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Abstract

Multipole dispersion relations and the Fredholm determinantal method

are applied to the calculation of the transverse part of the yNN¥* vertex,
using relativistic kinematics. The unphysical cuts of the multipole
amplitudes have been approximated by the second-order and fourth-order
(box) diagrams contalning nucleon and pion exchange. No cut~off is
necessary. The results for the magnetic dipole amplitude agree, within
the theoretical errors, with those of the static theory, while the
electric quadrupcle turns out to be resonant too. The behaviour of the

transition amplitudes for large momentum transfer is discussed.
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I. INTRODUCTION

The problem of low—energy photoproduction of pions is generally belleved to
be especially well suited for the application of dispersion theoretic methods.
It is therefore astonishing to notice the spread in the predictions made by
various authors for experimentally poorly known quantities, as well as the
different philosophies invoked to understand one of the few well established
facts, namely the magnitude of the resonant magnetic dipole amplitude(l)_(s).
In this paper we intend to increase the number of models and give new values
for the electric quadrupole amplitude leading to the fi§al state of the

+

N*(1236), and for the dependence of the two transverse electroproduction

amplitudes on the electron four-momentum transfer. The inclusion of some

higher-order perturbation diagrams forms the esgsential content of this model.

The crucial step in applying multipole dispersion relations (assuming the
corresponding scattering phase shift to be known) lies in the determination
of the unphysical singularities. It is an empirical fact(é)’(6) that by
inserting for these singularities the projection of the one-nucleon exchange
diagram (NE) Fig. la, one gets results in complete disagreement with exper-
iment+). To improve this situation, one may add other one-particle exchange
diagrams with higher spin, especially N*—exchange(6)’(7) (Fig. lc¢). In this
case, the electromagnetic properties of the N¥ are "bootstrapped" almost by
themselves, since the inhomogeneous NE-term gives a rather.small contribution.,
The result is therefore highly unstable and the calculation of a form factor

quite hopeless(6).

The present model neglects N¥ exchange {(and all other resonance exchange)
completely, and retains only the box diagrams shown in Figs. 2a-b, besides

of the nucleon and pion exchanges (Figs. la, b).

We motivate this by analogy with Yukawa potential theory: there the
lefthand cut (l.h.c.) in a partial-wave amplitude is given by the sum of

the 1.h.c.'s of all ladder diagrams, and this sum converges for all potential
strengths(g). Under the additional assumption that the main force in the

3/2, 3/2 wN-scattering channel arises from nucleon erchange, we find it
plausible that the diagrams of Figs. 2a and b yield the mostimportant

contribution to the l.h.c. among the fourth-order perturbation diagrams.

+)We do not consider the longitudinal multipole because of unsolved
problems of gauge invarilance.

T)The reasons for this will be repeated in Section II.
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It may seem surprising to assume that the box diagram already provides a
good approximation, while the second order is-totally misleading. It will
‘be shown in'Section II that due to dividing the ampitude by certain
* threshold factors; the.asymptotic behaviour of the second and fourth
. orders are different with the consequence that the contribution of the
second order 1s very small a priori, while the fourth order may be the

leading one.

The hypothesis that the box diagrams, or the box diagrams together with
the higher-order ladder diagrams, give us the dominating contribution to
the 1.h.c. is so attractive because if it works in 7N elastic scattering,
then the famous CGLN-formula (see Section V Eq. (19)) is at least
-approximately a consequence of the similarity of the diagrams 2a and c.
Whether it works in 7N scattering, can be checked by inserting the exper-
imental phase and the calculated lefthand cut into the Omnés-

" Muskhelishvili solution(lo) of a linear integral equation, thereby
avolding the convergence difficulties of the N/D-method. The resulting
(nonunitary) amplitude should be close to the (unitary) "{nput" amplitude
described by the phase shift. It is shown in Section IV that this

econsistency condition is reasonably well fulfilled.

Any dispersion calculation with a fixed lefthaand cut will yield the

correct boundary value either at threshold or at infinity but not both

of them, This well-known drawback makes it desirable to use an alter-
native method which is based on the knowledge of the perturbation
expansion, namely the Fredholm determinantal approach(l!). This 1is

shortly reviewed in Section III, and the results obtained by it are
‘compared with those of the dispersion method in the following sections.
Section V contains the results for the photoproduction multipoles, while

in Section VI the influence of virtual photon mass on the electroproduction

of the N* is investigated.

