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Abstract
Equal time commutators of finite, renormalized current
densities are considered in the first two orders of
perturbation theory for the models of photon—nucleon
and meson-nucleon interaction. After giving a definition
of "equal times" for distributions, we calculate without
the use of a cutoff, the commutators of vector currents
in electrodynamics for the cases where a higher symmetry
exists, and where it is broken. Extra terms are found
for the Jo’Jo commutator as well as Schwinger terms.
Divergences are obtained in this model for the jk’jk
commutator and for the jo’jo commutator in the meson
model. Discrepancles arising from the use of a cutoff
are discussed and the properties of the extra terms are

-

examined.



I. Introduction

We study here the equal time commutators of non integrated
current densities formed in zeroth and first orders of perturbation
theory of the interaction of photons with nucleons via Yukawa coupling
with the object of obtaining the most important information concerning
these quantities rather than in any way attempting a complete treat-
ment of all possible types of currents which we may construct from Dirac
matrices. Thus, when the arguments begin to depend on the type of
current studied, we will restrict ourselves to the discussion of
vector and axial vector currents, these being the only ones that seem
to have been of use up to the present. Since simply setting times
equal leads to divergent and ambiguous integrals, we are forced to
use a limiting process to consider the equal time quantities. This
process is neither new nor strange and has already been used by most
authors attempting to make rigorous deductions from the assumption
of canonical relations. After a precise definition of the equal time
limit, we compute the zeroth order commutator (where the fields used
are ordinary free fields) and discuss the divergence occurxing In the
vacuumn expectation value. The first order commutator splits naturally
into two sets of terms, the first of which are extremely well behaved
and which lead precisely to the canonically expected right hand side.
The other terms, which in firxst order are proportional to the Bose
field and which contain all the difficulties, will be the origin of
any possible non canonical terms. Their limits will be computed and

examined as to the most interesting properties.

The most important question is whether the equal time
commutator exists, i.e. whether these quantities converge as the
equal time limit is taken. If it exists, the next question is
whether 1t vanishes or whether it contributes a non canonical term
to the commutator, In the case where the limit exists and does not
vanish, it will be of interest to check whether it vanishes after one
or two spatial integrations, and, since we are dealing with quantum

electrodynamics, whether it is gauge invariant.
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Although we have already specified the problem essentially
by choosing the perurbational approach to a specific interactionm, the
calculation will differ from the others in several essential respects.
Several authorsi’4 have done the calculation with unrenormalized
current operators in the commutator as well as on the right hand side
of the equation, keeping apparently divergent terms in check with a
cutoff and considering the canonical commutation relations verified
when the divergent terms on both sides of the equation can be made
equal. The spirit of this work differs from the previous ones in
that the currents are renormalized from the beginning, and the
apparently divergent terms obtained from the commutator are analyzed
more closely and evaluated in the cases vhere they are finite. A
perhaps less serious difference is that we will not introduce any
more singularities into the already quite troublesome equal time
limit by time ordering the commutator before taking the limit. In 1,
for instance, it appears necessary to throw away several polynomials
in momentum space on the grounds that they will lead to Sl—functions
in the time difference variable, and that equal times will be
approached through a sequence of unequal times making these contribu-
tions vanish identically. In the most important cases which we
study, however, the equal time limit will not depend on whether the
times are allowed to be equal during the process or not. For a more
precise formulation of these considerations, see section 5. As a
result of not time ordering, the Feynman formalism does mot prove

most advantageous for the computation, but this is a matter of

method and not of principle. .

Our approach differs greatly in another respect from that
of Brandt6 who has calculated the non canomical terms in all orders
under the assumption that the renormalized fields satisfy modified
canonical commutation relations. Since these commutators can be
calculated from perturbation theory as well as those of currents,
this statement will be considered here not as assumption, but as a

hypothesis capable of being tested.
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A third difference is the absence of a cutoff or of any
sort of regularization and the correponding increase in the difficulty
of the calculation. Hamprecht5 pointed out, shortly after the
appearance of their preprint, that the extra terms of Johnson and Low
could be modified and even made to vanish by manipulations with the
cutoff that had to be introduced to make them finite., Although this
cuteff is not necessary if renormalized currents are used, it simpli-
fies the calculation considerably and leads to temptingly simple and
easily interpretable results (see section 6 for this calculation).
However this process clearly involves an at best questionable inter~
change of limits under circumstances in which caution is most urgently
recommended as indicated by the uncontrollable behavior of the several
divergent terms which should at least partially cancel each other, and
as confirmed by the variety of answers obtainable by varying the cut-
off. Since the integrals involved are all finite provided renormalized
currents are inserted into the commutator, the question of whether
they have equal time limits is well posed mathematically, and the
limits can be obtained without any further assuptions; this is done
in the next two sections for the rather easy case of free fields
(zeroth order) and for the first order commutator in quantum electro-
dynamics of the not necessarily conserved isotopic spin currents.
In the following two sections, the properties of the extra terms are
discussed and the results compared with those of the authors who have
taken one or more of the above mentioned shortcuts in the calculation.
SectionWil reviews some of the differences which the choice of cutoff
can make in the extra terms. Some considerations relevant to the
results although not directly connected with the calculation as well
as some of the more tedious aspects of the computation of the traces

of Dirac matrices are postponed to appendices.
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II. Preliminaries

