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Summary:

For many-particle production we study a model which assumes
at fixed impact parameter a statistical picture of fireball
formation and decay. We obtain in this way on one hand for
the usual statistical model an extension which includes
angular momentum conservation and allows predictions for
all inelastic and corresponding absorptive elastic cross-
sections, on the other a "central collision" counterpart

of the peripheral model.

The asymptotic predictions for production processes are
discuséed and compared to those of the usual statistical
model and of the multiperipheral model. The resulting form
for elastic and total cross-sections, obtained by unitarity,
agrees with that given by Van Hove's uncorrelated particle

model.,



I. Introduction

Both the present lack of a general theory of strong inter-
actions and the inherent difficulties of many-particle prob-
lems cause the theoretical description of high energy pro-
duction processes to rely essentially on models based upon
simplified physical pictures. Two opposite points of view,
regarding the collision of the two incoming particles as
‘either central or periphe;al, have led respectively to the
1-5

statistical model (SM) and the periphera16), later the

multiperiphera17’8) model (MPM); the correct description
hopefully lies somewhere in between. The search for it is
however severely hindered by the incompleteness of the sta-
tistical picture: it allows only a few predictions (branch-
ing ratios, multiplicities, spectra) about inelastic proc-
esses and practically none about the coupled elastic reaction;
moreover it does not include all of the kinematics (angular
momentum conservation) and thus from the outset precludes the
discussion of certain kinematical questions (such as CMS
angular distributions). On the other hand, the statistical
model, because of its simplicity, 1s up to now the generally
employed tool in the analysis of multiparticle experiments and

serves as a reference in the "definition" of "dynamical"

effects.

It is the aim of this paper to propese an extension of the

SM which makes definite predictions about all aspects of
production processes and (apart from phase questions) also
about the corresponding elastic reaction. Postponing for the
moment both a more detailed mathematical formulation and
quantitative numerical comparisons with experiments, we shall
‘here present the physical basis of the model and discuss

qualitatively a number of its predictions.,

II. The Model

Consider an N-particle (Nz23) production process (identical
scalar particles of mass m). The statistical hypothesis states

that it proceeds via an intermediate state (fireball) in which



all information about the initial state is lost, except for
kinematical conservation laws, and whose decay Iinto the N
particles is determined by the avallable phase space QN’
restricted in coordinate space to a small "interaction volume"
of radius R to incorporate the short range nature of the
interaction. For the transition probability P2+N(X) from two
incoming to N outgoing particles, summed over the momenta

of the outgoing particles, but at fixed kinematic quantities

X (e.g. total CMS energy, angular momentum of the system) we

thus have
P2+N(X) = U2+F(X) VF+N(X) N = 3 (1)

where U2+F(X) and VF+N(X) describe fireball formation and
decay, respectively. The conventional statistical model

fixes only the total CMS energy W (X=W), and sets for

VF+N(W) the quotient of N particle to entire phase space
V., (W) = o (W)/T @ (W); L VvV, . (W) = I (2)
F+N N, yog FON

i.e., VF+N(W) is the fireball decay distribution over N at
fixed W. Nothing is said about how the centrality of the
coliision effects fireball formation, and hence this model
can only be expected to lead to predictions in which VF+N(W)
does not enter (ratios), or else further assumptions have to

4)

be invoked .

Instead of postulating (1) for the transition 2N at fixed

CMS energy only, we shall now reguire in addition that the
total CMS angular momentum & of the system also be fixedg_lz)'
Since (classically) the impact parameter of the collision 1is
%/K (where K 1s the CMS momentum of one of the two incoming
particles), this gives us a convenient measure of the
centrality of the processz’]3), and moreover allows us to

use phase space arguments also in the determination of U2+F’
as we shall shortly see. We thus postulate for the transition

probability 2-N at fixed & and W

Py sy = U, (o,W) Vo (2,H) (3)



Here p = 4/KR 1is the dimensionless impact parameter, and

UZ*F(p’W> gives the distribution of fireball formation over

o at fixed W'
1402 U, (o)) = 1 (%)
: S

The function VF+N(£’W) gives the decay distribution over N
of a fireball of fixed mass W and spin &

(L,0) = 1 (5)

I o8

v
n=2 PR

We emphasize that (3) is to be an '"Ansatz" only for inelastic
processes (N z 3); but conservation of probability then

requires

(%,0) =1 (6)

n g

P
N=2 2N

and hence the elastic transition probability

(2,W) =1 - % (2,W) (7)

P
2
2> N

3P2+N
is determined as well.