II. KINEMATICS AND INTEGRAL EQUATION

The four-momenta of the incoming and outgoing particles are indicated in

Fig la). In the CM-System (q= —-p ) we define
2

E =P ,E =P
1 10 2 20

k = Iizls q= 'a[

and 2?2 = kﬂku £ 0 for photo- and electroproduction.




The CM-energy W is given by
W2 = s = (p+k) (P +)Y
1 H 1
and the masses are denoted by
M = nucleon mass, p = plon mass.

The definitions of M]+ and E1+,

electric quadrupole amplitude belonging to the isospin 3/2 final state,

the magnetic dipole amplitude and the

follow that of Refgz). Simultaneously we consider the 7N off-shell
partial wave amplitude fl+(W,A2) with the normalization

e Gsinéi

2y =

We assume that these amplitudes are analytic functions in the cut

W-plane and that their kinematical singularities can be removed by

considering
/{,{H(w,xz) = My, (4,22)/ p (W,32) (n
£, (1,22 = B, (W,2%)/ 0 (W,1%)
g, (WA2) = £, (0,05)/ o (W,2%)
with p(W,1%) = WE T VE, 4l kq (2)

It has been emphasized repeatedly(lz) that this choice of p(W,Az) is not

quite correct. £

1
but like qllz, due to the imaginary part of the crossed S-wave. Since the

+(W,)\z) for instance does not vanish at W = M—u like g

scattering lengths of the 7N S-waves are very small, it is reasonable to
neglect their contributions at the crossed thresholds and to use p(W,AZ)
as defined in Eq.(2).

Now we have the integral representation

©

1 Im h(W")dw'
nen = mon + 2 [ IEREDET

My (3

where h(W) stands for any of the three amplitudes defired in Eq.(l1) (the
argument )\? has been suppressed), and hL(W) denotes the Cauchy integral
over the l.h.c. of the amplitude h(W). As in Ref.(lS) we split Im h(W)

into its elastic part

Ahel(w) z h(W)e-iG* sind* (4)
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where &% is the complex conjugate of the 3/2, 3/2 scattering phase shift,
and into the contribution from three— and more particle intermediate
states, Ahin(W), wvhich we assume to be a given function of W. Thus we

get from(3) and (4) the integral equation

o0

by =18% (0T s gt
W) = m(H) + %_J h(v")e W‘—W—iiinG*(w )du -
M
i (5)
T sh, (W')aw'
= 1 in
m) = b () + 2 I WTi-ic
M+u
The solution is(io)
: T Ae*W") ¢
- i6% 1 e sing (WD )@ )dW'  (6)
h(W) = m(We cosé*+ﬁb(w) P { T
M+u
With o]
D) = exp | WD) sty an | -
P - (WT=W_) (W7 =W~1¢)
M

The constant WO is arbritrary.

It is instructive to consider the solution (6) in the case of a real,
resonant $(W), with m(W) approximated by the projection of an NE-diagram
(mNE(N)). Due to the kinematical factor p(W,A%) we have

mep (W) = o(w"4)

oo

and therefore the numerator of the principal-value integral in Eq. (6) is
peaked somewhere above the resonance and vanishes rapidly beyond the peak.
The principal-value integral will therefore change sign above the resonance,
and so does Im h(W), which is given by
p w IImz(w')]mNE(w')dw'
Im h(W) = siné {mNE(W) COS6+FﬁD(W)[ J T

M+u

(4),(6),(f3)’

In fact this zero lies very close to the resonance position

and therefore a solution of the form

h(W) = const- eiésind

1s impossible to obtain under the approximation m(W) = mNE(W). if
m(W) = O(WHI), the principal-value integral does not necessarily have

a Zero,
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This behaviour of m(W) is also required by the unitary sum rules(!a).
Now the lefthand contribution of a box diagram or more generally a ladder
diagram has always the desired asymptotic behaviour. This is easily seen,
if one calculates the lefthand contribution by subtracting from the total
diagram (which behaves like W—4 due to Eq.(2)) the Cauchy integral over the
righthand cut, which in our cases 1is always O(W"l), since the discontin-
uity over the physical cut is definite. This property of ladder diagrams
is valid for all cholces of p(W,A2) as long as p(W,r?) = O(Wulue), e > 0,
but it is not true for the contributions of unreggeized resonance exchange
with spin > 1/2. .

