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Abstract:

A Poincaré-invariant s—partlcle phase space integral
with full kinematics, J[L (W L ), is formulated as a
generalization of the non-relat1v1stlc phase space inte-
gral at constant energy, momentum, angular momentum, and
center of mass. For large particle numbers s the integral
JQS(W L ) is evaluated covariantly with the central limit
theorem; the summation

g;s y L, (wo L)

is then carried out for high energies (w/W —0).



- Introduction

For a statistical model of elementary particle reactions
the fundamental problem is the formulation of a relati-
vistic quantum-mechanical s-particle phase space inte-
gral with full kinematics, its evaluation, and the eva-
luation of such integrals summed over all s 1). In a
previous paper 2) we discussed - in order to gain some
insight into the essential features of such integrals -
the classical non-relativistic phase space with all in-
tegrals of motion of the Galilel group as well as its
covariant evaluation by means of the central limit theo-
rem of statistics. In the present paper we shall extend

_ this treatment t0 the relativistic case; that is, we

shall formulate a Poincaré-invariant classical phase
space integral jls(wg,Lg) at constant total CMS energy
W2 and spin L2 for a system of s identical scalar par-
ticles., For large s this integral will then be evaluated
covariantly using the central limit theorem, and finally
the sum Zg‘;nsmg, 1°) will be calculated in the high

energy limit.

Such a treatment is still a simplification of the pro-
blem initially outlined, since - apart from the overall
symmetrization factor 1/s! in the sum over s - quantum
effects are neglected. However, we believe that (in the
case of scalar Bose particles) for large particle num-
bers and high energies such effects do not play the
decisive role., This is supported by the fact for large
s the non-relativistic classical and quantum-mechanical
phase space integrals have very similar featuresa).
Thus a classical relativistic model should give quite

a good indication of the results of the above mentioned

kinematically complete statistical approach.

Before proceeding to the relativistic phase space let
us briefly recall the non-relativistic form~ -,



For a system of s identical non-relativistic particles
(mass m) we denote the kinematic quantities correspond-
ing to total kinetic energy, linear momentum,angular
‘momentum, and center of mass coordinate with T, ?} ﬁ,

X = ﬁysm, respectively. The Galilei invariants for the
‘total CMS energy E and spin L are then

(1.1)

"')1

E = { P 2sm

2

L= [d- Nx%m]
As invariant phase space integral we now set

Qe D) = [l d {dfudi]er mz%—,‘" Dt (.2)

S - T) S IR -F) S IR M) § Zaii= W)

where the exponential coordinate space restriction pro-

vides an "interaction volume". Since

> I - 3
Z_ (X)‘/‘J f o= P 2__ (X; - N/Sm)l (1.3)
IJ" i
we perform the translation

Z.SRz

g-. = %y = N/om (1.4)

to obtain a form quite suitable for relativistic general-

ization:

[

Q. (e 1) = S Sn {dsyx‘. Js%; e~§;/i2;_} x (1.5)

SR DI -F) IGef-1) 8Eg)
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Here the translational invariance is explicitly clear,
as only quantities invariant under translations enter.
In section II we shall formulate and discuss the rela-
tivistic extension of this integral; the evaluation
for large s and for the sum over all s will be then
given in sections III and IV, respectively.

The Poincaré-Invariant Phase Space Integral

The position and momentum coordinates of a single part-
icle transform under the Poincaré group as

e = N, x, + (2.1)

v = O\.lz-n
‘ e i 3

fim ~ fyﬁ‘)ylv

where Av&v denotes a homogeneous Lorentz transformation

4)

and a, a space~-time translation . The generalized

angular momentum tensor mﬂ» is defined as

Mpv = X Jlo = Xy fim (2.2)

Its space-space components (mik;i,k=4,2,3) are the usual
angular momentum, its space-time components (mko;k=4,2,5)
a position coordinate,

