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Abstract:

Local one-particle approximations are constructed for
matrix-elements of two local field operators. If one
of the fields is a locally conserved current the
approximation is extended in such a way that both
locality and current conservation are valid in the
approximation.



I. Introduction

In spite of the spectacular progress in some aspecis of
elementary particle physics, we are far away from having

a dynamical scheme. By this we mean well defined

equations with unique solutions from which one can calculate
by reasonable approximations resultis, which can be compared
with experiments. Tor the time being, the only thing we
nave is the one or another so-called "axiomatic" frame,
i.,e. some mathematically more or less clearly formulated
general properties which should be shared by any future
theory. The predictions which follow from such a general
frame without making in some way a dynamical assumption are
very limited. On the other hand whenever someone tries to
go one step further and suggests something which looks like
dynamical equations (for instance, equal time commutation
relations of currents in local gquantum field theory), he is
forced to solve a many body problem. In practice, he has
to deal with an infinite set of intercorrelated functions.

In relativistic quantum field theory these intercorrelations
are induced by the infinite set of possible intermediate
particle states in matrix elements of field operators. As

a first approximation, one can try to take only the discrete
one-particle states out of this infinite set and drop all
the continuous states as intermediate states. Such an
approximation would only be reasonable if all the general
properties of the theory are not destroyed by this
approximation. In relativistic quantum field theory, it is
locality which causes some trouble in this respect,
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Because locality is destroyed by the simple one-particle
approximation for the commutator matrix element

SPIL[A 0, (TIPS = L P A COI>< Bol UL > —

< PlBs (N> Ho (K] P >

Pubini and Rurlsan 1] 1
got an unwanted i? —~dependence of the corresponding equal fime
expression and were forced to take a limit =2 or P20

to get a consistent result.

In the general frame of relativistic quantum field theory[2] ,[3]
"local one-particle approximations" were first constructed by
Symanzik [4],[5]for retarded functions and by Zimmermann (6], [T]
for time ordered functions. Starting from the work of Symanzik,
we have constructed in an earlier paper[8] the corresponding -
approximations for the mixed or generalized retarded four-ppint
functions and the four ppint Wightman function. 'Stora[g]

has generalized this result to the mixed retarded 7 ~pwint

functions.,.

If there is & locally conserved current Q%Ax) in the theory:

I LRI L NG > =< G 918> = 0 (1)

any reasonable approximations must be made in such a way, that this
equation is also valid in it. ZEven if the current is not

conserved the first part of equation (1) must hold in an
approximation for the matrix elements. For if one wants to study
any effects caused by breaking of a current conservation, one must
not mix the breaking of the current conservation of the theory
with similar effects induced by the approximation.

In the present paper, we construct a local one-particle
approximation for the matrix elements of two local field operators,
in which the left part of equation (1) holds, if one of the

fields is a current. In a further paper[10] we calculate the
egual time commutators in this approximation show that they are
independent of the frame of reference, and derive the SU(3)

mass relations.
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II. Local One-Particle Approximatién

As already stated in the introduction, our "axiometic"

frame will be local quantum field theory[2],[3]that is,
the objects of 1nvest1gat10n will be matrix elements of
field operators § A, x); @M (%)} with the usual

properties:

Poincaré covariance
(A) TLocality

Spectrum condition

Completeness

&
Notation: In the following H&(X) denotes always a
boson field (stalar or vector) with internal symmetry
index & and @f;(X) a local field which is associated
with the i-th particle of the theory with mass my:

and a set of internal quantum numberséﬁ‘—'{&;”- vy 3’:7—}
Vi Pyl Baco)lo> #o
%) £) "% /B/“ (DIo> =0 for £ F7

The correspondlng asymptotic fields are denoted by aﬂ (K@x
ewt. Then ¥, means the anti-particle to Qo i AlLL
interacting field are assumed to be local relative to each
other. T (x) is the translation operator and ]ﬁ5,> is a
state of four momentum P .

T >=e 18,5 | px=Px - px

(2)

(3)

™
Last but not least V_t denotes the open regilon *P"”;o P 2om

in Minkowskl space and V; its cldsure.