Except for accidental cancellations we will have
n(w) = o h

in contradiction to unitarity for h(W) = g}+04ﬂ@)and with the
assumption of unsubtracted dispersion relations for the other amplitudes.
In the next section we describe the determinantal solution which is free

from this defect.

11T, THE DETERMINANTAL SOLUTION

an

We first treat the formalism in elastic scattering , assuming that for
our partial wave all ladder diagrams fn(w) are given (n = number of

vertices).

Writing then NGW) = § N (W)
n=2,4 o
D(W) = } D_(W) (8)
n=0,2
with DWW =1,
W TN (') q'aw’
DM =-— J RO R ()
M+u °
n-2
N = £ (W) + E £,40D _ (D,
v=2

it can be shown, provided the sums converge, that N(W) has no righthand

cut, and that
N (W)
D (W)

1s unitary and has the l.h.c. given by the sum of the ladder diagrams.

£w) =



Furthermore ' 2
N (W)

£EGW = n;ax
D (W)

n

1s unitary, i.e.we have to break off the series for N and D at the same
n s Even if the series converge well, we cannot expect that Re D(W) has
the proper zero at the resonance position for LI 4. Under the
assumption that D(W) has no zeros on the physical sheet, we can make the

“identification

W-W
D(W) = exp { —-f;—g I S(W')dw' ] (10)
M+H(W ‘WO)(W ~W-ie)

where & 1s the experimental (real) phase shift. N and D are
calculated as before.

As in the dispersion method we can check consistency since we should have

Dmax
ié z Nn (W)
e sind ~ n=2 (11)
g D(W) ’

In electroproduction we need the ladder diagrams Mn(w), which contain an

électromagnetic interaction as the first step. Now we have

[ ]

vy = HZZ NiY)(w)
n-2
(v)
SO IR W ORE vzz M, (W)D__ (W) (12)

with the same Dn(w) as before, and

N(Y) (W)

M{W) )

with D(W) given by Eq.(10), where M(W) stands for Ml+ or E|+.
Approximating N(Y)(W) by the first few terms, M(W) has not the l.h.c.

as given by the sum of the corresponding Mn(w). It is therefore important
to choose the point of normalization of D(W), Wo’ close to the region

where the most important lefthand singularities are located, i.e. Wb = M

for processes involving one-nucleon exchange.
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IV. CONSISTENCY CHECK IN wN-SCATTERING

Two methods of calculating the box graph of Fig. 2c are described in the
appendix. The one involves an integration over of f-shell partial wave

projections of the NE diagram, while in the second method the Mandelstam

double spectral functilons piox(s,t) and pgox(s,t) are calculated following

the Mandelstam iteration scheme(IS). The double spectral functions alone
do not determine the diagram, since
B
oy (sht)
ds' T
(M+u)?

ow

diverges. Contrary to the double spectral functions the necessary
subtraction function VA(t') is not fixed by unitarity in the s-channel
only. In this respect the perturbation methed is not equivalent to the
pure S-matrix approach, but both methods become identical after fixing
the subtraction function by perturbation theory. Then both methods give
numerical results in excellent agreement, thus providing a check for our
calculations.

Some remarks about the o-meson exchange are in order. It has become clear
that a satisfactory theory of low-energy nN-scattering needs the exchange
of a scalar object in the t-channel with a low mass(le). If this were a
stable meson or a narrow resonance we could include it without

difficulty into the box graphs as shown in Fig. 2d. This is impossible,
however, if it actually represents the l.h.c. of diagrams like Fig. 3a or
3b. We therefore take it into account only through the diagram le, fixing
the coupling constants according to(lﬁ). At threshold it gives a
contribution of 25 percent to the NE-term; its mass was taken as p0=3u.
Fig. 4 shows the contributions from diagrams Id and le ("Born terms') in

the 3/2, 3/2 channel and the l.h.c. of diagram 2c.