The Yukawa-type coupling is given by the intevraction
Ta = ,
Lagranglan cfgl =G«911P Ahpf =9 @Y vwhere we define ‘-&.“‘—'-Gar,fﬂﬁ
and use matrix notation to avoid indices. 1!’ and A are spinor and
tensor fields degenerate along representation spaces of some

internal symmetry group. The field equations {without indices)

are

(3 + w?) A =] Acy = IAR(”“J’T’H)
() -m)P =4 Py = JSR,czatp {iy
where j@.='¢d@pr1‘-‘r and f“ = G&Ff Apflp'f i.e. S - CP\P

The following table should clarify the notationm:

Interaction Representation Space QP

P A
electron-photon 1 dim idim eytAL
nucleon~photon 2 dim isospin space | | dim e 1572 yta.
uark-meson | 3 dim SU ] dim
d 3 8 d qubs T fgs(i)m]:fr

t -

octet-octet 8 dim SU, im 5U4 (aipr+bng)¢9

If A is a matrix in the representation {generalized isospin~) space
of ¥ and 3'3 is a Dirac matrix, then the current constructed from the
spinors corresponding to the Kronecker product /\ =A@, 1is designated

and defined as follows: .
j/\(x,) = PwAbw

where it is understood that all renormalization steps necessary to
produce finite operators in Quantum electrodynamics are also to be taken
here. Up to second order, this amounts to subtracting the vacuum
expectation value and multiplies of 9P, and performing the usual charge

)

renormalization ‘.

%) As 1s done in 2.
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Once the current operators are obtained and their commutators
are constructed In the various orders, it is necessary to have a
procedure for passing to equal times. In order that this treatment
retain as wide a range of applicability as possible, the following
procedure, which seems to make the mildest distribution-theoretical
requirements and still produce operator functions of x and y, will be
employed. Discussion of this topic is postponed to a later section.
The commutator will be smeared by the function &"(E'j') a(Xo) DBED
[E:x-vé s XK= %(z-e-»:’)] where f and g remain arbitrary and ¢ will be made
to approach a 8 —~function, i.e. ’(3-‘9 1. This limiting procedure will
be illustrated for the case of the free field current commutator which,

formed according to the contraction rules for Wick products from

JaHr = Ay, 98> = tPep 2 ey is
$ 1Py AS - I - 11T ep T Sig-n AV —; N (NS “u-y> Z'Sﬁ‘)d"“)

When the first term 1s smeared with {'(E’,i’)atm {25(5,,')’ the result is

1'J‘ f(i‘ er+<, 7+3) 5(1’0"‘10)?5 (4 (g +1i)° ‘T><P)Aﬁ'rf-m)2 ’(501) . 4o 0\4\’,"\

(9)
where the tilde's represent Fourler transforms and d&b < = £¢w) Ferrewesy d
The limit 6 —? | can be performed with no trouble, and from the anti-
symmetry of the measure, all terms in «yv-—"" drop out except ¥ "V .

The integral then becomes
izj fo 3 &% g (p+qe P A I beqd: dpig

-t ~ )
The  ~integration of f is the same as smearing f with Slé’) and with

this done, we recognize 3 the defining expression for
e o s '
jdﬁc,s iSE FEX1gia) 1 ALE /0
With the notation [/\,-&,Z]:ATGZ -Z‘a‘“o/\ one has the rigorous result

(o

e jpel = & 5o 1860 Jip ()



III. First Order

The renormalized current is, in first order

j:lm = J'&“fg Qf’-’(ﬂ/\sn""ﬁ’@“&’%ja: +:‘:P-¢~5) ‘P(ﬁ)SArg-x)/\‘ch)'.)
and the commutator, in first owder, is

. . (A iy s
{:]Am, Jg“é’_‘ ' = [3 . 3 (1&3] + [J x> 3“”(3)]

where each term on the right can be obtained from the other by changing
the sign and exchanging (x,/\) with (ﬁ,§:). A calculation of the first

gives (where the z-integration is understood)

B AS -y L Spey-2> P> W) + 1 Pep LSty P> Sa-0 Abeo:

Fay ASix-2 Y@z SA('z,—gj 137 ey ) Pz SA(z-g)ZI Sty-A Yex!

Nk (5? (AS“G-+4pT Sriy-> Peed SR-0) + Sp(8%-2) P G=-PL %40 /\))
E

The treatment used for the free-field currents is applied to the first
and fourth terms and their counterparts in the reversed commutator
because they contain 8(5} the result 1s the expected 18(&')3?;\ ’E](X)
The second term should be grouped with the counterpart of the third

{and vice versa) which together amount to
PepLSey- B P@ St N + | BT Sey-2> Py S -0\,

and will cancel each other. The formal argument is that since

S (x) = -8(-x) S(x) the & function at equal times may be moved over to
the 8 function changing it to SA and thus making the first term cancel
the second exactly., A rigorous proof which does not interchange liwmits

and deal in cancelation of infinities is given in appendix I,



IV. Extra Terms in First Order

The terms arising in the commutator after two Wick-—
contractions are responsible for the extra terms; these will be pro-
portional to the Oth order electromagnetic field and therefore con-
tribute only to matrix elements in which the photon number differs by
one. This corresponds, therefore to the calculation carried out by

