of iterations for each triplet turns out to be 61. The hits collected in this phase
will be used to fit the ring with a classical single-fit algorithm (like the Taubin method). The
problem converges only if the points of the starting triplet come from the same ring. Obviously
the choice of the test triplets is decisive for the efficiency of the algorithm. Considering events
with two or three rings like, for example, the one shown in figure 2, to maximize the probability
that all the points of a triplet belong to the same ring we decided to use 8 triplets and in
particular the ones obtained with three points from the top, bottom, right, left and from the
U and V diagonal directions.

A key point of this approach is the possibility to run more than one “triplet” at the same
time. Modern processors offer the possibility to vectorialize the algorithms in order to exploit
parallel computing. In particular the so called streaming processors have the SIMD (Single
Instruction Multiple Data) architecture that allow to run the same program on different sets
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Figure 1: Ptolemy’s Theorem.

of data concurrently. Among SIMD processors, the GPUs (Graphics Processing Units) offer a
huge computing power, as will be discussed in the next section.

In figure 3 a preliminary result on the reconstruction efficiency for the multi-ring selection is
shown. The rings are obtained using GEANT4 Montecarlo, including electromagnetic showers,
delta rays and hadronic interaction. For this reason, additional spurious hits are possible. The
efficiency strongly depends on hits distribution: asymmetric hits distribution for a ring, for
instance, could introduce a bias in the triplets selection described above, as well as points too
close each other could affect the single ring (Taubin) fit. Further cuts on hits distance and
position can improve the efficiency significantly. The average time to reconstruct a multi-ring
event is about 1 µs, using one single GPU.

5 The GPU

Graphic processors represent a viable way to fill the gap between a multi-level system, with
a hardware-based lowest level trigger, and a system which would not require preliminary real-
time hardware processing on partial event information. Indeed GPUs do provide large raw
computing power even on a single device, thus allowing to take complex decisions within a
latency that can match significant event rates. This computing power is given by the different
processor architecture with respect to the standard CPUs. In GPU more transistors are devoted
to computing with respect to the CPU, the number of cores in a GPU can be easily of the order
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Figure 2: Two rings reconstructed by Almagest’s algorithm (solid line). The dotted ring rep-
resent the real ring position. The small circles represent the PMTs positions within the NA62
RICH.

of few thousands, with respect to the few units in multi-cores CPU. In addition the computing
dedicated structure of the GPU is obtained by reducing the cache dimension, increasing the
memory bus and simplifying the control stage.

In recent times GPUs are used for General Purpose computing (GPGPU), and not only for
graphics applications. In the High Performance Computing sector there are two major GPU
vendors: AMD and NVIDIA. For the moment we are concentrating on NVIDIA, because they
can be programmed at a lower level allowing better control of the hardware through the soft-
ware. GPU parallelism, on Graphic cards produced by NVIDIA, is exposed for general-purpose
computing thanks to an architecture called Compute Unified Device Architecture (CUDA). The
CUDA architecture is built around a scalable array of multi-threaded Streaming Multiproces-
sors (SMs). A SM is designed to execute hundreds of threads concurrently. Each thread is
execute on a single CUDA core. The CUDA cores share a very fast on-chip memory, to allow
data exchange and temporary caching. The computing power of recent GPUs can easily exceed
4 Teraflops.
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Figure 3: Preliminary efficiency of the algorithm as a function of the number of rings, for 4
triplets (horizontal and vertical) and 8 triplets (horizontal, vertical and diagonals) version. As
expected, the efficiency increases with the number of triplets considered.

6 GPU in real-time

The use of GPUs in lowest trigger levels requires a careful assessment of their real-time perfor-
mance. A low total processing latency and its stability in time (on the scales of hard real-time1)
are indeed requirements which are not of paramount importance in the applications for which
GPUs have been originally developed. This issue is related to the fact that in common usage of
GPUs as graphics co-processors in computers, data are transferred to the GPU - and results are
transferred back - through the PCIExpress computer bus. Moreover, in order to better exploit
the parallel architecture of GPUs, their computing cores should be saturated, thus requiring
the computation on a significant number of events after a buffering stage.