In order to evaluate Eq.(5) we extrapolate the experimental phase shift
6 to infinity in the manner shown in Fig. 5, where the experimental points
are taken from the analysis of Bareyre at el.(l7). The influence of the
unknown high energy limit of Re & can be estimated in the following way.
Let us assume the true phase shift &' to differ from our & as given by
Re §(W) for W g Wl*=W2 < W
Re §'(W) = (13)

w
Re G(W)if for W] < | < W2
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The deviation 7/2 was chosen since 0 < lim Re§' < n seems to be a
-y
reasonable limit and our § has the property lim Red = 7/2. Forgetting

the inelastic contribution to m(W), we may write for h(W) instead of.
Eq. (6)

] D) dm(W' ) aw' |
h(w) = =T} J ol (14)
' L

where Mm(W') is the discontinuity of m(¥) on the 1l.h.c. denoted by L.
By substituting Red' intoﬁD(W), we obtain

h' (W)

1 [9'(W')Am(W')dW'

T (W) WW
L
W'-W,1/2
_ I W, 12 JQ)(W)(w'—wl) Am(W')du’
) (W) w—w2 W'-u

L

Taking the worst case Wye and representing Am(W) by a é-function at

W s we get for W in the resonance region N‘WR

Wp—W 21/2
h'(W) = hW) [W]
(o]

With Wl > lbu, Wr ~ 9, WO = M (the static pole alone is known to give
already a reasonable approximation to the l.h.c.; a possible small
negative residue of a second distant pole makes the error smaller) we

get

h'(W) = h{W) . (1%0.17). (15)

This indicates the order of magnitude of the expected error in our

calculations.
For ﬂgin(w) in Eq.(8) we insert
o o
pg, ) = (Im £87-q|£$|2 Vo w,u2)
with
216
() | e =l
fl+ 2iq (16)

The results for f]+(w,u2)' p(W,uz)-gl+(W,u2) are shown in Fig. 6 and 7.
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The Fredholm determinantal solution (F) is seen to agree somewhat better
with the "input" amplitude ffg) (denoted by I) than the dispersion solution
(D), although the o-meson was not included in the former. To repair the
remaining discrepancies one can adjust some parameters. For instance we may
include effects of the sixth-order ladder diagram, which can .be estimated
in the following way: From unitarity we know the imaginary part of the

sixth order g6(w)

Im gB(W) = 2qp (W,uz)gz(W,uz)Re 84(1‘3,112),

and we can calculate the high-energy limit of the l.h.c. through the

unitary sum rule(Ié)
e 1 1 @ 1 '
lim Ag6(w )dy _ _ lm Im g6(w )dw (17
W W'-w W0 W'-w
L M+p

Representing the l.h.c. of gé(w) by a pole with the adjustable position Wo‘
and with a residue determined by (17), one can fit the solution D rather
close to I with a value Wét&-SO b« Another way of improving the

consistency is to raise the resonance energy by 20 MeV. The relative change

of the numerator function N(W) defined in Eq. (8) for N T 2 and

Mook = 4 is given by
N4 W) { ~0.06 at W = M+u .
NZ(W)+N4(W) -0.12 at ¥ = Wr, (18)

thus indicating a good convergence of the series for N(W).

V. PHOTOPRODUCTION MULTIPOLES

We now want to apply the same model to our main subject, the electro-
production of the N¥, In the dispersion method we calculate the 1.h.c.
of the multipoles from Figs. la, b and 2a, b. The yNﬁ"vertex with the
nucleon off-shell is set equal to its on-shell value. This additional

assumption cannot be checked presently.

Furthermore we must specify the inelastic contributions Ahin(W), which
we simply take proportional to Agin(w,uz), with the ratios determined
by that of the box diagrams at W»e. Equally well we could have omitted
Ahin(w) completely, since the above choice gives a contribution < 5 ¥

at resonance for the dispersion solution.
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It is customary to split the multipoles into the contributions arising
from NE (Figs. la and 2a) which are called ME+,N and E1+,N’ and into

those coming from pion exchange (Figs. lb, 2b} called MI+,ﬂ and E1+’ﬂ.
We shall discuss these quantities separately, restricting ourselves to

A2=0 in this section.

