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ABSTRACT

Hozley and de Wirez) have pointed out that bremsstrah-
lung from thin crystals can be monochromatized if one 5y
strongly collimates the photon beam. In recent papers

it was shown that the linear polarization of uncolli-
mated coherent bremsstrahlung can be raised if the crys-
tal is orientated in such a manner that one gets the
main contribution to the spectrum from one single re-
ciprocal lattice point only. Here it will be shown that
by combining this method of orientation of the crystal
with strong collimation one gets not only one dominating
monoenergetic spike in the spectrum due to this single
reciprocal lattice point, but that, in addition, the
polarization of the spike is increased to a very high
value, A simple procedure is given for deriving these
spectra and their polarization from some "universal"
curves for silicon and diamond crystals. An estimate is
given of the photon intensity which can be reached by
this method,

1)

are restricted to discrete values coineiding with reciprocal lattice

As was pointed out by Uberall /, recoil momenta of the target nuclei
vectors when bremsstrahlung is produced on a monocrystal. The cross
section can be represented as a sum of contributions due to single re-
ciprocal lattice points (vectors) which lie in the kinematically allowed
zone of recolil momenta., In addition there is an incoherent contribution
to the cross section due to thermal lattice vibrations. The region of
kinematically allowed recoil momenta is given by a "pancake'-shaped

1)

plane perpendicular to the direction of the primary electron and st &

volume in momentum space ‘ which has a sharp lower boundary given by a

distance § to the origin. The upper limit is not sharply defined} it is
given by the rapid decrease of the cross section with increasing longi-

tudinal component of recoil momentum Q.

As one collimates the photon beam, however, one gets also a sharp upper

limit of the "pancake'", This is seen as follows:
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momentum diagram for the bremsstrahlung process.,

The photon emission angle 6, results from energy and momentum con-

1
servation, One gets, for small transversal recoil momentum (qt<<1),

by simple calculationw
q
c e Vi
U=E®, = -1 (1)
Lo_x (2)

Eo +¢s energy of the primary electron
. . . . >
qQ, ++¢ component of recoil momentum in directicn of p
L o
§ .., minimal recoil momentum

X = k/E0 ++s relative photon energy

For photons with emission angels U<Uk (Uszoek collimation angle)
the longitudinal component of recoil momentum 4y is therefore re-
stricted to the range
§ < g, < (1 + U2) (3)
2 k

and one reciprocal lattice point causes bremsstrahlung intensity

only in the range

*We use units with ¥ = ¢ =m = 1



X, <X <X
u

L
xu=1/(1+2E1 )
oqz
1+U§ (%)
x, =1/ (1 + =—=——=)
£ 2qu£
= x ~x = —_t
Ax = X, = %X, =X, /(1 + 5 )
Uk(1—x )
u

For Uk+0 follows X *X » and the contribution to the cross section due
to one single reciprocal lattice point gives one monochromatic line in

the bremsstrahlung spectrum,

The situation is different for the incoherent part of the cross
section due to thermal lattice vibrations. The emission-angle distri-

bution can be approximated by

w(U) dU=-h—i%zj7dU (5)

which is derived from the angular dependent bremsstrahlung cross
section for isolated atoms, The incoherent part of the cross section

then is reduced by collimation by a factor
2 2
V=u /(1 + ) (6)

Thus collimation has two effects on monocrystal bremsstrahlung spectra
as shown by Mozley and de Wire and demonstrated in Fig. 1!

1) It does not influence the contribution of one single lattice point
in the range x, < x < X, but it cuts the lower tails of the peaks.,

A
2) It reduces the unpolarized incoherent part of the cross section,

Mozley and de Wire have not considered the effect of collimation on the
polarization of the peaks in the bremsstrahlung spectrum, In their
example it is small, however, because the peaks in the spectrum origi-
nate from & whole row of reciprocal lattice points having equal longi=
tudinal recoil momenta Qg The contributions from different lattice
points of the row show maximum polarization for different reference

planes (containing the reciprocal lattice vector). So, for fixed re-
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ference plane, contributions of the points cancel partially with re-
spect to polarization. This was also shown to be the main reason for
low polarization when no influence of collimation on bremsstrahlung