Johnson and Low i for mesons. We will restriet ourselves, however,

to the case A=TF‘®A 2 =1, ®60,

The two-contraction terms are:
_iEﬂ:(SPMS“&- LSty P8 E2-) ¥ 8 (8%%- > Pas Spz-pL 8‘%-::)/\))4‘; - (Mev 3,53)

In the case that the symmetry is not broken, i.e. the mass matrices
are scalars and A,6 commute with the coupling matrix in Px), we may

conclude from the ¥Furry-theorem—argument:

Se (0"1(53};.) Puey Syt~ ES Thox) A)TC )= SP(AOS 5?-3) Xcsg ('3~E)(-<szr)) s%ex) -

that the terms in the brackets cancel each other, for in the case

which we study, /\c=’ -'® I‘-\r, ZC= - FvGGT and Sp{fﬁ"f") =SplAGT),
Therefore, we consider a natural and simple case of symmetry breaking
where Por= 1’?@ Aﬁtm‘; T=eny) |, A= 7. 0%, T=7.0[,. With these
choices, half of the terms disappear because SP ('r‘_fc_'r):.z‘s‘,(-f_*r,;c)=0_

The remaining two terms are then

Y Ié:*@p(‘rsck&'n\n Sk('l\“ P S‘Té-l‘-)) -+ 8' (3;,_ 5{’*!? B ,;r S‘r)(:l -2 Pz SP\ =~ "'))) d* =

q+ B3

-~ . SE 4 jkex () 52 B
+8p (upp-rod o oy Gl pERE Yo «ppE e i )éﬂa‘hdﬂqm{ k

(g- k>3 +ml

‘ | = t(p-pé i

In the second half, we make the transformation p,q =¥ -p,~q and apply
the charge conjugation matrix inside the trace with the result

.
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Se (F Gpp-mo . BT (- P gy ) €071 AE e 0,

¢
The extra minus sign from % “disappears upon rearranging the sum over +,
This last symmetry allows us to simplifyfthe calculation in the two

cases of interest.

If v=p, the two trace terms will be identical and smearing with a

function -F’(E)%(K) gives

. | A eV 8 g‘
ﬁ%JZiS?(’{VhTP“m)XP aﬁf{f’ Pk g 'm\s (P“‘i s g0 dl) oy d QL cpdk.

where ‘f’sls)--— (((E)'*'{‘(‘E)) . We will want to choose again {.'(5) = “E)é(éo)
with ¢ symmetric so that the smearing function f must be
symmetrized, This has the effect of insuring that derivatives of
8—functions occur only to even orders. The other case of 1nL'_EresI: is
=0y (spacelike) where only the terms antisymmetric in £ will be
calculated (the terms predicted by Schwinger). The choice of an anti-

symmetric f requires us to subtract the trace terms giving

ey rmt

(g lr-m A
& JZ&. Sell yp-m 19 Eiherms P00 679- m))F (r-4-20500dQ G dQE d*
In order to get rid of the summation over * we make the

transformation p _,q —>_-l:po,iqo. Ignoring the irrelevant factors and

with the obvious schematization, these expressions acquire the form

d0 e d0eqy X

T Qb - ) o k) = T8+ Begskd = Spb I By Gonge )

vhexe &Gl =4Z Bk, Fhtph) = 74Py, @ = g+ P The
calculation of Z(-_\;)E S?( .4-) 1s carried out in appendix 2 and
summarized in the following table where we make the transformation

q =» ~q to have both integration variables on the forward mass shell.
Here |} and L refer to the components parallel and perpendicular to

the photen wvector 4



Commutatoy € =4 € =0
¢ q g )
pov (R bt R fuge i R
] m 2 e o :
unée +4,23¢ e GHBE 140 L B sz
(_1:0-4_-‘; (s Zf?;e-f;-. e ‘th w4y f :_;*:‘?AGP-\ ?.-{-?u‘ﬁe-ﬁfﬁk.é'x,_f_
(1

We now specify the S—sequence to be inserted for ¢ in the
computation; it will be formed from a function from Zfby dilation of
the argument: g(t): a¢(ﬂff) N gg(P) = é‘(‘g‘) —» d(o) = 4, (““‘"“?v)-
Because of the lack of symmetry in the argument that the function Zf

acquires, we make the following Taylor expansion:

N f'N)

BlroTik) = f( 2160 = B () +8, BBt + & P(9 #Jes)

o<d¢ 1 Ex = S 4 %—;

=Pt 29 . Pese . agemq = Foodet 2w
6 oL '&3' = a7 ol m{F.,+1c)+ ICTRL))

R

~
. - h
The functions ¢s and Q?A will have the expansions (&, = 51 5-:

Ao = Bray+5 F1a) + 45 eI G+~

- iy )

ad I

) =k Arzgy 4 kO Frze

4 ) =L p(a) + k0 B4
To justify throwing away the remainder after a certain number of
leading terms as well as to compute the limits of the rest, we will
rely heavily on Lebesgue's bounded convergence criterion which states
that if a sequence of functions {ﬁ} is bounded by an integrable
function: |f“‘ £ 8 jgdtmooand if the functions {u converge pointwise
to O: {;(m-»-o for almost all x, then the sequence of integrals
jf“mdtxm will also approach 0. To apply this, we will make

first the transformation
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- 3. = = -7
5 e T = Pra-ik AF =LF 5 F =T -3
z z YR AN 4)
and notice that the quantity Po “°|° becomes — 29 (ETTOTRIES S 1IN

a polynomial of first degree in q. From this it follows that
ot _a& 1s bounded by a polynomial in ¥ and ¥ since (l?\ £ Cjo?‘m)

‘O(S‘ < -ﬁill?+ﬁ| + el N Q% 3 Q\?+gt\+#ﬁl?*-ﬂ: 242 = PAW

e+ Qo 79

A AL

After the above transformation, the smearing functions without ¢ are
’f‘(f’) %cm whose absolute values are integrable when multiplied by
any polynomial. Thus the problem reduces to proving that the rest of
the integrand satisfies Lebesgue's criterion in q. To do so, we make
the substitution 'Er—-» G?" so that the argument of each of the functions
in %) becomes 2q except for the remainder terms, having Qq + € .
Since 6“’) also falls off faster than any pelynomial, the question
of boundedness can be restricted to the rest of the integrand for the
leading terms. As for the remainder, we first remark that 1851 ¢ 'hé’-\ﬂ
so that for a certain value of N, the rest of the integrand will
approach O pointwise and be bounded by a polynomial. Secondly, from
the fact that Q(" is in :f we may replace it by (44- ‘Q?—Iitl\)
(,{ + |Qq ’Pcr,h_)\) when o> 1., In addition, from the functions f and
g, we may extract a factor of (4 +’Ptr‘,h)) without disturbing their
falloff properties, which, together with the first term gives a falli-
off of ’

(‘”‘9?'13!5“* e Py™ s(fi -|--"'|';’+Is‘2a,—'F‘l)ﬁWl < U+ Q,q)mm

which, for sufficiently large m, causes the integrand to satisfy
Lebegue's criterion in q. The number of leading terms that must be
considered will, of course depend on the polynomial strength of the
remainder of the integrand in ¢ since this determines how many powers

of oL will have to be cancelled by (€4 W.

An interesting observation that may be made with the help
of the expansions (%)} is the effect that a cutoff would have on the
computation. If the cutoff is to be of any use at all, It should
restrict the integration to a bounded region and thereby .allow the
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limit o —> o0 to be taken under the integral sign. However, any cut-
off of this sort would allow all the texrms in ¢, to be discarded and
all but the leading one in ﬁz since these terms all have at least
one power of & in the denominator. Although the part that 1is left
may depend on the more detailed nature of the cutoff, it is clear

that in any case the contribution from 22 would vanish.

A. Zeroth Components

Considering, now, the commutator of the Oth components
of the Ty currents, a glance at the preceeding table shows that the
entire non gauge invariant part of this commutator, l.e. the contrib-
ution proportional to ¢, comes precisely from the antisymmetric part
of { . Since this particular contribution is not only easy to
calculate, but alsc a source of several interesting results, we will
complete the calculation of it expliecitly. Putting together the

varicus constituents and making the E?—e-;?transformation, we find the

expression
_T_i_ajz(tltma) d;?’d;? fs(?>§(k) @, (> dtk (% 5’(%.(9,) +%géf‘("~;})+---)

in which tf=Yopffo i.e. 1=Fp so that tq= Podo+P A ___qm_

SR gD = ﬁe.z\lmﬁ;m:qg FYRLR) 4w = .

= (g A mt E"z*’*"‘ﬁ;ﬁ"’*ih)’] Foee (g 235k

To use thils expansion and be able to majorize the remainder by the
last written term, we break up the g—integration into the two regions:
0s3%< Q®and C'¢@* ¢oo with (%= 4G*LRY The first of these will
vanish as remarked above as a result of the cutoff. In the second
integral, all terms past the first two can be grouped together as the
remainder in the binomial expansion*) and easily seen to satisfy

Lebesgue's eriterion (replacing 4, by m as often as necessary and

*®
) The remainder after N terms in the binomial expansion is, up to a
N n-N
constant factor, X' (4+9x) which, 1f O <€ X ¢ @<1 , is
bounded by (4-P)n_N|x|N.
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making the transformation § ->aq). The leading term

(64 40 + 2m%) A 4 (2 fc?)ca(k) R (k) d*R ¥ duses>
z1f PSe s 9

i— ""Pb
can be handled by setting Po %0 Wand bounding f‘é’c—i’:—_;%)

by a"’:‘_‘i? where the numerator has already been seen to be of first

degree in g. This second part will thus again fall away leaving

\\

2i [[eRglor +ame |{r § 0 RO I

multiplied by the g-integration I& Ee@)‘ dgg(.Zq) which converges
to I dgGq)d = ,d(O)-—’f Throwing away odd powers of T because of
the symmetrization of the function f, and writing the above result in

x-space, we find an extra term of
(2m + 72)8E) w00 + 4 S5 % 9,00

Using the same procedure as above, we find that the higher order terms
ey

in the expansion of é k) gives mo contribution, and the result above

cannot be cancelled by any of the other terms since they are proport-

jonal to the transversal part of the electromagnetic field.