Within this framework the only a priori given "building
blocks'" to comstruct both U,,p and Vpsy @re the kinematically
available phase spaces, sultably restriced in coordinate
space by an interaction velume. The complete classical N-

particle phase space integral (i.e., with all ten conserva-

+
): This choice of p and the normalization (4) yield as total
"fireball cross-section”

= 15 -
S9,p = 3 r (28+1) U2+F(p,W) nR
K &=0

just the geometrical cross-section, R being the effective
radius. Elastic scattering is of course only partially
covered by 9y (shadow scatteringl); we return to this

F
peint shortly.

2
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tion laws - energy, momenitum,angular momentum, center of mass -

1k}

taken into account) is given by

{d3p1d3xir(xi,pi)} X
‘ (8)

x §(5p, W) 5(3)(z§i) 5(3)(z§ix5i-ﬁ) 5(3)(2pi0§i)

2
2, (27, W) = fi

It 2=

where the v (x ) are to give the (relativistic) restriction

i*Py
of integration to the interaction volume ("size'" of the fire-
ball). We shall choose a Gaussian form
) “%[;12 * (;i'gi)zlmz]
r(xi,pi) = g R (9)
with interaction radius R, which leads to the usual Lorentz-
contraction and furthermore renders (8) Poincaré&-invariant,
hence dependent only on total CMS energy W and spin value
14) '
g

nmultiplying (8) by qN/NI, where the N! takes into account the

. Quantum effects we shall include only in the form of

identity of the particles, and q=(21r)_3 gives with W=1 the
density of states, as in the simplest version of the usual SN,
with only one interaction volume, no isospin, etc.; the
inclusion of isospin or different interaction strength for

different types of particles would modify this value of q.
For N=2 the integral (8/9) gives

Q 22,W) = 2, (W) F2(22,W) (10)

2(
f, (W) = q2/21 [<n/2)3/2 (2m/W)R> 8ﬂK/w2]

2

. 2,2
ro(e2,w) = (200) 70 (2x2r%)7! 7 /RKTR

5

where gz(w) 1s essentially the usual energy-comnservation phase

space, and Fz(ﬂz,w) the angular momentum distribution

fd32 F2(£2,W) = 1 (re)

For N > 2 the integral can be evaluated by statistical

methodszS’IG) (central limit theorem), and for high energy

(m/W > 0) and large N the result 1514)



o 22w = a0 F 0P W) (12)

Qy (W) = 21?[ 5/2,r3y ]N 37234 T (Nt ) 1 (H-2)1(N=3)1

2.2 ] 3/2 -N& 2 jw2g?

F z,w) = [N/ RTW

N(g
with QN(W) and F. again giving energy phase space and angular
momentum distribution. At energlies where the mass m is not

negligible the above-mentioned approximation methods are also

applicable but require some numerical computations.

Let us now return to the statistical picture., The inter-
mediate fireball state has led us to consider two distinct
situations:‘in the formation we ask for the distribution
over all possible impact parameters, i.e., we compare the
chances of fireball creation at various p values; in the
decay we have a given fireball of fixed energy and spin -
the competing channels are those of different particle
number N 2 2, The latter case we take, as in the usual SM,
to be determined by phase space (here however with full
kinematlics) restricted to the interaction volume. We there-

fore have

(2,0) = QN(zz,w) / °£ Q. ¢5W (13)

F+N N=2 N

for the fireball decay distribution into N particles. Now
we assume the inverse process N+F also to be governed by
phase space and consider in particular N=2. Since here we
want to compare different impact parameter channels, we set
for the distribution of fireball formation over p

o 2
2 ~p
Uy,p (e, = 2,00, u0) / JapPay (o) = e (14)

with p = 2/ 2 KR, since here Y2 R is the effective radius.
The last equation in (14) follows from (10). Fireball cre-
ation is thus most likely to take place in central colli-
sions (p=0) and falls off as a Gaussian for p>0. It is at



fixed p independent of energy. While the particular form (14)
is of course a consequence of the Gaussian interaction volume
cut-off, any short range restriction there will lead to a
short range U2+F(p,w). Here we recall that peripheral pro-
cesses generally give a linearly exponential fall-off in p,
so that (14), although allowing some fraction of non-cen=-
tral fireball formation, damps out much quicker as the col-
lision becomes more peripheral. If instead of (l14) we had
simply chosen U2+F(p,w) = §(p) and thus allowed fireball
formation only for exactly central collisions, we would

have obtained the usual SM with only minor modifications.