1.) M
1+,N

The result of the statie theory(l) for M1+ is

U _—H
- -p Nk
My W 2F

2

(19)
M, D = o

where up and My arezthe magnetic moments of the proton and the neutron
respectively, and £~ = 0.081. These predictions are known to agree well
with experiment(la), and of course one would like to rederive them using
relativistic kinematics. Our results for Im Ml+,N(w) are plotted in Fig. 8
together with the static prediction (CGLN). The ratio between the
determinantal and the dispersion solutions at resonance 1s approximately
the same as in the 7iN-case, but both curves lie somewhat higher with
respect to the desired solution than the omnes in Fig. 7. If we include

the same corrections due to the sixth-order diagri:m our predictions will

be too high. The deviations are, however, not severe in view of Eq. (15).

2.)b{l+,ﬂ

The encouraging result for Mi+ N is spoiled by the large imaginary part
3

of M]+ i which is resonant too. The dispersion solution ylelds (see
3
Fig. 9)
Im Ml+’ﬁ(wr) = 0.17 Im Ml+,N(wr)
Thus Im M]+(Wr) = Im (M]+,N(Wr) + M]+’H(Wr)) exceeds the static value

by 15 percent without sixth-order corrections. The determinantal solution
is not shown in Fig. 9. It differs from the dispersion solution by a
factor of 2 at W = wr, and the difference between the cases with noax o 2
and Noax = 4 is now large compared to the wN case:

N
4 ¢ = - 0.29.

Y Y
N2 (wr)+N4(Wr)
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This was to be expected since the lefthand singularities of Ml+,n cannot
be approximated by a single pole at W = M, where we have normalised D(W).
The convergence of the determinantal method may therefore be much poorer
than in the mN-case, and we believe the dispersion method to be the more

reliable one in this case.

The situation is quite similar here to the M]+ case. The dispersion
solution for E

i+,n
Im Ei+,ﬂ

is shown in Fig. 10, and we have near the maximum of

Im E|+(W) -0,1 at W-M = 2y

T, Im M, (W) -0.08 at W = W_

(3)

This RE M is larger than that obtained by Finckler , who arrived at

RE M~ ~-0,05. This value has been shown to give a good description of
3
the experiments with polarized v' s(lg). As to the comparison of the

dispersion solution with the determinantal solution the same holds as for M]

4.) E
i+,N

This part of the electric quadrupole cannot reliably be calculated in

the present model. The Born term is very small except at high energies,
where it is comparable to that of Mt+,N’ and its nearby singularities
cancel out. Our estimate of the error Eq.(15) does not hold in this case.
In the potential language this situation corresponds to a force of a very
short range. If we introduce a slowly varying phenomenological correction
at the yNﬁ vertex, thus suppressing the short range part, the dispersion
solution may be made very small, while M1+,N does not change appreciably.
In summary we can say that our numerical results for Ml+ and Ei+, omitting
the pathological El+ N term, are in qualitative agreement with previous
model calculations of a quite different nature, which in turn gave good
agreement with experiment. Our model certainly tends to yield predictions
that are too high. We think it important to take the higher-order ladder
diagrams into account before any attempts are made to improve the

situation by adding new particle exchange diagrams. Work in this

direction is in progress.

+,T



._]2.-

VI, ELECTROPRODUCTION

The calculation of the multipoles Ml+ and El+ for A2 # 0 proceeds in the
same way as before. Under the assumption that the electromagnetic off-shell
couplings of N and 7 are again the same as the on-shell ones, M]+,N and
M]+,n contain the nucleon and pion form factors multiplicatively.
Our numerical evaluation rests on the assumption that

Ves2y o aVey2ysaY 2
GE(A ) GM(A )/GM(O) for all A%.