GAP (GPU Application Project) is focused on the use of GPU in real-time, both in High
Energy Physics and medical imaging. We use two techniques to reduce the data transportation
latency: PFRING and NANET. The first is a new fast capture driver, designed to avoid any
redundant operation on the data received in a standard NIC (Network Interface Card)[10],
while the second is a board named NANET [11], based on an FPGA, in which the possibility
to copy directly the data from the FPGA to the GPU is implemented. Preliminary results, on
single ring search kernel [12], shows similar performance (figure 4 and figure 5). In the case of

1A system is defined as “hard” real-time if a task that temporally exceed its deadline causes irrecovarable
damage to the system.
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PFRING we used a TESLA K20 board, while for the NANET test we used, a little bit older,
TESLA M2070. The K20 is almost a factor of two faster than the M2070 in executing the
kernel, but all the other components of the latency are almost the same (both boards are used
as X16 PCIExpress gen.2). The main component of the total latency is the gathering time

Figure 4: Total time (including data transfer and computing for a single ring kernel) as a
function of the rate, for a buffer of 256 events, for PFRING driver solution. The time is
independent on the MGP (the number of events per data packet from the detector).

needed to collect a sufficient number of events to better exploit the GPU computing power and
to hide the overhead latency due to data transmission. Times of the order of 150/200 µs per
event is the limit of the present technology. The latency time fluctuation is well below the µs.
This is very important in using GPU for synchronous low level trigger. The behaviour of the
GPUs, with respect to the CPUs, is almost deterministic (the non-deterministic component is
due to the GPU-CPU interaction in data transfer and kernel loading) and very stable.
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Figure 5: Total time (including data transfer and computing for a single ring kernel) as a
function of the buffer dimension, for NANET board solution.

7 Conclusions

We have presented a new algorithm for ring reconstruction. This algorithm, based on Ptolemy’s
theorem on quadrilaterals, is suitable to be used for circular pattern recognition. A parallel
implementation of this algorithm is proposed to run on a GPU, the standard video processor.
The computing power for this kind of device is huge for parallel application. Preliminary tests,
using the NA62 RICH as physics case, are very encouraging. The maximum latency is in the
order of 150/200 µs, while the computing time is 50 ns for single ring, and 1 µs for multi-rings
events. Rare events search experiment, like NA62, would benefit on the possibility to exploit
on-line ring reconstruction to define selective trigger for data acquisition. A “demonstrator” is
in preparation for testing, in parassitic way, during the next NA62 run.
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where λb are the gauge group generators, is used to extract the field strength. This is done by
multiplying (2) by the generators λb, and taking the trace [8]:

a2F bµν = −iTr
[
Uµνλ

b
]

+O(a4). (3)

This function of the QCDGPU package provides an alternative approach to investigate the
vacuum magnetization phenomenon [8]. The method is based on a study of the distribution
function of the total chromomagnetic field strength H. This total field consists of the condensed
~Hc and “quantum” parts. The Cartesian components of ~H are obtained directly from MC run
by Eq. (3). They are supposed to be Gaussian ones with mean values ~Hc and variance σ2. The
variance can be obtained as usual sample variance over the MC run. Thus, the absolute values
of the field ~H have the following distribution (in dimensionless units):

p(η) =
16η

ζπ3/2
e−ζ

2/4e−4η
2/π sinh

2ζη√
π
,

η = H/H0, ζ = Hc

√
2/σ, H0 = 4σ/

√
2π is the mean value of H at Hc = 0. Consequently, the

mean value of η is

η̄ =
16

ζπ3/2
e−ζ

2/4

∫ ∞

0

η2e−4η
2/π sinh

2ζη√
π
dη = f(ζ).

This can be associated with its estimator from lattice simulations and f(ζ) must be inverted
numerically to calculate the condensate field.

The open-source QCDGPU package is developed as a tool for MC lattice simulations of
SU(N) gluodynamics in external chromomagnetic field. The package performs gauge configu-
rations production as well as measurements. All procedures for MC simulations are realized
in OpenCL and are optimized for execution on GPUs. CPU performs only averaging of mea-
sured quantities over run and auxiliary work for the interaction with the compute device. Apart
from common lattice quantities, QCDGPU provides measurement of several non-standard ones.
This allows to investigate such problems as the dependence of different quantities on the applied
chromomagnetic field, spontaneous vacuum magnetization, etc. The introduction of fermionic
fields is among the plans for future developments.
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