We believe the form (14), obtained from two-particle phase

space, to provide a physically reasonable extension of this.

Combining (13) and (14) we finally have for the transition
probability 2-N23 at fixed % and W
“22/2K2R2

e
Po,y (4:W) = e QN(RZ,W)égz QN(zz,W) (15)

We now consider the N-particle production cross-section
ON(W). It is given by

3
72 N d pi

W =g ) on 2

(4) 2
§ (Zp,~P)|<pyeseby)S]a,a0>]%(16)
1=1“Pio 1 { P ) N ?

where dys 9y with W2 = (ql + q2)2 denote the incoming par-
tiC].ESo
A generalized partial wave expansionlz) of the S-matrix element

gives

o () = ;—(”;2"2" (28+1) % fenpllis(e,uwy |l >]2 (17)
=0 N

with the reduced matrix element <nN[$(2,W)H>; the set of
parameters Ny describes all possible inner configurations of
the N particle system leading to total CMS energy W and
angular momentum %. The sum of |<nN”S(£,W)H>]2 over alil Mg
is just the transition probability for 2+N at fixed 2 and W:
(2,W) = = |<n ls¢a,w)]|>]2 (18)
N

Poon !




so that (15) and (17) determine oN(W). The sum over all
N 2 3 of (18) gives the contribution of all inelastic

channels
£(e,W) = ¥ % [<nglsa,wf>12 = § »,  (2,W) (19)
N=3nN N=3

0.2 £(o,W) = 1

from which we determine by unitarity (equivalently to (6/7))

Eon [engllsa,wf]sf2 = (20)
N=2 nN

the magnitude of the elastic partial wave S-matrix element

[s(2,w)|?% = 1- £(2,W) (21)

Introducing the (real) phase GR(W)

218 (W)
(22)

S(L,W) = |S(a,W)| e
we obtain from the partial wave scattering amplitude t(2,W)
= (t-5(2,W))1/2 the elastic cross—-section

218, (W) |2

(23)

0.1 (W) = T o(28+1) | 1-[S5(2,W) |e
9,:

I
K2 o

It can thus only be predicted by our model 1f additional
information about the phase SR(W) ie invoked.

III. Predictions and Comparisons

A, Inelastic Reactions:

where m/W »+ 0 and the partial wave summation may be replaced

by integration, is from (15/17/18) given by

o 2/ 2.2
o (W) = AL [qg2 o 724 /W R g e?2w) § e 22w (2 4)
N w? o N N=2 O
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Using (12), the phase space sum over N 2 3 is found to be

T
2 L% 2 _ T 3rxy3 ,
Qe ,w)::NEB Qu(2°,W) = EEQ(ER) [y) JFo(2,35%) (25)

2,22
—LT/VOR v = ﬂ5/2mR3W2q

o]
1l

17)

where 2,33x) is a generalized hypergeometric function

oF ol
with the limiting behaviour

JFo(2,35x) = 1+ F 4 0(x?) x << 1 (26)

1/3
o 3% /31/2ﬂxh/3 1 4 O(x-1/3)] X 5> 1

(W) may be calculated in closed form for the

With its help o
2/3

limits W2/3 >> N (asymptotic region) and W 2 N >> ¥
{threshold region distorted by m/W - 0). In the asymptotic

region we find as leading bterm

as 12 5
= 2
UN (W) ;§;E i} mQ(WR)h {27)
. . . . . -
ive., GN(W) vanishes at high energies with W . In the

threshold region we get

5/2..3.3 1/3
Nel =3|m W R q/EJ
con;t.[“5/2W3R2q/2J . [ e

m /
oy(W) = NI (H-2) [ (N-3)1 (28)

3
¢
The maximum value of UN(W), attained in an intermediate

-1/2

with R~ = R3(2m/w) as Lorentz-contracted interaction volume.

region, decreases with increasing N approximately as N
While the increase in the threshold region {(apart from the

m = 0 distortion due to our calculation) is given by the usual

L

phase space, as expected, the W 'fall-off at high energies

)

ially vanishing transition probability {exp-const. V¥

We always refer to the "covariant" version3), but every-
thing said holds with slight modifications also for the

Fermi versionl).

, wWhich yields an exponent-
2/3)

is in contrast to the usual SM+

+)



On the other hand the multipheripheral model for W =+ « with

h

g MPM(W) = const. {Alog W)N/NIW : A = const. (29)

N

gives a similar but somewhat weaker fall-off than our model.