Before completing the calculation of the extra terms for
the Oth components, we may discuss an interesting feature of the
commutator of two spacelike components of these currents. More specific.-

ally, to retain simplicity, we consider the sum over @, w—[‘)é(;) 1 .
t

Here ~§%(fp-mW. =Ap-m e, t=-2p so that 1q+m? -—--4P.qd.:uﬁ.)¢|+m %
As the last calculation shows, the texms (Pp)q and m lead to finite
extra terms; on the other hand, the term p,q, will contribute in the

amount of

oo d% oy 4, (K A2
J o _‘iﬁfsc?)g(hsfP‘,cnolk(@@'(;})Jr )

the first term of which,without the smearing functions, is

3 / ,lmi . 2 Y
Cf%‘i/@f(%m ~ cforadip = ' [9 depds.
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Thus each of the individual commutators jk,jk must have an ot
divergence proportional to the integral S:%qﬂﬁsd.q . Although
it is an easy matter to make this integral vanish, there is no
simple prescription in x space, such as keeping the times separate
as they approach each other, that will automatically insure
convergence of the commutator. The higher order terms in the
expansion again give finite limits which will not be calculated

here.

In completing the calculatiyn of the jo}jo commutator,
the rest of the contributions from ﬂé‘ vanish. In the ﬁ; ex—
pansion, the first term must be treated differently from the others,
and it will be necessary to make yet another variable transformation
and to expand some more square roots. The reason is clear from the
following homogeneity argument. In all other terms, there is at least
one power of ® in the denominator to be cancelled against the one
appearing from dg, and the remainder is an algebraic function of ¢
for which the criterion of pointwise convergence is also the criterion
that the pointwise limit be a polynomial in q whose degree depends on
the number of (% that one had to start with. However, if none are
present, then the integrands converging to a nonzero function will
necessarily behave as q“ at the origin, and will consequently not
satisfy Lebesgue's criterion. There is no hope that a nice cholce
of test functions will help, sinceﬁZ(O) must be 1. However writing

the expression

— = = . -
g—zﬂq-mﬂ g+ bofh g,k GF @ (%) d*g

kahﬂo e

=

)

we notice that because of symmetry in g, the *oqh term and the Luﬂo
part of f1+nﬂ will disappear having allowed a cancellation of the
unsymmetric p, in the denominator, and that the terms may be recol-

lected as follows:

s

_0 (m* 4—'?’(q’*éj:)) al. Qﬁ(éﬁﬂ;)
ko Po (m*t q%)

. -
Making the transformation q’——-)-?' =F +5k (‘h_ ?) we obtain the

expression
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[ -2l ED2EE HEAE D) d'e

A
in which the integrand, with the exception of the smearing function Q’

is antisymmetric in r and s simultaneously. Thus making the expansion

BEET) = Bl%)+ Dglzsy + -+ & Feas 98y
_.sl»z+4k,"
S+ VLR

the first term will vanish, and the others, each containing at least

s-30 -

one inverse power of X can be handled by the methods used above. By
successively employing the device

4.4, sl 4.0 . 0o srpr. gR-v
oS goplsitny T 5 RSy J s

we arrive at the expansion

L 4. o4 3_,_9_’_‘*_ 192 —:E'—L-"' ""'1942 '.D4 h Digh— (Ceth.;,wa‘)

1«,1@ Tejtks 9
]

-~
Hoting that the argument of ¢ is in any case symmetric in ?_1 y We
may throw away the soﬂl term and retain only those parts of the
remaining terms which are symmetric in T and 'é’l_ » The numerators of

the second two are

. ' — + 2 = 20 o~
(o= 5 457V E T B e 50 72 )or0-v)EF 2 - 0r-dTET + 2 RE ¢
% 2% s, @HED

LRTY 6,8 D = (mrt.gr ¥ N2rt wy 9_;‘-39 & (mt-sy(rta AT )’)SJ.(? -
— 4@ s_ﬁ 4crs Pt -1 =R %

(m* -5
& - 4'ils“ ("l 5)“L‘9)
Y

The higher order terms in this latest expansion will all give O because
‘9\ €T 4 2inisi . The whole coefficient of é (Zs) becomes
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-+ =2 o e T w4 "
_ 23,3 s 0h$d 3 s"—r‘--'m 4,56 (15 WEP) 3 (2=t
. (;usz) . S (4 = ) ko Sc Gt S A+ S )

=
[~
A
by

= ﬁ’ ?)

and the limit is (after & —» o3 7 = 1%

o 2 o= P

Iﬂ 5, BDEPR) (3£) flrny odsdwoey = —f‘-‘%‘l T, 9 u[fﬁfzs)ds dwdd =_“f_ﬁ-3ﬂ
TR sisp M RF : .

