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Abstract

Sum rules for the isovector nucleon form factor are derived by
starting from a divergence condition describing how consexvation
of the lsovector-vector current of hadrons is broken by electro—

magnetism in lowest order.



T. INTRODUCTION

Recently, Veltman gave divergence conditions]) which describe how the
conservation of the isovector current of hadrons is broken by
electromagnetic and weak interactions in lowest order. It was stressed
that the Cabibbo-Radicati relation may be obtained by using the
divergence condition as a starting point instead of the algebra of

the isovector current. The Adler-Weisberger relation was also derived.

In this note we start from the divergence condition which describes
the violation of the hadron current by electromagnetism and give a
derivation of four Compton scattering sum rules. These were previously

derived by Gourdinz) from current algebra by using Fubini's method3).

In particular, in Section 2, essentially following Veltmann, we derive
the general conditions which certain matrix elements have to fulfil on
account of the divergence condition. In Section 3, the sum rules are
given by assuming dispersion relations for the invariant amplitudes
and using the results of Section 2. Section 3 thus closely follows

the procedure used in the algebra of currents approachz). Some

conclusions are drawn in Section 4.

2. CONDITION FOR MATRIX ELEMENTS.

Let Ji be the isovector part of the hadron vector current, Introducing

the projections on the following base vectors in isospace
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from minimality of the electromagnetic interaction we have in first

order of the electromagnetic couplingl)
A (E) A (2)
GV ie A Jy
(2)
2230 = o,

A



-2 =

In this expression AA is a free electromagnetic field. Let us now
consider the following amplitude, where the initial state contains
a proton P (p]) and the final state contains a neutron N (pz) and
a photen vy (qz):
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ql q2+P2_p1. (3)

Using translation invariance we have
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Introducing the divergence condition (2) and simplifying the resulting

expression, we have in first order of electromagnetism
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We now define the amplitude TS; by

u
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and from (5) we then have

Tz;qr = - <N[J; (o)} P> , (7

The same argument holds if instead of the outgoing vy we have a lepton
pair e, e' interacting in one~photon exchange (qg spacelike)

T = Jd“xelqlx <N,e'| J;(x)le,P> .

In this case AA in (2) is replaced by the lepton current operator and
in lowest order of the electromagnetic interaction we again arrive

at (7).

The matrix element of the isovector current appearing on the righthand

side of (7) is given by

- P
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...3..

where T(t) = ?Z(t) E4 = (11, t2,73) and Ti are the Pauli matrices.
M is the nucleon mass and P" = -% (p1+p2), - (pl—pz)2 and

FY(t) and Fg(t) are the isovector nucleon form factors.

For the derivation of sum rules we furthermore need equations for the

T
absorptive part tE t ot Tﬁvt. For the absorptive part we have
' (-t') (t)
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From translation invariance, as may be seen in Appendix I, we obtain
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and thus from (2) we have in first order of electromagnetism
t't v _
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3. DERIVATION OF SUM RULES.

The discussion of this section now will closely follow the dispersion
theoretic method introduced by FubiniB) for the derivation of sum
rules from current algebras and used by Gourdinz) for the derivation
of Compton scattering sum rules. Tﬁ;t and tt;t are written in terms
of 32 scalar amplitudes in the form given by Gourdinz). For easy
reference the expansion is written down in Appendix 2., From equations

(7) and (8), we now deduce (among others) the following equations
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where the amplitudes Ao_,ﬁoj.. are functions of v = - q P = - gP,t,
P b 45"
q and q + For the absorptive amplitudes we have corresponding equations
1 2 P p

with zero on the righthand side, for instance

~ va® +q§b +q1q2bg- = 0, (13)

We now assume unsubtracted dispersion relations for all the scalar

amplitudes in (12). For example, we have

+co
\”tsqlsqz) =7 Ty dv .

-0

Substitution of the dispersion relations into (12), using Equations (13)
and the crossing relations (Al2) of Appendix 2, finally yields
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Expressing the amplitudes in terms of amplitudes belonging to total
isospins %-and'% as defined by (A13) and extracting Born termsz) gives
the following sum rules for virtual Compton scattering which were first

written down by Gourdin:
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By specialising g2 = 0 we obtain sum rules for real Compton scattering.
Finally, the sum rule for electroproduction given by Kramer and Meetz
and othersS) and the Cabibbo-Radicati relatione) may be derived from

(16). We refer to 2) for details.

4, CONCLUSIONS.

In this rather straightforward investigation we have shown that four
Compton scattering sum rules previously obtained from

the algebra of the isovector electromagnetic current may also be
obtained from the divergence condition (2). This condition is
intuitionally rather evident and also follows from well established
principles: Conservation of the isovector hadron current as long as
electromagnetic and weak {nteractions are neglected and breaking of

this conservation law by electromagnetism according to the principle

of minimal electromagnetic interactionl). The assumption of unsubtracted
dispersion relations is common to this and the derivation resting on the
algebra of currents. But it should be emphasized that the assumption of
unsubtracted dispersion relations i{n this work is made for a T-matrix
amplitude, whereas it is made for the retarded commutator in the algebra
of currents approach. By using what he calls the Adler method, Gourdin
derived a few more sum rules for Compton scattering. In his derivation
the expression for -E%— JE plays a part. Thus it may well be that these

sum rules are not obtainable from the divergence condition only.,
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Appendix I,
To show relation (11), let us start by defining4)
A (y) = _l. deEi(ql*‘P) (X+Y) <p f [J (-x), J (y)] IP > (Al
Hv -2 2 u MY 1
where
P=p-p, (A2)

and where the isospin indices of the currents have been dropped, as they

are unimportant in this context. From translation invariance we have
= L Py [u, _iq. (xty)
Auv(y) > e Jd X e 1] <p2| E%J&ﬁ,Jv(x+yﬂ ] pP,> {A3)
Comparison with (9) yvields

Auv(O) =ty (A4)

From (A3), by changing the variable of integration we find

(y) = eipyt (A5)
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By differentiation we finally get from (Al) and (A5)

i(qr+Pv)Apu(Y)+'% fd“xei(q1+p)(X+y> <P2[EJU(—X)’3UJv(X)]i Py? =
(46)

ipy,

v
= ip'e "

Using translation invariance again and specialising y=0 we arrive at

(10).

Appendix 2,
1

Using Lorentz invariance and P-invariance T;ct may be shown to depend

on 32 scalar amplitudes. We use the following expansion )
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In this expression j %{pf+p:), Qp = %(q¥+q§) and the scalar

functions depend on 4 independent variables chosen to be v,t,q?

and qg, where

Ve e g Qe (a8)

t == (p,7p,)% = - (q,~q,)?

t
For the absorptive part t;ot we write

t't = t't
o u(p,) m s u(p,) (A9)

and the expansion follows from (A7) by substituting corresponding small
letters for the capital letters describing scalar amplitudes.
Finally, fox the case q% = q% = ¢2, by using gauge invariance and (11)

and T-invariance, the number of amplitudes may be reduced to 12:
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Finally, introducing the amplitudes hgl) and h§3) belonging to total
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