In Fig. 1 we illustrate our form of cN(W), calculated
numerically for non-vanishing identical masses. As an indi-
cation of the experimental situation we show in Fig. 2 the
cross—-sections for some w-production reactions in p-P

8)

compatible with our predicted behaviour, numerical calcu~

annihilation1 ; while they seem to be gualitatively

lations ineluding isospins, different masses etec. are

necessary to give conclusive information.

et B P R o

asymptotically the constant value
as = -
Q**(w/F) = (w/F)’ (30)

while the usual SM gives

N-§ = /= =
as =\ _ Z HI(N-1)1(N=-2)! | _ 3.,2
Qg (N/N) = N T (Tee)r ¢ % = mmRTW (31)
The MPM leads to
as =y N-§ -
QMPM(N/N) = {(Alog W) N!/¥! (32)

which for N > N gives a fall-off in W, but very much weaker

than that of the usual SM.

In Fig. 3 we show the experimental ratios from the above
mentioned p-ﬁ experiments; they seem to support strongly a
constant or at most very slowly decreasing asymptotic value
(the smallest particle numbers should exhibit the most
asymptotic behaviour). A comparison of our result (30)
including isospin is seen to give quite good agreement;
note that our Q*°(N/N) is independent of the value of the

interaction radius R,



e bve et b e —

<> = Z No /'z o (33)
N=3 N N=3 N
is given by
<N>%% = g (ﬂ5/2qu3W2)1/3 + const, A34)

as W + o, This result exhibits the same energy= and R~
dependence as the usual ("covariant") SM; the Fermi version
with Lorentz-contraction gives W1/2 instead. In the MPM the
multiplicity increases logarithmically with energy. Present
experimental data make it diffucult to exclude any of

these predictions, although Ref. 18d4) finds in p-D
2/3

annihilation good agreement with a W dependence.
The total inelastic cross-section
w
a, (W) =7 o (W)
in N=3 N
hr 7.2 -20%/uPR® 2, (151)
= =% fas%e - = 5 (35)
W o 3 QN(z W)
N=2
is found to become asymptotically
as
° (W) = 2nRr® [1 - o(w'3)] (36)

which is the familiar result from the optical model, since
here V2 R 1s the effective radius. The MPM also gives a
constant high energy value for O however with correction

terms 0(1/log W).

Our model as well as the usual SM, in contrast to the MPM,
do not allow the possibility of outgoing particles
"remembering" their origin as incoming - since the incoming
particles are assumed to give up their character as such

in the formation of a fireball with phase space governed
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decay. Hence these models by construction always lead to
energy going into production)} of 100 %, while according to
cosmiec ray evidence it seems to be less than 50 % even at
highest energiesB’Tg). This has led to proposalsqg) that
the incoming particles only give up part of their kinetic
energy to cause fireball formation, while they themselves

do not "submerge'" in the fireball.

emitted particles. The introduction of angular momentum
leads to non-isotropic CMS angular aistributionsqo),

though by incoherence arguments forwvard-backward symmetry
relative to the beam axis is retained. Since the angular
momentum I#O is perpendicular to the beam axis and since
due fo our form of fireball formstion distribution over p
higher angular momentsa do contribute to the production
process, the emitted particles will favor a certain
"bundeling" around the beam axis, thus giving a restriction

on transverse momenta of secondaries.

B. Elastic Scattering:

Elastie scattering is in our model governed by the

unitarity relation (21) with (15/19)

ls(2,Ww)]2 =
QQ(RE,W) ~222 /w°R® -22° /W°R®
= e + t-e (37)

22 ,W)

y¢

Here the first term corresponds to "compound elastic"
reactions via fireball, the second to shadow scattering.
At high energy and not too large values of the impact
parameter the large number of inelastic channels almost
totally suppress the decay of the fireball into two
particles; the first term then becomes vanishingly small

and only shadow scattering remains.
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Consider now the partial wave amplitude

t(2,W)
i[1 - Vﬁme'zge/W2R2(1“Qe( W)ég N W)) 210 (W% (38)

2

In a large range of & (2 < WR/W) the value of the S~matrix
element (the square root in (38)) is practically zero, so
that t(2,W)=1i/2, independent of the phase. For very large &
causality reguires 52(W) to be zero: since at large dis-
tances there should be no more interaction, the magnitude
of s(%,W) should approach unity {(as in fact it does in our
model) and the phase should vanish. We shall now assume
that in the region %3 WR/4 the phase has already become so
small that we may approximate it by zero+). We then obtain

that the scattering amplitugde

T(W,cos0) = %% § (28+1) P,(cos6) t(2,W) (39)
e=o

is purely imaginary at high energy.