¥We will proceed in three steps. First, we will treat the
simple case of only one scalar particle of masu miin the

theory. Then it will be easy to generalize the result first

to thé case of several purticles of equal or unequal masses
and in the last step to particles of spin one-half,
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a). The case of one single mass M, e
Introducing a complete set of intermediate states between the

two field operators, one gets the following structure of the

matrix element /F? () Ay (f;‘)/j;
in four-momentum space!

@n” ?-“,, kP By = 1T <G | ov)i Feonp,> =
,f(fré)ﬂ?-&)@fg,/f? oY 10> <o 1A m/f&) +
S P9+ h) {y (B )< T e O 8, et Ry ()

v Jdsesrdon° —S)("&;..Iﬁ s ><p sIRS R By > ]

2’"?4 %4*/0 Ty
From this equatlon it follows that the support of ELV Fﬁ)

is contained in the closes set 71 defined by:
. d 2! '—%‘
- {hiZ h=0; Z A VT o025 )
=4 -

[2)

2'"1:‘. %sz{%:£€mz=OI‘r%(a))0} (6)

(5)

w

, , =2 ol

It is well known [2],[3]how to subtract from f:,(%é) in

a local manner the contribution from the intermediate vacuum
state by introducing the so-called truncated matrix elements

~°(p 2 7 7 2 .

:f:'"" (#“ ﬁ‘?‘) ‘{23) %"’)'C' =:ﬁ::/3(‘£4) %2)4;)/'39-)
-<2‘%,/ﬁ“(ﬁzno><a/§f(%,)/g@ >
—<1€gl}? (Jé,)/oxo/ (%z)/@;,, (7)

- ~ o ~
- <%y Wy > <ol B Ch ) ek 05

The truncated matrix elements are covariant, local and do not
contain any vacuum singularity except the dpufunction for
over-all four-momentum conservation.
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7
Phe support of E;V ﬁéi.is given by:

—

e fhii Zdeno, ZA eV e na

/v
Now we go one step further and subtrdgt from f/up(@/)
and at the same time from + ’7 6{}1n a similar way
the contribution from the 1ntermedlate one-particle state,
i.e. the second term in equation (47, In other words, we
wish ﬁp define a new matrixelement Zqu?4$)¢ by subtracting
from gZZV%J?expressions of the form

\

Jdp<Z IN 114 B Twlor kol "k “IZ 5 o)

such tnatzzy ( ) is Poincaré covariant, local and has
furthermore the following support property:

~Ap
The gpnport of ;7 Gé) in momentum space is contained

mT" a

{f Z% fméC/

(10)

RV RCIAIRY BV IR X fmf

N"(ﬂ

. . T =
This condition means that we remove from‘tay;éég the
discrete one-particle singularity in the variable k1+k2

A matrix element ¥1vﬁé) which has all the properties

ve demand is given by.

~dfp T HAB W mkp T
oy (e =3 By (), = Ty (R (1)



uhere Tao (B)] 45 defrmed by

5 thyp, 4, 40 = [l of) (= mf)

{(f }%(P)l?’ﬁa)%)a’}><a’:,w, 2 1A (9)/97/& >

+<"552 //-7 (7)/%%,@01: 7L Ye) Uy 272y //7,,, (p)/dgj% S

<Yl B il > <018 Yy e (P)H,, (9))o
P, | BT 18, S<ol L DR B 1y 10

VAT [ u [ LB JR (4 %1 50 oy T <ol R0 512018, >
<Y 1Pl Tiewloy A g1 <ol R(u” 1919, > (12
- (4_;&4 187 ca) il aor T ue) <ol R (@ '&"//,if{)/ 2,,>

~ (T [R U 9)105 B0 ) QTP B 0201 8>

=<, RPN B ok B I B eni 2y, >

~ Y. _ >
- (3}/24”3 a:“(._z,()/_@%*}ﬁm (e) ¥

<O PR w190 )05+ ol R (I RV Rt 03] |

,‘._. e

Hew) = (fm _ut) Jcv) (m, ~u‘) A= T 664 )f (e )
AM(M)_ (7)? "&f’z)ﬂyd(?/)(';}'] - (u) MM £50