The ten kinematic quantities (corresponding to the ten
infinitesimal generators of the Poincaré group) of an

s particle system now form the four-vector of total mo-
mentum and the antisymmetric four-by-four temsor of
(generalized) angular momentum:

s ) .
Tio = 2; Y%W i P4MM :

™.
-

(2.3)

,
]
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The group invariants for the total CMS energy and spin
are

Wz. - P,w ‘F_M (2.4)

2 . M \ o, Do
L - ,;\*, i PM: é—\;/g/u\)pp—P ’\/]P

where the metric 800="811"

introduce the four-vector

-gggz—g55=4 is used. We now

i = ._L ' e (2‘5)
K;“ Wy, P1P”’-P

which in the CMS (always denoted by a superscript o)

becomes

lz/u = (O Mko> (O Z_()(rlw iaﬁf)) (2.6)

and thus represents a covariant generalization of the
center of mass coordinate. With its help we can deflne,
as generalization of the non-relativistic spin vector L

the antisymmetric spin tensor QMV

Lo = Mau 7 LR - OB T 3 Lo 7= LY LuTR0 (227)

which is also translation invariant, as can easily be
verified from (2.1, 2.2, 2.%),

A natural extension of coordinate space integration
(d5 x) is given by 1ntegrat10n over space-like hyper-
surfaces 6) d T = (d X, dx  dx, dX5’ dx dx, d Xz
dx dx,I dxg) For the momentum space the invariant
measure becomes the usual d.;)cg(p -m.) B(po). Noting
finally that

2 o~ u

W\.M\, m™Y = - 2 m X (2.8)




-5 -

for a single particle at rest, we choose as cut-off
function |

exp{ ~mn Mew ] (2.9)

The furfher properties of such a coordinate space re-
striction will be discussed later on.

As a résult of the above considerations we now define
as our relativistic phase space integral with the full
kinematics of the Poincaré group

S (WS L) = S‘"S { rl,chrl. -m )Q(P,O)Z_V..n (2.108)

|=rl

M

. » %>
Clo_b e "* mY /ZW'LR } 8“‘)(2— “_?) é m/““ __17“0
The translation

x",‘, - X/u"' K'W/Wz.

then yields as the relativistic analogue of (1.2/1.3):

o ey = fu ] {d ,.&b.,*-m’)'ecrwo)zrg"axo;z}. (2.10b)
) =i

i ._Q _ ‘l' Ku v
Zmlle it [( | W }(X, W‘)VL'“]

8V (T i -T) $TC T - M)

Equation (2,10) is an invariant definition only if
_Q_S(Wg,Lg) does not depend on the particular choice of
space-like hypersurfaces, for which a necessary and
gsufficient condition is '

9 T (x) =0 | ‘ ‘ 1
ox,. . (2.11)
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where %M(x) denotes the integrand of jﬂﬂ¢#. Since

[« %o‘ o = Jla [ 72 G2 CSN}’LM] = (2.12)

this condition is indeed fulfilled, and hence we may,
whenever it is convenient, choose in particular the
set of surfaces x, =0, i.e. replace p“dg, by podi?.
The integral (2.,10) is form-invariant under the homo-
genous Lorentz group and is a function only of trans-
lation invariant quantities - hence its invariance
under the full Poincaré group is assured.

Returning now to the coordinate space restriction we
have with hypersurfaces Z'Xio=0; i=1, ... ,s}

aa AV z t T T S
Mpom™ = 2 | fo X — (Xapl) J (2.13)
Setting p = (p,0,0) this gives
9 X x X'L X'L
WM™ ' e = (2.14)
2m? R RE()- ﬂ/ﬂé ) R R

i.e., the interaction volume experiences a Lorentz con-
traction in the direction of flight, as had been pro-
posed originally by FERMI6>. Here, however, it follows
quite naturally from the invariant form of the phase

space integral.

Using (2.4) and (2.7) we now write

566)(ZM;50‘L/»0)= 5<_ '/»v>‘§(2 imv(o [“)(2 15)

2w

From this we see that in the non-relativistic limit

where

- - . v hd
M (0, M= NxB/sm ) 3 Py, > Sl (2.16)

-y 2
VV\MUVVIM\)/ZMlRZ _ = X/}ZL
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our form (2.10) gives the original non-relativistic
form (1.2).