5)

spectra was considered”’,

It has been reportedS) that the polarization of (uncollimated)
bremsstrahlung can be raised if one orientates the crystal in such

a manner that one obtains one dominating peak in the bremsstrahlung
spectrum which is due to one single lattice point only, By collimate
ing the photon beam very strongly the unpolarized incoherent contri=-
buﬁion as well as contributions from other lattice points are sup-
pressed at the dominating peak of the spectrum. Therefore cnly the
contribution from one single lattice point will remain at the peak,

and - contrary to the previous case = no contributions of other lattice

points cancel its high polarization.,

Bremsstrahlung spectra and linear photon polarization can be calcu-
lated from the cross sections o, (0, ) for bremsstrahlung polarized nore
mal (parallel) to a reference plane given in Ref, 4 by Formulas h, T,

8, 9, 10 and 117

= dorda [y (1002 [o, ¢ 1] <20 [o, + 43 ]

aN dx
X Ae mdon L oaeqy) wé
oN dx
N (e2m® 5 5 2
2 A 1-F
uJ‘l:c—-g 3 hé X I Sl e g ( }Eg)) q'bg (T)
N a g g 9,
Y o= -2 2 2 -Ag” (1-F(g))° G ‘G4p~°
= = =3 ks § | 5 |° e T T
g 8 9,
N (2ﬂ)2 o o 2 o
Y=ol uagz | 5 |2 P8 (1-F(g)) Y cos 2¢
3 - N 3 L T
a -+ e qg

&

* + . .
The formulas were given earlier for a special reference plane of
polarizetion in Ref, 3




N tesacesees number of atoms of the crystal
NO. ssssssess Number of atoms of the fundamental ecell
8 seseesssess lattice constant in units of ﬁ; (AC=2ﬂKc Compton wave length)
o = 2° (/he) (°/ me2)% = 2% 5 . 795 , 10728 op?
>
qt.......... component of reciprocel lattice vector 1P

Qpeessseeess component of reciprocal lattice vector '150

¢
¢O = ¢$-drctan 3 angle between the reference plane for polarisation

. . d -»
and the plane containing g and po

In this formulation the explicit introduction of crystal angles

(6,0,0) is suppressed.

The forumulas. give the bremsstrahlung cross section integrated over
angles, Collimation restricts the coniribution of cach reciprocal
lattice point to the range x, <x <x,» 88 vas demonstrated earlier (4).
For including the influence of collimation for each peak due to one
single lattice point, only the corresponding terms of the sums in
formulas (7) must be taken., In addition to this the incoherent part

of the cross section {represented by ¢§ and wé) has to be multiplied
by the factor v=uk2/(1+uk2) (6).

The linear polarization of bremsstrahlung defined by

OJ-+ Olf

is easily calculated with these modifications of Egs. 7.
Its maximum value is reached for a reference plane containing the
reciprocal lattice vector and the primary electron direction (¢°=0),

as seen from the expression for w3.
In the limiting case of very sharp collimation (Uk+0) the spectrum

consists of monoenergetic spikes at positions X, with X, given by

Formula 4 for each lattice point, At X, one has
by = ¢3 vy, = 0

The incoherent contribution to bremsstrahlung is suppressed by colli-
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mation, and the polarization for this limiting case is given by

P = 2(1=x)
M Y (9)

which is only dependent on the photon and primary electron energies,

This is the upper limit for the polarization which can be reached.
Two spectra obtained with electrons of 6 GeV on a silicon crystal

are shown in Fig, 1, The collimation angles are Uk= 0.3 and 0.5

respectively, In both cases the photon energy at the peak is 1,8 Gev,

Graphical Representation for Cross Section and Polarization

In Ref. 4 numerical information concerning cross section for bremse
strahlung on diamond and its polarization dependence was collected.