--(z(f-té)

In equation (12) we have introduced the following notations:
) v e luxrhY)
ROTIh) =i Lo [y & 7,

co(x-y) [BY 0, B ey)]. (13)
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B (%)ex—a(%”’wf o)y + OR™) iz G )y

(14)
~ T ~
by h ) 17 = ;B k=B

Before we show that g; Cﬁ) has all the properties we demand,
let us make o remark on how one can derive formula (12) in
sone logical manner, Starting from the work of Symanzik [ﬁ] )
[5] on retarded functions, we had constructed in 183 an
expression 81m11dr to (12) for the Wightman-function

W(x ,xz,x,,xq) . If we drop in this expression all terms which
are local in the variables X,-X, and x3-x4 we come immediately

to equation (12).

The proof of the demanded properties runs in the same way as

that for the Wightman-Tunction ISF. Therefore we can restrict

ourselves to some remarks., "
Because every term in (12) ilas the support TL& we have P& A
and 4 & V “for J~\-£4ﬁﬁ)<“¢¢” ., In the allowed region all
terms in esquation (12) vanish except the/first, which is
cancelled by %he corresponding tern fromii?%%if'in equation(11).

The third, fourth and tenth term in equation (12) are
separately local. 1fwe break up the vommutatox% which occur
. . T+

in the expression for 7L (%4,1’ Y, Ay ) ;7 (,g” %)X, %4,)
into retarded und uOVdﬂCed purts and nake the appropriate
15¥5 Y= AT - 3 AL ) :
changes fron ziret to A agv? then the first, second and
fifth term in equation (12) and the commuted ones are all
cancelled. We are left with a sum of retarded and acvaneed

functions which vanish for space-like separations of x and y.

In the following the expression (12) will be called "local

one-particle approximation” for the truncated matrix element

N m
T h )
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As we have seen before, the third, fourth and tenth term

in equation {(12) are separately locel. If we had dropped
them, we would not thG debtroyed the locality and the
support properties of 7’ (?%) . On the other hand in certain
cases these terms cozre%pond to the peripheral model, if

one calculates from (12) the amplitude for the process

k4+q _— k1+p. Therefore we will not drop then,

b.) The case of several scalar particles,
If there ure several particles in the theory with masses

O¢:m1ér%3£ .:gtm and a set of internal quantum numbers

a/:t': f[tl/{) ' ')-3,?,. }ff‘:’ﬂ"';/v) then equation (4) reads:

1) Tl h 9, Ae) =0T < E LIE eI (012, >

= S, +P)I(9-4, )( //17 (0)/a><ﬁ/£7 (0)/,@ >

i (ko114 ) § 2 L (PP 72y +

<Y 1807 < Y, By IR0 B, >

(15)

N
2 /f(‘f)c?(swﬁ.) Sy (B%=5)x
A= 1

Aye

xm@c/ OIS P >< S, B SIF, (a}/_ég

+ > [0 -M)d (B~ 5) x

oL F Ve
(¢ Aoy MV)

x(@% H/a(o)/s,/%,ood P SIA, (022;3 }

Po=1 P+

-0-
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Here I, denotes the threshold mass of the intermediate
continuous states withh internal quantum numbers
O@:égg/...,cz,j . If in each channel with the internal
guanitum nunbers I}tnere is agap between the one-particle
mass m, and the threshold MJ? thgn one can construct

in the same nanner as in case a.) a one-particle

approximation for the truncated matrix element by:

I 2:‘ i h); (16)

where?ﬂ (é} is given by eguation (12).

The matrix element
~dfp A 7 N - Y R ‘
P (%) = ¢ Fo (A) = Ty (4 (17)

doeg not contain contributions from the N one-particle
intermediate states, i.e. the equation (10) is valid

for it for every m, (i=1,2,...,H).