We think a check of the present model in electroproduction for larger
momentum transfer to be more significant than a comparison of small
effects in photoproduction. For instance, the determinantal solution for
M1¥ N in the second-and fourth-order approximations differ by 7 percent
at A?=0 and by 23 percent at A%= - 100p?. The -dependence of our model
predictions is therefore more characteristic than the detailed shape of

the amplitudes for A%=0, We define form factors FM N(Az) by
. ) H

v
F02) Mo, w2 - Gylo
M,N Mis nMp0) oy (A2)

and correspondingly F (A ) and FE (A2),In FigJdla some values for
M N(l ) are indicated together with an interpolation curve, fitted to

the dispersion solutions, of the form

; 1
Foo (%) = — e

with A? = 140 p? = 2,72 (Gev)2,

The fact that the determinantal method in fourth order gives lower values
for FM N(AZ) than the dispersion method, can easily be understood. We have,
H

by rearranging terms

or Qmax Box max-2
M (W,A2) = D(W) {bP " (1:[2 D (w>)+n [i+z D, (W))+ ...}

in obvious notation., Now Re(l+D2(Wr)) 0.35, so that for n Ak 4
Born
[+

decrease as a function of A? (see Fig. lla).

M]+ is still partly proportional to M and follows its stronger
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Values of the form factor FM 1T(AZ) are shown in Fig. [1b together with
H
the fit

02 = 1 gith A2 = 50 u? = 0.97 (GeV)?

- 1 2f 2 2
L= A%/a2 (21)

Collecting our results for M]+ we find

2y k E1+ ' GV(AZ) 2 2
ot =1
M, (W% = M}+(W,o)ko F o Gy YyF M, N(x +E_(Z%) ¥ - (x%)}

10 (22)

with FM,N and FM,ﬂ approximated by (20) and (21), and

YN = Oa85, YTF?'; 0.15

k and E.. are k and E, evaluated for A% = 0.

A similar content of 'pion terms" in M, has been found by Menessier 6 .

The electric quadrupole (under the neglection of El+ N) is given by
»

, o [E . X
B, (01,02 % B (1,0) & q|5— F, ODF O (23)
o i0
with
F. e A2 = 80 p2 = 1.56 (GeV)2

R R S ’ s

In the literature one can find the following other predictions:

2,

1) From the behaviour of the Born term alone

Born 3
My, Wt

Born
1

2y
M]+,N(W,A ) = Ml+’N(W,o) (w o

(See Fig. lla for the difference between this equation and Eq. (22))

2) From a cut—off type theory(S):
E, M GY(1\%)
oy k410 . M One e 2 >
M, (W,0%) = M, (¥,0) K = {9 ¢, (A1)+0°06 F_(A%) C,(» 5}
1 GM(O)
(24)
with
- 2
¢, (02 = —L—, ¢,0%) = 1 0-1827 " (324n (Gev)?2)
I - 0.15x2 | - 1,51\
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which should be valid for A% < - 0.1 (GeV)?
Note the different argument of the square root with respect to Eq. (22).
The decrease of expression (23) with A2 is faster than in Eq. (22).

3) Group theoretical predictions:

(21)

(20) or from collinear groups a

From the symmetry group U(6,6)

connection between the nucleon form factors and the yNN* transition

form factors is obtained. In the notation of Eq.(22) it reads

= = 2 = .
YN 1, Yo 0 and FM’N(A ) 1

The deviations from (22) are large for A% < - 2 (GeV)2,

VII. CONCLUSIONS

It is evident that our attempts to go beyond the static theory of photo-

and electroproduction are yet in a preliminary stage. The convergence

of the ladder series expansion for either the lefthand cut or for the
N'-function has been shown neither mathematically nor practically. We

only can state that the inclusion of the fourth-order box diagrams
drastically improves (as compared to one-particle exchange) the dispersion
theoretic prediction towards the experimental’y accepted values. In the
determinantal method the "convergence" is good in those cases where the
subtraction point of the D-function coincides with the location of the
dominant nearby singularities, and bad in the other cases.

No attempt has been made to include crossing. The nearby singularities

of Diagram lc are known to be smail(l), and the distant ones cannot be
calculated. The usual method to dérive the multipole dispersion relations
from fixed-t dispersion relations seems to avoid this difficulty(é)’ ©, @,
but this comes from using the multipole expansion of the invariant amplitudes
outside the region of convergence. Since no predictions even of the low-
energy amplitudes can be made(ﬁ) without a definite assumption on the
distant singularities it seems better to omit N¥-exchange for the

present. These reasons also make the predictions of the form factors too
uncertain for determining the neutron form factor from a measurement of the

process yN -+ N*(ZZ). The same holds for all quantities connected with the

pion form factor.
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Appendix

Here we will shortly describe the calculation of the box diagrams. In
rN-scattering two different methods have been applied. The first one is
based oﬁ off-shell partial-wave amplitudes, while the second one uses
the Mandelstam iteration procedure. In the case of electroproduction,
however, the latter one is too complicated and only the first method

was used.