It is possible to determine bremsstrahlung spectra and their polar-
ization for different crystal orientations from some "universal
graphs". For the moncenergetic spectra considered a very similar re-
presentation of numerical data is possible, Its derivation from Eqs. T
is analogous to that given in Rev. k. Here only the procedure of
deriving the spectra and the polarization from the "universal curves"
is given, The same notation is used as in Ref, 4. Data are given for

diamond and silicon crystals.,

It is assumed that the electron beam (BO) hits the diamond at a re=
latively small angle ¢ S 0.1 against the crystal axis glm(110). The
plane Eo’ (110) is inclined by a small angle o £ 5° against the

plane (001), (110). Then the dominating peak in the spectrum comes
from the most suitable reciprocal lattice point (230), With the aid
of Fig, 2 (diamond) or Fig. S (silicon) the crystal angles 9,0 can be
chosen Tor the desired electron and photon energies, These figures
give also the positions x, Of the other important spikes of the
spectrum due to the lattice points {4H0), (660). The width of the

spikes is calculated from the third equation of (3), The bremsstrah-




lung intensity at X, is given by

u @
7= .<.12=_k_2_ (%) + E(GeV) 1° (10)
NG dx 1+U,
k
J - EO(GeV) 5
k 0.511.10“3 k

This formula looks like Eq. 16 of Ref. 4, but with the 1ncoherent
eontribution I having been reduced by the factor U /(1+U ) due

to collimation, The meaning of the coherent contrlbutlon 1€ is
changed inasmuch as only the contribution of.one single recipro~

cal lattice point is included, * is represented in Fig., 3 (Fig., 6)
as a function of %= k/E0 . 1% is given in Fig. & (Fig. 7).

For the reference plane for polarization containing the important
reciprocal lattice points given above (the axis b3=(110) respective-
ly; ¢=0) the linear polarization is easily calculated with Egq. 9
because there is only a coherent contribution to the bremsstrahlung
spectrum from one reciprocal lattice point in one spike. One obtains

with Egqs., 8 and 10

2(1-x ) E (cev) 1°
P = "y z o (11)
1+(1—xu) I

Bremsstrahlung Intensities

What is the bremsstrahlung intensity which can be reached by this
method? Sharp collimation of the photon beam is needed. Evidently the
method only works if the primary electron direction is determined to
at least the same order of magnitude as the collimation angle. This
means that the mean angle of multiple scattering and hence the target
thickness must be small, At first glance it would seem that in conse=
quence of these two conditions only very small bremsstrahlung inten-
sities can be reached with respect to amorphous target bremsstrahlung.
This is not so, however. The reason is, that the angular distribution
for the coherent part of the cross section is quite different from
that for the incoherent contribution., In addition, interference effects

raise the bremsstrahlung cross section very much above the Bethe-Heitler

value,



-8 -

The calculation of the influence of the target thickness and the
collimation on bremsstrahlung intensity for arbitrary conditions is

quite involved, but two limiting cases can be treated easily:

1) 8 " << @

Bk is the angle of collimation, o, is the angle of multiple scattering,
It is obvious that for getting monochromatic spikes in the bremsstrah-
lung spectrum both angles must be smaller than the natural photon emis-
sion angle. In the following only the coherent contribution to the

bremsstirahlung spectrum is considered,

The mean square angle of multiple scattering at half target thickness

6)

is given by

-3 "
- 21-10 3 (12)

ev - Eoi GeVS )

T 1s the target thickness in radiation length XO. Therefore cne can

write the condition evg << er also in the forn

T << Tk
0.511,2 . 2 -3 ., 2
T = 2(—2—1—), U = 1,184,10 U, (13)

The number of atoms per cm2 target area is given by
-2, _ 2 L
Blem ™) = 71 XO {g/cu”) AT (14)
(L Avogadro's number, A atomic weight )

The bremsstrahlung intensity {coherent part) is calculated from Eq., 10,




Q t
eft _ . dn(k) _ L - c
—rr . =k /]e = 7 XO X 4] EO(GeV) I (15)

Here the "effective number of quanta" Qeff' is introduced.
Qeff' is the effective number of quanta in a (1/k) - photon spectrum
naving the same number of photons at the position of the peak as the
coherent spectrum. n, is the number of electirons,

For a diamond one has

Q .
eff _ . an{k) - ; c
T = i JBiK) o 0,0k T E _(GeV) 1 {16)

with X =h2h g/cme, A = 12,001 g/Hol

and for a silicon crystal

Q ap!
-%ii— = 0,0531 T E_(GeV) 1° (17)
e

with X, = 21.8 g/cme, A = 28,09 g/Mol

RBefore discussing these results the second limiting case will be

treated:

2 2
>
2) Bk << Bv or T >» T
For this case the situation is a little bit more complicated. The

angular distribution of electrons at half target thickness is

§ (3 )2
A “\8
we(e) an = 5 e \v an

n6
v

(18)

' ev given by Eq.12.