¢.) The case of spin one-half particles,

To generalize equation (12) to trhis cuse, ome has
0n1y 1o mdkp the following 1ube1tlons

—_n%

~pB" (m-—-v(ﬂ YP) B ep)
(", npz)g Cep) = BRI e +IP) (18)

v
/3"”(/)) =2 B e-p) o

where now B ‘(p) ire spinors und ¢ &(k§=®,1,2,3)

the usual Dirac-matrizes [11]
Na"z\ 2 o 5
B (Pex = 2 160P) Ay (P )ex 2 2)
$ *
t 6P Ay LY, & <L)

(M -YP)% ) =0 0
(ot V) V) =0 j for p=tra,

- 10 -
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vy (P ey ;B> 7 1B > (20)

273
) 2 ,
f;;ﬁ; 0,08 <Y, 1l = 2 fg-;)f Irps,0 S<ES ol (21)

IIT, Current Conservation.

As already stated in the introduction, for a reasonable one-particle
approximation, one has to demand the following property, 1f one of
the fields is a conserved or even a non-conserved currentt%aﬁx)‘

L < R 87 = ) ey

Aol A z (22)
= <L 10"} 00 ey)i B, >
where both (’J}' 4(“ x)H (?)/_é‘o o and
—-ﬁ, ‘// (x) gp(fg)/_@k are defined by equation (12), Because

in this equatlon there occur retarded matrix elements, we get for
the difference of the right and left hand side of (22):

X <%, | j:(w ’3(7)1% 5<%, 104l 0Renld, 3 =
— % §<2, 1B o tprlos (e F ) «
x [ <olR(z &/Xo“)/éﬁ 5= IR (21 I H] 8, >7
+[07 <L, IRZT/x 10> = By IR(ETT I 105] «
< (o, +m) <ol B* )Rl 8, >

<) B2 B> (0t )

[ 90| R(ZFIXS)Flry)1or ~
<ol R(zZ ’i‘/a%“‘mf‘éwa>]f
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Now we must try to re-define the one-particle approximation
vy adding to equation (12} a local solution of the
differential equation:

LPYe T
a:{ ,,? A(anf %aﬁa)l ==

(24)

<%,154, I G,%- )f < 4 ooRes 12 >

Purthermore, this solution must not destroy the four-
momentum space properties (9),(10) of the matrix element
/y (’ )£2)£§l£;) which is defined in analogy to (11) by:

H“p"‘(v’w Y T a7 S O P
LB
H"W‘f%)ﬂ e A

dﬂf
In other words i must itself satisfy the spectrum

conditions (9),(10) and locality. From equation (23) it
is easy to see that the right hand side of the
differential equation (24) has all these propertles.
Furthermore, because of locality,the support of the

three brackets in (23) is concentrated in the point Z-X=¢
Therefore, they are given by a finite sum of cf—functions
and their derivatives [12],[13].

< IVR(ZY/ 3518, > - <o] R(z "/ 2XNE, >

:E—/(&X%: *a:)f/‘(zﬂx) ?r (/92% | (26)

(25)

lax R(Z n/X“’)IO} <1’/ //?(z‘r/a/") "‘5)/0>
:_e’fﬂfXZ‘ga;f)J(z_ﬂx)?\r ‘(/,’,)4 (27)
ol )RSV R oy - @Rz 1 KO 10>
AP
= I 2 S -0 g ey,
= (J”)Q’__ VZ)T

12 -

(28)
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For later use we define @@HFJ;{XQn by the expression
which we get if we commute in (28) the field operator
with the retarded commutator.

The coefficients 4, in these equations depend on special
dynamical assumptions. ¥From our general frame we only
know:

i Gr (X, =G (K. =0 for x*<o

-—

P ‘ M’:’
2. supr 5.09). SV,

where/W3is the lowest mass with

(M3,,qp(0)’0> #+ 0 | (29)

Inserting equations (26)-(28) into (23) and (24) respectively,
performing the Z -integratlons, ublng translation

invariance and decomposing 42 ad according to (23)

into a sum of three parts'

JFX T P F-g(x.}- )
I+ (/?')X'%@, = e 3 ?a"x
ECr) —T(x y) Al (30)
2; | e (P X-3.8),