Since all the gymmetry cdnsiderations used above hold also for the

terms &“T\l_ ¢“?—‘l) , and since this integrand converged, the rest

will all vanish because of the greater number of ot's in thelx

denominators.,

Having taken care of the leading term in the (k) expansion,
we must now consider the next two. The last of these will also vanish
in absolute value and thus because of the remark made earlier in the
footnote, the entire remainder from this point on will vanish In the

equal time limit. The two terms are

- . 4 2 2 Ya 3
2(‘&1“"’“1) + 3 qk + C'o Pk ) LCP 7 S+ kb ﬁ +|v') d
(- " e (& i+ S22

PU c‘o k’O

and may be rewritten as

Lot 3T o [L(rme 4 22 )ad(z +l dwed)
(- 2“"93“";}“‘ + (5'” *f'*) ),n—jr;;ﬁ {z(%;—q: + Wq) dP(%) q

To see that the ;ﬁ” contribution goes out, we remember that tq + m2

does not grow in g, and that

PR oA Ay, Q8 fi(*“"f’?o‘) s 4
pe ¥ ‘id =71 e Fe + o T pe i+ F/?o + Jo

which also falls as q, 1. Thus the first term in parentheses remains
bounded and converges to O whereas the rest remains bounded by ¢(2q)
after the transformation € —-—JOI? . By Lebesgue's criterion, it will
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/
give no contribution to the limit. To get the contribution from é s
we may take the limit of each factor, i.e. no complicated symmetry
- A
arguments are necessary. Designating c’llq by vt , we find a limit of

(_4m"-f"+ihz +(;2;{)1 :71_( R)) ﬂ_‘_CP le,\d chﬁ)) o

>
292 A Pt ” ()" - -
SRR v o dwerly & "'(”*’ ?"' "q’ duweidy = 2' #y P dw
The integral of (mlfdw"?] ]-hmt‘gdmsg so the sum of all

contributions from ﬁg to the commutator is é_(gﬂi »{‘L(p) = ._T‘"{'L(Q

To within an unessential factor, this becomes
—b ‘<
A, (x) V9, 08

in x-space.

B. Schwinger Terms

We take first the contribution from @ which we find in the
table under £=0

‘:‘(Mi*.ei’x‘(’) Eﬁré’ + Ei’é, ’[?;3]'?_“”’; + P (ée_’—- PLCE ke

?1 “+m

As usual, this 1is to be multiplied by

?3-— ke dﬁ'(_i)dwm) = ——q-—dﬁfgi)dw(n) (4 + A+ &)

to get the leading term. Retaining only the terms antisymmetric in 7
and which do not vanish on integration over d, we find for term contain-

ing Ao = 4 the integrand
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- A kog® 'y 2, -
(fu CP..L'e - ‘1‘1@ eu) 5;“;?-— ol¢(3t—1_> dw(-‘i)
whose limit is
= = = il
-2 (PR $€ —N¥ k<)

The rest of the expansion in Acan be collected to

- x Q-r+k)q _(T+3 1)
Sk =L (-5 -5 @i 5
oA+ ) Po 45 (1 B

which makes the whole term have the same finite limit as (the term
with P, replaced by 4, since, by standard arguments, the difference
will have a limit of 0)

[—[{'m"—q:l—q&ﬂﬁg —-%L?(E*;L)Eﬁ]i_q;*_m} + (r+7k-9), Pre "'(f'cl).l$ e X

X _’1:;1‘3_ X - dﬁ(?«i) deocit

Clearly only the terms containing the maximum number of q's will

survive leaving (with q) -.-.qF\b)

lqr@e —4.248) 3 - A RHE + A3 ER | @) (-doti) =

(éilﬁﬁ fa T‘k - (ﬁn)(ﬂ;‘?)e?)dwrﬁ’)

1f dwt = dewsPded |, then, since fﬁiﬁffﬁlz)dﬂ=r3j§s‘n’p the angular

integration results in:

-

frrfdeoss (‘&(‘E cost) rik -ﬂq?sm‘,?é’l E,) (e_,_(P ok - ?1?13’ e ;:

A —

The last of the  contributions comes from the part

g 4 -(2r +k) ‘29
55;5(.1){9_;;: e % Z;—(Pﬁ—wol;ﬁ(i-,i) > A o A (E)
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ofﬁg, all remaining ones not contributing to the limit. Ve may take
the 1limits again straightforwardly without using symmetry conslderations

to eliminate the divergences obtaining

(3 b - B0 A i e [4dp (2] — 55 @F 7R 29 &F)

Writing these three terms, which differ only in their coefficients,
in the less manifestly gauge invariant form
- T 4
R G e S 22 =27 =227 _ vk — PO k
~
we may write the extra term coming from §z’in x-space s$imply and without

reference to the photon vector, to within a constant, as
e IO S = < ~ o < &
358 SA.00 - FSE) . Ay = T IB-(JA,00 -3 AK))

The contribution frouiszg , likewise obtainable from the table,

>+ P ) B8 ~ B8 (3,8 d¥ 95(@1)
Pe ‘L-H'ﬂ

must be subjected to the same treatment as those for the j ,j
commutator, the leading term must undergo another variable transformation
q >3 =y "Ek’ and the function ﬂ'o has to be expanded about a more
symmetric argument. For this leading term, we then have the expression
. 3 -y =2
3L (F-D Ba — S F-DLP L2 ds deoD

oo o e seamt () +Z (o) Bl )

Syt + mt

where again the leading term vanishes for a reason similar to the one

in the other commutator: the smearing function is symmetric in s as

well as the measure; the rest of the integrand is symmetric in the two
variables r and s simultaneously; thus the integral is symmetric in r
whereas the smearing function in r was antisymmetrized; as a consequence,

this contribution vanishes.