With the help of (2.15) the phase space at constant
energy, i.e. summed over all angular momentum, 1is
found to be

Q w?) = §u [ § ok Spr-wt) OCpi) 20 (217D

)=

ot o R L Oz ) ST T )

Y2

In the case of s=2, all integrals may be carried out

immediately; the result is

0,w ) = 0,w K wL*) (2.18)

where

o, cwty = [@F (R SR Ko p vl @19

is the two particle phase space at constant energy and

- /2w Rt

Fawie)= €
(2wl) (2K2*RY)
the normalized probability distributinr of the angular

momentum.

Had we used the (non-invariant) cut-off expi{- %2/R23
we would have obtained the usual FEEMI phase space

,Q_FERW(W") _ [(E)'}/,_ Rs &;F_/"_f (2.21)

2

Thus we see from (2.19) that the invariant form (2.10)
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does indeed lead to a Lorentz contraction of the inter-
action volume, RS (2m/W), which moreover is in the
direction of flight of the two particles, since the
"radius" R occurring in the angular momentum distri-

bution is uncontracted.

The Phase Space Integral for Large s.

Since the application of the central 1imit theorem in
evaluating_ﬂs(wg, L2) for large s differs very little
from the non-relativistic case, we sketch the calculat-
ion only briefly., In contrast to the non-relativistic
case, however, the procedure here is covariant under

the full group in every step.

We define as single particle generating function

g
WMo m

3 - ¥ ™ ! - Au MMV"} _
P52 = jj_f ¢ M ap ke cwrRt (31)

where ¥, and Y mu BTE the contravariants to P. and L..u .
The functlon ﬁP(? y) exists for all¥ with { Re § >0,
(Re? ) >(Ika% ) § and all pure imaginary gy With its
help j);S(W2 12 ) can be written

T o V?M . . gt Z
Q wh) = e™ [ Pwo)]t U (WHLY) (3.2)
where «1s real and

s (W* L) =jﬂ]l_{§fé eI 2y o, P e (3.3)

et R SO Cs 1 T 8T o - L)

The function Y(x,p) is found to be

Pla.0) = (2r%wR)( K, (mar ) 5 = Aws (3.0)
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i.e., up to a constant factor it is ﬁf(—im). Since
UZ(WE,Lz) is positive-definite and normalized

{ L - : Q. 2
V¥ P AL, U, (WSLT) ~ ) (3.5)
we can apply the central limit theorem,

The characteristic function ofII: is

e;(’%,\,,? + ﬁ—)ﬁhuL \/L:(Wz, LL/) (3.6)

U

LV;(({;X) ; deP oAé 'L/W

i

[ p(nips, ~iy)/ Dw0d 1”
where from (3.71)

2
13 ~C0(~i/5')' k+-@-' vl “ ,«a‘r (3.7)

it 1) = 27w | Lt e H TR P T O

Baeipy-ig) = 27wk ) 5

. W A . c s _

with Xw,p A Pe negative-definite. Combining %M,.%MV

and (b, ym- 50 Ay andf?kﬁ k =1, .., 10, respectively,

we have for the first moments

- . D Wy
ey = | PA AL UG CAD = [ 1 .
AKC ) Y Kk Vs . 918 de=0

and for the ten-by-ten dispersion matrix

. . i 2 ~ " . — q~—~——-—-——01q};‘
Bie () = Sc( % (A A (A Ae) Ug (4) "_[9;'@,\ 'g;fj«ge(a.%

-0
The central limit theorem then yields as asymptotic form
for large s the Gaussian
i oyt I I
. L o2, (AR AR
WS () — ) (et B, )™ € (3.10)

Correction terms of higher orders in (1/s) can be calcu-

lated for (3.10) in the ususl fashion /787,
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It remains to fixt&; we follow the standard procedure
of KHINCHIN’? in choosing the (unique) solution of