5(4):1) g(z)=—¢}. i) =0

we finally arrive at the three differential equations::

Ay LBy
() ), R Y B = A,

H

§-6  a=%-4)

a@‘=/3"é§

The inhomogeneous parts of these equations are given
by:

- 1% -
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ai
o =i <ol 3T IR0, >

YIRC
/go!ﬁ

Jﬂf =
A, BXP)= (mS - (58 ’“)<1{/Ba’;(a)/§&>x

*%_(P-f’) gl,, -X)+

where we have introduced the currents J (h) by the

v
5% 6)=<%1Y, (3)%? - %)l0>

(33)

definition:
/}n&(x)=;;%rdﬁ‘(@?)w oD( (ﬂ(ﬂ W )B (X) (354)

If we define the distributions h s by the right hand

sides of the equatlonb (32),(33) w1th Jyd and AP
commuted and 8o i inserted for 8y ﬁf qupectlvelj,
then according to our previous utdtementb in this

chapter we have the following properties!

1.) Locality:

A BY APy A
4., (1% B)=" 4, (40 B~ Py 1) (553
55
= ')(Or Xz(O
2.) Spectrum condition:
~LEY M
T sz forlh Ben D Y, o

eV S k=

where @M are the threshold nasses betwern the field

nt
operators in equation (32).

M?-} :M3- :Mg.;- =M4- (%7)

- 14 -
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How we define the distribution H fg (k)I introduced

by

)’ LA R A C T

vwhere b (Z)I and f ag(k)I are given by equation {12)
andg the solutlon of the boundary value problem {30),
(%1),(35)-(36) respectively, as the "one-particle
approximation” for the truncated matrix elements of a

current and a field.

All we have to do is to solve the differential equation (%1)
Tor pf( )I with the boundary conditions (%5)~(%6).

The dlfflculty in doing this arises from the fact that

these boundary conditions are defined partially in Xx-space
and partially in g-space. I one solves the equatthons
(31),(35) in x-space then it is very hard to see what

the condition (%6) mean for this solution and vice versa.

One con avoid this difficulty by neans of integral
representations, which autonatically contain the boundary
conditions (3%) and (36). For one cun insert these
representations into the differential equation (%1) and
volve the corresponding equation for the kernels of

tliese representations.

Sueh e plesentdtlonu are vell known L14] [35] [‘6] for
cortmtuators ;f (k) =: dfr(l) /f/ (k). In the

next chapter, we will flr,t solve our boundary value
preblen for the commutator by nmeans of the unigue
dost-Lehnann-representation [14] - [16] for the case of a
syrmetric epectrun (”n+ = Hn_). In principle one can solve
the nonsymmetric case in the same manner, but the calculations
are very involved. Because for many applications (including
the erual time commutation relations [10] ) it is sufficient
Lo viork with the nonunique Dyson-representation [157 , [16]
(several kernels belong to the same matrix element),

- 15 -
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we will restrict ourselves 1o this representation for the

cagse of amnnsymmetric spectrum.

Having in mind this nogfynlqueneSb, we may now go back to
the matrix elements 4%« . The Dyson representation
for the commutator reads:

K;ﬂ% 9) m-—fa’ u s frf?“” U
x(f((?—bt’) "*S)/_‘Lz’ (f’)u}SPz) (29)

where the support of ¥ is contained in:

T fo0): (3 fn 2 WIEW, V5 2marl0)
_ (40)
M, AT, Ma= VB0 1|

By virtue of this support property, we can decompose (39)
into its positive and negative frequency parts:

’é{ (0 b )= %‘%%55(?“"”“})"' (41)
x o ((9- af)z-S)j? /9’% S, In

LY
% (171 Pe )y f%?/ﬁ(f olu’-9"")"

— (42)
x J((9-%) -—5):& 53 5 In
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IV. Solution of +the boundary value pxoblem.

Ve will only treat the case ol scalar particles, because
the generalization to spin one-half particles is trivial.

#,) The case of g symmeiriec spectrum (M, =M, =m, )!
The dliferigjlal qudtlon (31) reads for the cormutator
» KBY
—3¢f in momentum space !