The next two terms will be

oy (5 @ — B BE) pduedy (ks BE A2+ ()5 AP (z)+~)
Pe

Sivmt NSy
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In the part containing dﬁ’, the limit can be taken immediately
giving a result independent of I and thus no contxibution. The Ffact
that this term converges absolutely means that the next will vanish
absolutely, and that the remainder after this term will not contribute.
Returning to the above expression, we may also throw away the k2 term
for the same reason and expand

4 4 4 Stepd 4 Tt

Po T S Sofe (5ot 9 Sv PoSe (pot S

The leading term will drop out by antisymmetry in Su» and the other

will again give an absoclutely convergent limit of

z =2 Lo ~5 & - g e —p e O( 7 E
e S G.e . rs (ZsD
) P + @5 sy dwe®s % _@%T_ Eﬁj

=g

L=Fh

which, after the s integration, becomes

-

F{,— x ‘-‘PLe

|

oA
=

Without reproducing here the details of the computation of the higher
B
ordergfs contributions, which present absolutely no new problems, we

state that they converge and amount to

e e o
7K Be . QAEB IO
&

We summarize briefly in the following table. the tvpes of
extra terms obtained in the two commutators which we separate into

gauge invariant and non.

1,3 Schw.

— -, , x4 > = .
g1, A\ o &) COEIOA,, DDA,

n.t. 'm} Abé_(‘b’ é(éﬂ)ﬁko 9 ﬁzJ[é:}Au 4]
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V. Summary and Discussion of Results

The caleulation just pérformed shows first that the equal
time commutators in Quantum Electrodynamics are not in general well
defined objects even for vector currents, since we have obtained a
divergence depending on the time smearing function in the ji,ji
commutator for two non—conserved currents. At the same time, however,
we notice increasingly nicer results when one first restricts the
calculation to zeroth components, and then requires the current to be
conserved. In fact, the equal time limit exists for zeroth components
although extra terms appear which do not vanish unless the currents
are conserved. Of these extra terms, we may ask what happens when one
or both of the x space variables are integrated over three dimensional
space, From locality of the currents, we must expect the extra terms
to consist of 5 functions and their spatial derivatives in ? multiplied
by some functions of X, which in our special case, will be made from
the field /qe;CX). The necessary and sufficient condition that the
current vanish after only one integration is then that there be no
term proportional to an underived éS function. That this is not in

general the case is shown by the extra term
g i 2 — & =2
(2w + )55 AX) + %Sté)v,qo(x) + AKXV, &)

occuring in the zeroth components of the‘T;currents. After one

integration, the result will be

<2'm'z + 3{;\72)/\0(3?

which is not zero. The second integration results in the single term

Q'mzf ADCg) d?

which we may show to diverge weakly.

Recalling that_
3 -
At“(” = é%):f-%(—:‘—z er k> a®io e’kx + ho.
A

{ol{a*cmy, a¥ B0y = St O(k-K')
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we may compute the one particle matrix element <O I AO(X) \ Ap (%p) tQ:>

where g, is an arbitrary set of 4 test functions, and smear with a
sequence fy(x) which approaches 1, i.e. whose Fourier transforms form
a 5 sequence. Smearing over the time variable with a function fT’ we
obtain for this matrix element

3p g _wy & oo Y , .
‘Yﬁl_’%}é&; f’[‘(k') {“(h)fay(k) ecf"‘)(k) e(v )(h)(<0|Q,u2h)*a‘“(k')l0>+ (O‘Q()‘t!k')*awa)\(»)
s Re 2y

[RSE—

4y

dh o @ ;
o jgfd(m £ lhoyey (> €5 €, ()

where, choosing the normalization of 2 p 183, we have

4
g,el ey e Yk = G, (k)
and conclude that because of the ko_I singularity in the measure, the
matrix element will diverge for a 5-sequence. If we take explicitly
~ oy ¢ -
the dilation {;{k) =a*§(uR) , then after a simple change of variable,

the integral becomes
P o 7 -~
2o [ELER) £y b (%)

4

giving a divergence of (¢ for the matrix element if we take, for instance

~

%0(0) = !%(K) d)-’#‘ ) . A similar calculation for the norm [l[f_{lmﬁ‘(g’) Ao(x)ﬂ“
2

gives a divergence of o,

It is interesting to note that these divergences are peculiar
to quantum electrodynamics with its non definite Hilbert space and
absence of a mass gap. Because many results obtained in current algebras
use this spatial integral, we would like to point out that when norm
convergence is concerned, the answer will depend critically on the
manner in which this 111 defined concept of the integral over three
dimensional space of the current operator is given a precise meaning.