It is suitable first to consider infinitely small collimation and to
calculate which electrons can emit radiation in the direction of the
collimator axis. At X, given by Eq. %, the photon emission angle
U=E 8§
o1
the direction of the photon. For a certain range below X, the pho=-

is zero, and the direction of the electron coincides with

ton emission angle 61 is small with respect to the multiple-scatter=-

ing angle 6, The (coherent) bremsstrahlung intensity in this range
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therefore is given by Eqs, 18 and 10

aqg .
=i g 2 5 E_(Gev) I° aq, (19)
n T8
e . v

Qk... solid angle of collimation in sterad

With Eqs. 12 and 14 one gets

3
aq ! 2E - {GeV)
—eff =xo..L.. Ei _0_...:._3._§ 1° dnk (20)
n A 1r (21,1077)

e
independent of target thickness.

For a finite collimator one has to integrate Eq. 19 up to the
collimation angle. There the difficulty arises that the projection
of the reciprocal lattice vector.onto the photon direction - which
colncides with c, at X, - is not constant. Hence also X, is not
constant, This difficulty is not a serious one, however, because of

2 2

the restriction ek << ev and the fact that Eq. 20 is approximately

true for a certain range below X, For this range one can integrate

Bg. 20

Q ..! 2F (GeV)
eff xo-E 51 _© =5 I° Eoz(GeV)Qk (21)
n, A 7 (21.,1077)

For circular collimation with half collimation angle Uk one has

Q .
elff _ =4 2
—_— = 0,526,110 Eo(GeV) IcUk (22)

for & diamond, and

Q, ]
-f%iﬁ- = 0.629.10'14 E_(GeV) IcUk2 (23)
e

for & silicon crystal,
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The situation for the two limiting cases is qualitatively demon-

strated in the figure bvelow,

Bei |

Ny e e

-
e
~

T/ T T

bremsstrahlung intensity as a function of target thickness,

If one assumes the value for Tk/3 given by Eq. 17 as the attainable
photon intensity one has, in the two cases demonstrated in Fig. 1,
-3 -3 .

1 =
Qrp /ne 0.11,10 ~ and 0.31.,10 ~ respectively.
How bremsstrashlung intensities should be compared with these obtained
from an amorphous target. Only the limiting case of large target
thickness will be considered (Ai >> 1, Ai >> Uke).
The probability that bremsstrahlung passes the collimabor opening is

given, with Eqs. 18 and 12, by

2 v °
1 . 12 ,0,511 2 _ -3 'k (2k)
5 2 — % (75) .7 = 1,18 010
nBv T

The number of effective quanta emitted in the target is by defini-

tion of radiation length

The number of effective quanta which pass the collimator then is

= 1,18 , 1073 ¢ ? (25)
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What would be the bremsstirahlung intensity if a thick amorphous
target would be used, all the other conditions being the same as
in the two examples demonstrated in Fig. 1? For a thin silicon
crystal target the bremsstrahlung intensity Qéff'/ne is about that
obtainable from thick amorphous target (Eg. 24). The situation is
improved when a diamond target is used instead of a silicon crys-
tal., Then the bremsstrahlung intensity is four times higher for

the same photon and primary electron energies,
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Fig.1 Bremsstrahlung spectra and photon polarization obtained from

silicon crystal

E=6BeV, ©=50mrad; ot=0.962
collimation angle U,s%%ze,‘:o_a and 0.5
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Fig. 3 Incoherent contribution to bremsstrahlung
cross section for diamond
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Fig.4 Contribution of one single lattice point I° as function
of the peak position X, for diamond crystal
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Fig.6 Incoherent contribution to bremsstrahlung cross section
for silicon crystal
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Fig.7 Contribution of one single lattice point I as function
of the peak position X, for silicon crystal