P - T G

and denote the thus determined value with &,
For the first moments we find

ﬁi}a) L @Ef

= g W) o, [ () =0 .12
o Do) dw & S N (3.72)

The dispersion matrix Bkl () is the direct sum of the
usual8) four~by~-four momentum dispersion matrix

B,, ) = s [mia4Q-0’@*] “%(_Siv —sQg., 3

and the six-by-six angular momentum dispersion matrix

(%.14)

DL C 2 Y
B,/“vl(or () = - 5‘18 i(Wt ;f@) Lgﬂ‘,d,mn—*—gwdp et

+ 8/‘” X, 0(/0 + 3"(’ (xko(o-:l - 1Q [ gﬂeaw— - 3%0‘3\’(‘]\2&

A straight-forward calculation now gives, upon resub-
stitution of (3,10) into (3.2), as asymptotic phase
space for large s

2 2 *s 2 - 2 23 o
_Qf(w.L) = Q  w*) FCw® (*) (5.15)
where
as ., TP 3N % Tepr = o018 (3.16)
Lowr) = ze ” <Lﬁ> [LPCW.O)J v ’

- 2T . a1l
< [@csuva- Y REUQrsmy) | }
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is the asymptotic form of the phase space at constant

energy (2.17), and
2 2 5 T am 7% "SLZ‘/Z.RLZ?
Fodwh1m) = s™ [27R°Q] " e (3.17)

is the normalized angular momentum probability distri-
bution., We' have here used the notation

Qi) = s*QUE) = 5_:‘4/ (3.18)

X
Finally (W) is determined as solution of (3.11):

LS dR&O (3.19)
(:?(67,0) A& ‘
with @(&,0) given by (3.4). Bquation (3.19), which is
identical to the determining equation for & in the momen-
tum space evaluation via central limit theorem8), in
general has to be solved by numerical calculations. We
refer to 8), where these calculations are performed for

a wide range of energies.

In the extreme-relativistic limit (sm/W-20), equation
(3,19) may be solved in closed form to give

&= (3.20)
This yields
= - : s 2/ 3
O Fewn = LarrmRew [ (2)(E2) £ (3.27)
| (Rw)* W' |
FSEQCWZILL) = g [_ITRzWL:l~5/,_ ewst/Rsz (5.22-): |

The exact extreme-relativistic momentum space integral

is known to give
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Lowy, 17"
Cs=1)! Cs~2)!

o L e £ A

=1
Thus we see that (3.21) as in the non-relativistic case
is (apart from factors due to the center of mass re-
striction) the momentum space integral with Stirling's
approximation applied to the I' ~functions.,

The dispersion of the angular momentum probability

density is
= R*W/s (3.24)

i.e.,, the angular momenta are effectively "cut-off" for
L2’>R2W2/s. For s=2 this cut-off occurs (see 2,20) for
L2> 2K2R2= W2R§2. Thus at fixed energy the phase space
becomes more isotropic the larger the particle number
s 1s, in the sense that the main contributions then come
from lower angular momenta, For fixed angular momentum,

the function F_(W", I°) has a maximum if

w: - & 3L° (3.25)
3 R~

Now we have for a single particle the mean square values

CRE> = Wis (5.268)

it

(XY = 2 R® (3.26b)

< 80N\ = | ‘ (3.26¢)

where O is the angle between % and 5. Relation (%.26)

is due to the fact that in the extreme-relativistic limit
the the interaction volume is contracted to zero in the
direction of flight. Thus from (3.25) and (3.26) the pro-
bability of obtaining a particular fixed value Lg becomes




Iv.