1.) Off-shell method in nN-scattering

For a diagram analogous to Fig. 2c with spin zero particles of equal mass

U we have
o o3
£2°% (1) - 1—2 Jdd I dr j(Z-—iQ)(an )
A (bz—u2+i€)(bi-u2+is) 1717Y 172
2
where
(}32_’{)2_}32_02 &> o > >
2, (Eyyq) = Tae s %y = cos(pysBy)y x = cos(py,by)
with
- — 2
t (P] P2)
> >
q= |P1| = Ipz‘
>
b20 = T, Ibzf =0 .
Partial wave projection leads to
A0 2
f]i"x(w) -4 Jdd{ dt [Q 1(21)]
Qg L (O2muPe 1) (b2yPrie)

The Ql(z) are Legendre functions of the second kind. Two of the four

poles coming from the propagators —_ and may pinch the

b2_p2 bZ_uZ
2 b
t-integration contour. We perform a Wick rotatiom 7 = u + iwv,
-~® < ¥V < +o but we have to treat the contour around the two poles
carefully. By the Wick rotation the numerical integration along the
remaining poles and the logarithmic cuts of the Q,(z) 1s avoided. The
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point u will be specified by convenience considerations below. In the
actual 7N case (spin, unequal masses) we use for the intermediate nuecleon

propagator the following decomposition

54+M = u!(f]+M) + az(f2+M)

with
2 2 2
r = r, = M
aﬂd -> - -
Tl T Ty = by Ty =T T
This requires
oy + Oy = 1
b
@ . 1 Pao
1 = (1 + 8)
€ = ro =Y gz + M2
Now the propagator is the sum of two projection operators, and we have
Box oy _ 2 gﬁ 2 dodr g2
814 (,22) = in .
in? p(W,A2)y (b§~u2+1e)(b§—p2+ie)
(A1)
o t '
(o NEy, ON(E LK) + a,N' (B, N (B ,k))
where
N(Ezsq) = N+(E2,q) + N_(Ezsq)
(A2)
AE, M) (€, 201)
: M + M
- G RANG)) .
lgt)(Ez,q) = 700 (w (,,_)bi)o,(z)(zi(Ez,q))
z, (B,k) =12,
and

‘J' = e+ 1.

The replacement of ¢ by -¢ leads from N to N'.

The t-integration runs from t=u-i= to T=u+iv, encircling the poles at
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T = 62 4 12
and 7, = W~V g2+

clockwise and anticlockwise respectively, as long as T, S UOr Ty 2 U
For the rotation point u we take the center of the gap on the real t-axis,

which lies between the logarithmic singularities of the Ql<zl) of Eq. (A2):
u =-% {(V(a q)2+M2 +E ] (V(o-k)2#4% -E }] (A3).

The pinching singularity T T Ty is removed by subtracting from Eq. (Al)

the righthand cut given by

oo

B ,R 2 2] aw! 1 . .
O%:R(w,22) = (%EJ - { %W' X3) N(E&,q )N(E],H)

81+ W= W
M+

where E; etc, are functions of W', and for the argument ¢ of N in Eq. (A2)

q' is to be inserted. The l.h.c. of the box diagram is just given by this

difference.

2, Mandelstam representation

The Mandelstam representation(!s) gives
B W2-M? 'de'w! B
gt W) = M J [ [R Ry o, e+

J (w 2.y 2) (w 1 2_.1\12

T Trg!
£ 1 {LQE_QE_H_ [}w M)R (¢! )+(W+M)R (t! )] pBOX(Wl,t') +
T2y

+

Jdt' [Rl(t')—Rz(t')] vA(M?,t')

where

|
R t' ’
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The indices A and B refer to the usual invariant amplitudes A(s,t) and

B(s,t). The double spectral functions piog(s,t) are determined+) by the
3

Mandelstam iteration procedure

(1) from the NE pole in B{s,t), whereas

the subtraction function VA(MZ,t') is calculated by application of the

Cutkosky rule

(23) to the 7N box graph. The relative difference between

both methods in our numerical calculation is about 0.003 at W = M+u.