¢ _ ., X
(C/”—dﬂ)/; (/3)7)/5.)”:/5%” Gr1,8) s

To take into account locality and the support property (36}
in four-momentumn space, we use for both sides of (43) a
Jost-Lehmann-representation [147-[16]in the rest frame of

2. Pé—ﬁ (=0
Komr(ﬁ)%fz)w f@"’jﬁ’/%df/ﬁ?m) ~(1-#)%5)s

P ¢ o)y PV, |
X[é}( (ﬁ’%{”)/‘?)ﬁf q(/}y/a (ﬁ)k{/if/%)ﬁj . (44)
/éjp‘?ﬁ VDB I ECT9) o WA s ST (G- 20)% 5)

x[%dﬁ&,éfﬁ,@)*7"”550(”;/;)%5;6)7 (45)

According to (%6) the support of the O - COVdrldnt
spectral functions is contained in:

%f’ [(;;g,;) JHUI< Y R ,/—->ngu, 6
Mo = 07 B0 ) % g ]}

Because the variables I3 1% P2, ¥, 7 are superfliuous in the
following calculations, we will drop them.

If we insert the equations (44),(45) into (43), we are led
to the calculations of the following two expressions:

D= S0 s S (07°0°~Ch- 20 )% 5) P, 5)

FC0) =) ol s s S L0970 (G -400%5) Fent, s ) (47)

- 17 -
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Taking into account thegflfunctions and the identity

5
Sl dls of P (3-8)%5) F [ols' Fea,sh =

50/ ol s o a0 ~ (- )%=8)F (%) S) (48)
we obtain by partial integrations:
T )= Jduds S01*)*=Cq- ©)s)
[ u F ¥ 5J“~faf; Vi T, s') ] (49)
7o (9) = JO/@W/; SC9) - (q-10)*-SI[S P(y.5)
+ 7 gﬁff ((s=59Bu+6) P o, 5')] (50)

Insertion of (44),(45) into (43), decomposition of the resulting
equation into symmetric and antisymmetric parts with respect to
inversion of qrw , use of the equations (49),(50)and differentiation
with respect to $S finally gives the following set of coupled
differential equations between the spectral functions:

2 -
Q_z [Cs=ca)?)F, 5 )]» 3 S Buss)+ F 4, E, 0,5)
#{(m_d)a—;’:mzm ot st[j@- f§)+a(a)/f(»%/§)]

(51)
(o)
%2 [ () + Q™ (#,5)]
@ (4,5)= Y (yis) £ Y4 S)
S
v (u-2) Peus)-F Jds Vi, Feus) (52)

From these two equations, we need only solve the first one.

If we make the ansatz

¥
Bewisyt a P, 5)z-§ St BTy + [ cgs)  (59)

P

- 18 .
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where ﬁqis a new O;—covariant spectral function, we
Pt

obtain the four dimensional divergence-~equation:

%Ef’(d“”)?‘)_?Z;(g,s)wzi(%(ﬂ,,s)v‘-a(’”’f{g(mf))

—(A-2)T S 3 [T Or (u-2) F, 12,87 (54)
=0

with the classical solution

(=) &, (4,9~ (Y~ &) (%:5) =

AL 5)+ a % (4,30] = Y G50

Tus)+ (o) %, n,$) = (55)
~2 [ £ G, )+ Zas)]
V% FH,5)=0
_gfumLZare arbitrary tempered distributions with support
77 y which transform under rotation like vectors
(so~called "Hertz" vectors).
solving these equations forJ?and 123 ve obtain:
Jes,9) ==L ius)-cut-2) E )
vl < e o)
A i
- Z )’/5‘Kz{ z(:é(igf) _2[53}(%/5)'*,?(3(:5)]
. 52
2 ‘o z "1 . -
YV (#,5)=[5H%-2)" («)"] [ [ fezs)
(57)

+a )]+ [ Va5 1 5 s)
-2 (U-2) F0t,8) f+ /(=) 2" E (12)