From (38/39) and the optical theorem we then have for the

total cross-section

4ot (M) =
w 2p2
§§ fas? [1-(1-e=2% WAl {1-92(n WY/E @ (ze,w)})j/g](ho)
0 N=2
which with W » « yields
as o o
atot(w) = LR x 2{1-log2) = .61L4 x kLR {(h1)
With (36) this gives
®(W) = .228 x 27R° (k2)

+ . . .
): The behaviour of large angle (“900) elsstic scattering

will presumably depend quite crucially on the validity of

this assumption.




and hence

as as  _
L /Utot = ,185 (43)
The numerical values of (L41)-(43) are determined
essentially by the fireball formation distribution
exp—(2£2/W2R2), which in turn is given us from two-par-

ticle phase space with Gaussian interaction volume cut-off.,

The high energy limits of Oe1 and 9ot thus found are the
same a8 those obtained from Van Hove's uncorrelated par-
20,21)

ticle model While Van Hove only made use of some
quite general assumptions about inelastic reaction
(primarily uncorrelatedness of secondaries) to obtain

a Gsussian form in 2/KR for the inelastic contribution

to unitarity ("overlap function"), we have considered here

a specific model for the description of inelastic processes,
based on the statistical picture; this model, in accord with
Van Hove's more general results, also leads to a Gaussian
partial wave overlap function at high energies, and hence

to the same asymptotic form for elastic and total cross-
sections. We can, however, because of our specific "Ansatz"
make definite‘predictions e.g. for ON(W) or for branching
ratios, which are left open in Van Hove's treatment; these
predictions should be compared in form and parameter values
to the experimental data for inelastic reactions, which then

leaves us with definite gquantitative results for elastic

scattering.

The MPM also yields a constant total cross-section, but

predlicts that Uel

at high energies. At present energies there seems to be very

and hence oel/ctot vanish logarithmically
little experimental evidence for such a behaviour.

For small angle elastic scattering (diffraction peak )} we
have, with the Bessel function approximation of the Legendre

polynomials,



d

I

Zzl = 4T ?d£2 Jo(%ﬁff?) [1-|s(n,w)q {2 :

=
[

t = —2K2(1-cose) (4h)

which upon expansion of the square root gives, as in

Van Hove's trestment,

do do 2 y 2
el =[ el] o~ 92R [t] + .0095 R % (45)
t=o

4t dt

The MPM gives with exp(axtxlogs) the well-known Regge
shrinkage, which for elastic reactions at present energies
does not seem to occur.

Our results on diffraction and o 0ot are, as known

s
from Van Hove's and subsequent w§§k21’22), quite compat-
ible with experiments on high energy p-p and 7-p elastic
scattering, provided a suitable R (~1/2mﬁ) is chosen. The
essential question here 1s to what extent such & value of
R is also compatible with the one needed for a good
guantitative description of inelastic processes. Since
both production and elastic scattering predictions depend
quite sensitively on the precise value of R, this question
can be settled only by detailed numerical comparison with

specific experiments.

IV, Concluding Remarks

We have shown that a statistical model at fixed angular
momentum or impact parameter provides a scheme leading to
definite prediections for all inelastic and coupled absorp-
tive elastic reactions. The gualitative behaviour of these
predictions is quite compatible with expefiment as far as
integral inelastic quantities (GN, Q*%(w/F), <N>) are
concerned; the elastic predictions coincide with the (at
least qualitatively) quite well confirmed results of the

Van Hove model., In the sense of "bracketing the correct
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1)

similarity between our results for inelastic quantiti-

description between two extremes” we find a remarkable
ties and those of the multiperipheral model, giving
perhaps an indication of some quite general multiparticle
features. Not obtainable in our model are an asymptotic
inelasticity less than 100 % and forward-backward ani-
sotropy in secondary distributions. Both are due to non-
statistical mechanisms and thus point to extensions of
the model in the direction of including partial trans-
mission of "memory" from initial to final state (as e.g.

19))

asummed 1n some multi-fireball models

We have in all considerations neglected finite and
different masses, isospins, ete., and all quantum effects
except for the factor qN/NI. While we believe that quantum
effects will not greatly alter our result523), masses and
isospins will of course have to be included in actual
calculations to be guantitatively compard with experiments

(in progress).
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