3.) Electroproduction

The off-ghell method gives for the diagram of Fig. 3a)

M Box a2y =

1+, N

eg3 1 J dodr a_
(4n)2 21i7%Wp (W, 22) (bg—p2+ie)(b§—u2+ie) 2k

. ]:&IN(Ez,q) M+ o, N'(E,,q) Mﬁ]

The function N(Ez,q) is given in Eq. (A2). The same formula holds for
Box (w,xz),ElfixN(w,Az) and £ 3% (w,22), with My and M} replaced by
3

A LN

l4,n

Mﬂ, E. ete. These quantities, which are proportiocnal to the off-shell

N

magnetic dipole (electric quadrupole) projections of nucleon and pion

exchange, are given by

where

nl(T,c)

nz(T,O)

+)

It

nl(T,c) + n2(1,0)

My

=
I

= -n4(1,0) Fﬂ(lz)

0, (1,0)~n, (1,0 )40, (0) (Q, (2,)-Q4(2,) ) [Fl"(ﬂ)—(w—m)ﬁ'z"(az)]

I
|

E. = n,,0-n,(0)(0,(2,)-0,(z;) ) F ()

Viey2 -
246,V (APIN(E |, k)

(' =) [(€d-7) /() (B, #Q, (2,) = (e-n)V{E D) (61D Q,(z,)] Fy(R2)

=% (€+1) V(B0 (8-1) [QO(Zz)—Qz(ZZ)) [(w+1~1)F2"(A2)+FI"(A2)]

Some misprints are contained in Ref.(IS), Eq. (3.18a) and (3.18b).
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ag(0) = HE-1)/(E, D )
nA(T,o) = %(5+1~1)/(e-1~1)(E1-M) [QO(Z3)-Q2(Z3):|
and
p2-M2+E 24g2~(W-E_-1)?
z = 1 1 '
3 20k

For M and E_we use
s T

u= - l:(ﬂ(c—l‘:)z«“u51 +W~E )-[/(0—k)2+1~12 -E }]
2 X ,

Qur coupling constants and form factors are defined and normalized in the

following way:

FI%Z)(AZ) = 1govector nucleon form factor
Fﬂ(AZ) = pion form factor
FI”(A’L‘) v
Vey 2 = e 2
Gy (A7) m * F(A%)
F;’(o) =1
' —u
"-'c"v = p N
F,(0) oM
u! = 1,78
P
]
u =_'1-91
2
4m 137
2
& = 14
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Figure Captions:

1)
2.)
3.)
4.)
5.)
6.)
7.)
8.)
9.)

10.)
11.)

One-particle exchange diagrams for pion electroproduction (a - ¢)
and niN-scattering (d,e).

Box diagrams for plon electroproduction (a,b) and TN-scattering
(c,d). '

Inelastic box diagrams for mN-scattering.

Contributions to g(w,pz) from the lefthand cut of the box diagram
("Box") Fig. 2c and from the sum of the box diagram and the Born
terms Fig. id,e ("Born + Box").

Scattering phase shift Re§ and absorption parameter n = exp (~2Imé)

- in the 3/2, 3/2 wN-state. The data points are taken from Ref.(]7).

Real part of f!+. Comparison of the two solutions (dispersion and
Fredholm) with the "input" Re fgz) = Re eiﬁsinélq.

Imaginary part of f}+. Comparison of the two solutions (dispersion
and Fredholm) with the "input' Im fgi) = Im eiasinG/q.

Imaginary part of M]+,N(W,O). Comparison of the two solutions with
the CGLN-prediction (1), Eq. (19).
Born term and dispersion solution of M (W,0).
l+,ﬁ(w’0)'

a) Form factor FM N(Az) for different models. The drawn curve 1is
3

I+,
Born term and dispersion solution of E

the interpolation function of Eq. (20).
b) Form factor FM Tr()\2) from the dispersion solution (x). The
L)

drawn curve is the interpolation function of Eq. (21).
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Erratum

Fig. 2b should be replaced by the following diagram:

— — vy —tt ma. — ]
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