- 19 -
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E(y)is an arbitrary Og—invariant, tempered distribution on the

regular surface §* (ot - a)>. (a?) % wnich vanishes on this surfuce

outside the set 7}L (+)

I{ we insert the equutions (52) and (56),(57) into (44) and remove
the § -integrations by means of equation (49), we find as the
solution of the boundury value problem (35),(36) and (43) in the
rest frame of (.4

T, 9, 1), = Ea) Juoudls SO 17 (12403)
L oLpE ey AP
(0w, 5,80, (9% ) (R0, (50)
_-O(ﬂdﬁ 7
t(1-%) Y% " (B ut, Sl

& LAY |
S AN ECT) ol iads JU 7= c4-20) “s)

= d Y . - LAY
§Cr =208 s 50 (1 ) E “a ) )

- LAY |
”ZZQ"%}%?;:%:S//?) +,g (75 %, 5’/3)75

where ﬂﬂ is given by equation (57) and EZ- is arbitrary like
F¥ s

/} and Z

rase

+ . - s . .
Now we have the result: For any 03—covar1ant tempered distributions
3 I Z y f and E with support contained in T'(M a solution of
f""" 'm. N . .

Sur boundary value problem is given by the equations (57)-59).

- ———— R —  ——

+ . Caox . . -
(+) Strictly it is the extension 1n the sense of Schwarts ie

of 8 distribution on this surface.
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b.) The case of a nonsyrmetric spectrum:

This case can be treated in exactly the same mamner
4y case a,). Therefore we can drop the details and
restrict ourselves to sone remarks,

To take into account the boundary conditions (35) and
(36), we use the Dyson representation [45],[36]and'drop
again the superfluocus variables;:

K/c (7),,? "":)//;&7/{&/5 [/7”‘”’/(/(/7’”12—5)?;4/%0,, (60)

Tl V) =[S s 709 ((9-27%=5) Pru, 5,

The support TL of the spectral functionsg is given by
equation (40),

If we ingert (60) into (43) and use the relation:

—

7. f A DAE G 2) ) (=0 *-5) Ly (0, 5)

- [/z/sw“’iz;f”"“‘//(ﬂf*—w{-f) f@a 2‘25
(64)

—

<
TS RACE AL

>
! = 7- Noa ?

then we come to & five-dimensional divergence equation,

from which we obtain the final solution:

oLf _
K/“/J;@, 7F ), = .)//éfc/? ECGL 400 SYCG-20)% S )x

— LY (62)
SICAYCIRY A P

S N ABY e |
~2u B B hl, 2[5 G G L Ggsnd]f

3
o -
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with.é?defined by:

- X
B shy = (s-1u-2)) [ LL S50,

s Z['(Z{-J{”)Vga + Z/ aul)] 9}/ (W/‘j)?’l + (63)
L(#=0,) V2 (m5), § o (5= H= ) EL,

1%
D2, (#s)=0

'Zpandﬁiare arbitrary)covariant/tempered distributions
with support Ty (ZV divergence-free). E(u) is again an
arbitrary invariant tempered distribution 7 on the '
surface s - (u-a)2 = 0, which vanishes on this surface
outside the set Tp. As in the case a.) we have the result:
For any Lorentz-covariant tempered distributions ’5,,,@,,
and E with support contained in TD a solution of our

boundary value problem is given by the equations (62)-(64).

V. ¥inal remarks.

The local one-particle approximation F»“(k4,k2,k3,k¢)1
we have constructed in section II contains besides the
mass—-shell singularities in k4 + k2 some of the mass-
shell singularities in the variables k1 + k3 and k2 + k30
For instance the poles in these variables are given by

the seventh, ninth and tenth term in equation (12). By

the following arguments we can conclude that these poles are
completely rernoved from the difference PII =1 FT - FI.
In [8] we had constructed a local one-particle
approximation WI(xd,xz,xj,x¢) for the four-point
Wightman~-function such that the corresponding difference
does not contain any singularities in these variables

—— ——— P — .

(+)See footnote on page -19-.