- 1% =
maximal for an energy such that
2 . - =
L, = s <Lxapl*> (3.27)

. . 2 . At
i.e., if LO is the sum of the individual mean square

angular momenta.,

The Sum over s : B - R Limit

To begin with, let us recall the approximations involved
in our calculation of“QS(W2,L2) for large s. In the re-
sult (3.10/15) of the central limit theorem application
we have retained only the leading term in s and to ob-
tain the explicit expression (%.20) for (W) we have con-
sidered the extreme-relativistic limit (sm/W->0). Both
these approximations (which with increasing particle
number and energy converge to the exact form) can easily
be removed in a numerical evaluation; the first by cal-
culating higher order termsS> in (1/s) for (%3.10/15),
the second by using the exact solution of (3%.19) as e.g.
tabulated in ref. 8).

Since our aim here is study the general high energy
features of the relativistic phase space we shall how-
ever use the extreme-relativistic form (3.21/22) in order
to obtain a closed expression for the sum
= .

0 WhL) = LG S CwWh L) | (4.1)
In the similar case 9) of summing over s the phase space
integrals (mRB)SQS(Wg) at constant energy (see 3.23), it
can be seen that the sum for m$0 converges to the (exact-
ly soluble) sum for m=0 only in the so-called thermody-
namic limit 6>, i.e., at quite high energies. For quan-
titative questions at intermediate energies it would
thus be necessary to investigate correction terms arising
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from the above mentioned approximations.,

The particle-number dependence of the extreme-relati-
vistic phase space (3.21/22)

5 £ 1* v, _s 8.2 ~LY 2 1S
S [ZS] lLLu tmRwWe WR] (4.2)

is within the framework of the central limit theorem

evaluation equivalent to
2p1 S
T 5/ 3 2.~-'L2/W R .
an S Lbm@ire W]/ w

since Stirling's formula applied to (4.3) gives (4.2).
Thus the sum (4.1) over s becomes

Z_ [ T mRiwre” “‘R‘:\S (4.4)

R
_(Z_R (WZLL)“'
523 (s-i)! Cg- z)'cs—s)'

This can be Written
. T R s L0 [ e ]|
Q%) = i ) WA e wreb g2 (4.5
R oW s=0 sI M(s+2) M(s+3)

The sum in (4.5) is Jjust the generalized hypergeometrlc
function

- x5 M) 1(s)
FC2agxd= 2 = , (4.6)
o zc 0 b SbTsw) P(s+3)
and the first term on the r.h.s. of (4.5) is the three-
particle e-r phase space. Thus we obtain as the e-r limit
of the sum over all relativistic s—-particle phase space

integrals (s 3% 3)

2

-

l:Q . l\-z) - J) EQ(W\: LL) ‘: CZ.SP ﬂ'b"/LW]ngzCuWLRL) (4.7>
R Wa LB J O'a i
The function oF2(2’55X> goes to unity for small x

~ . . X
o (285 %) = 1+ 2 00x) (4.8)
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and diverges exponentially for large x

B3
P e 8 |
o (23x) = = [V + & w0 ]| o
| 3% 7 XYy 9 x"s
Hence the total relativistic phase space as function of

W2 and L2 exhibits the following behaviour in the limit

of high energies:

(a) forL2/W2m9w it converges to the three-particle phase

space;

(b) for L%@E—#O it diverges as more and more particle

number components come into play.

Thus we have agaln the expected behaviour that the more
o)

isotropic (small L ) parts of.Jl (W L ) are dominated

by large, the more anisotropic (large L ) parts by small
particle numbers.}

Concluding Remarks

The relativistic classical phase space integral is thus
seen to exhibit on one hand many features quite similar
to the non-relativistic case, in particular the factori-
zation Q_(W") F_(W*,1°), while on the other hand the
Poincaré-invariant formulation leads quite naturally to
an interaction volume Lorentz-contracted in the direct-
ion of flight., The functional form (2,10) is moreover
that of an uncorrelated assembly of s particles, which,
besides being useful for the covariant application of
statistical methods, would~facilitate an investigation
of different types of cut-off functions. The sum over s
finally leads to an asymptotic total phase space form -
expressing the increasing dominance of large particle.
number systems with increasing isotropy.

The present results will subsequently be applied in the
evaluation of a relativistic statistical model with full

kinematics.
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