~00-



(discussion after theoren IV). As already stated in

section II, we derive our expression (12) from WI
by dropping all terms which are local in the variables

Xy = X, or x3—x4. But all these terms do not contain

a pole neither in the variable k1 + k? nor in k2 + k3'
Because the same statement is true for the inhonogengous
prart of the differential equation (31) we can(at'least
for a variaty of state Vectorsjfkqandﬁfk ) use this
fact to restrict the class of solutions of the boundary
value problem (31), (35)-(%6), which we have obtained

in section IV. Becuuse the inhomogeneous part of (31)
does not contain these poles, we have the condition:

[Ch*= 720§l st ofs S (4 = 1-202) g, 2 %/5’2,,7{2
=0 420" =D Y and 4= (-2 )
or /é = g- é%_’% - %’JKW)/,,?, (EH)=4, £2)=-7, 5@):27

How it seems plausible to demand that the distributions
gg;;j%lég do not behave worse than the given inhomogeneous
part ¢, with respect to their singular structure on the
one-particle nass-shells, i.e., equation {(65) should be

valid for them, Because of the denominator S+(g;g)a—t?“”4

in equation (57) it can happen that the left hand side

of (60) is urtequal Lo zero i‘or'ﬁa . ¥or instance 93(/3,3«,5,@2,
nust for certain values of PysP, contain J-functions
in/&’and 8, which produce the ¢ -singularity on the
nass-shell in the corresponding matrix element
@/[Z(g;é,),ﬁ(ﬁe)/fg} These ¢-functions then wnduce via the
denonminater in (57) poles at the one~particle mass-shells,
in the commutatoruﬁi,(/%,?&/ﬂ),,

Therefore in these cases the equation (65) for‘ﬂgleads to
proper restrictions for the distributionsgl /5':2 and E{u).
Unfortunately we were unable to construct the general
solutions of these conditions. Ve coulgd only prove the
exlstence of solutions for the case of the poles at
(py=pp)=n5 (1 = 1,2,...,1). This follows inmediately

from the fact, that these poles do not depend on the variable g,

4
Z (65)

n
The same co€lugdsions are true in the case of the Dyson-

representation.

- 23 -




- 23 -

Acknovledgements:

Phis work was induced by discussions with Prof.B.Schroer
and Dr.P.Stichel on current algebras. 1 am very much
indebted to Dr.Uta Volkel, Prof.B.Schroer and Dr.P.Stichel
for their constant help &and encouragenmnent. '

I wish to thank Prof.H,Lehmann for valuable discussions.

References

[1] Pubini &, G.Furlan: Physics 1, 229 (1965)

[2] streater R.F.,A.S.Wightman: PCT, Spin and statistics
and all that, New York:
W.A.Benjamin, 1964

[3] Jost,R.,: The General Theory of Quantized Fields.
Providence, Rhode Island: The American
Mathematical Society, 1965.

[4] Symanzik K.,: J.Math.Phys. T, 249 (1960)

Lectures in Theoretical Physics Vol.IIl
Boulder 1960, New York: Interscience Publishers 1961,

[6] y4mmermann W.,: Nuovo Cimento 1%, 503 (1959)
[71 ————  MNuovo ¢imento 16, 690 (1960)

[8] Volkel A.H.: Commun .math.Phys. 2, 176 (1966)
[9] Stora R.: Private Communication

BO] Volkel A.H.: "Iocal One-Particle Approximations and
Bgqual-Time Commutation Relations"
(to be published).

- 24 -



fi1]
[
(13
14

[15]
[16]

~ o4

Schweber $.8.: An Introduction to Relativistic Quantum
Field Theory. New York: Row, Peterson 1961

Schwartz L.: Theorie degy digtributions I, II.
Pauris: Hermann 1957 and 1959,

Gelfand I., G.E.Schilow: Verallgemeinerte Funktionen I,
Berlin: Deutscher Verlag der
Wissenschaften 1960.

Jost R.,H.Lehmann: Nuovo Cimento 5, 1598 (19%7)
Dyson F.J.: Phys.llev. 110, 1460 (1958)

Wightuan 4.9.,: In: Dispersion relations and elenentary
particles., Paris: Hermann 1960