This is nicely illustrated by the somewhat less pathological case of an
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axiomatic field with a positive norm and a mass gap in the energy
momentum spectrum in which case general, rigorous and explicit results

may be obtained from the KHllén-Lehmann representation of the two point

function

<0‘jp\")~j,(‘33\03 = [[ dpom (FhDuemiqu) + dvtm)] D50

In the case of interest where [1"-'0: %, the integral in p—space

becomes
J(F’thtcmx +dvem) € px-g dﬂ-mtp,'m)

and, after smearing with f;@ﬂ, in each variable,

E(F zalfum) «-l—olvmq) ‘ fs 2 } (\}f‘-rm‘ ':?. %i—: -

If we first let {s ~> 1 by dilation f.e £, 3 £ 00 = £ (B
then we substitutef ) —ot’-F (P into the above integral and make

immediately the transformation ? — q = o \3’ obtaining

J(&: démm +ol1)cm)) ' E“?){r (J‘i”'—tm‘ ) rﬂ%—ﬁ_—&

In the case that jCJt is divergence free, l.e. QHJF(K1 = 0, then
d¥ = 0 and this quantity will disappear as o? with leading term

| ¢ 2
1 [ hpley [duomlitolt

Otherwise the norm will approach a constant

. - 4
(Vi o fom1fcool,

On the other hand, one might think of taking a function of the radius
vector which is ! for r £ R, drops smoothly to zero, and remains
there for r > R+&. In this case, even a conserved current gives
rise to a divergence going as R2, the coefficient of which Is zero

only 1f the current is itself zero. The calculation is reproduced in >
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and will not be repeated here.

It will now be shown that there are physical states between
which the non gauge invariant part of our answer does not vanish, i.e.

the restrictions imposed by the Lorentz condition
+ ' '
(2 A0)P® =0 3 @ w+ 1w =0

on a physical state ‘P does not automatically make this part of the
result unphysical. The state

P o= S(a‘”(:) +10P %) (0> Flo L

does not satisfy this condition; the cross terms vanish because the
destruction operators can be commnuted over to the vacuum, and the

other terms give

f(lm(h) a®eht — a“®r 0(4)(h;)*)‘o> —
) * - ,
= [a®0,a®a)] 10> — [a“%y P 110> =

= h-RDIO> — S(k-kDIOY = O

The vacuum being another such physical state, we compute

Olhotolpy = Gl [£E e*alle (o
- i {TE e gy g’ (ol La™b, o'\ o) =

(3)

=
g5 + 4 @ P\ 0> () k=

e

Vho

_ &% ok g
_1jﬁ:e fwo + O

We also remark that the Lorentz condition holds rigorously
for this matrix element since the creation part of the divergence
9t,,_At,‘applied to "-P creates only two particle states (of the free field)

which are orthogonal to the vacuum,
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VI. Comparison with Existing Works

A. Comparison of Methdd

In the introduction, we have discussed how our approach differs in its
physical aspects from previous ones. Before coﬁparing the results, we
would like to clarify the relation between our concept of equal times
and other existing preseriptions for obtaining field theoretical
quantities at equal times. Schroer and Stichel have attempted to
derive the Adler Weissberger relations from the assumption of certain
charge commutation relations at equal times between states of rapid

spatial falloff: the assumption that

fin. lim, &= | L4, 08, Jy et a1

T->0 R-r0
have the canonically expected values for A= T.;@Yurg y I= ®a~0 rB
If we were to apply this to current commutators as operators, we would
have to leave off the states as well as the R—> O limit which
corresponds to integrating first over both spatial variables and would

result in charge commutators.

As was seen in the last sectlon, these authors have used a
definition of spatial integration which could not possibly be considered
in the sense of operator convergence, even in the case of conserved
currents, although there is another equally reasonable definition of
this integral for which the divergence discussed by them never arises,
and one obtains even strong convergenée for the conserved currents.
Since the time variables above are both smeared with identical functions
which are beth allowed to approach S functions, the process of Schroer
and Stichel corresponds to restricting both times to sharp values which
are the same rather than restricting only the time diffevence to zexo
and allowing for a distribution character in the remaining variable

(x + Yo }. This done, however, one obtains on the right hand side
of the commutation relations, among other things, the Squnction in the
relative space coordinates times the current restricted to a sharp

value of time., This has the disadvantage that this quantity, even in
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zexoth order, is no longer an operator in the original Hilbert space
that we started with; the best that can be expected is that matrix
elements between states of restricted momentum be finite, as
illustrated by the free fleld current for which the matrix element

between plane wave states is

<P,o'l| SLPCfJJAC;{,O) d>X \q,F> = J«Lv('?mep 'L‘LGCP)/\U.P(OI?

which will not be square integrable in both variables simultaneously
and therefore not represent the matrix element of an operator in the
original Hilbert space. A similar consideration shows also that
jA(QZO)S], is no longer a vector in the original space although matrix
elements to plane wave stats do exist. On the other hand, with the
methods used here, the operators depart from the Hilbert space only in
the case of a genuine divergence which appears as well in the matrix
elements and is not a result of ignoring the distribution character of
the currents. It seems not unreasonable to believe that the assumption
of commutation relations of this form put strong requirements on the
currents which arise principally from these mathematical considerations
and not from physical ones. It should also be noted that the vanishing
of the expection value of the commutator in TCP-invariant stated relies
only on the fact that,jg ==j§ and the symmetry f£(x,y) = £(-x,~y) of
the smearing function so that a smearing of f(x)f'(y)gﬁ(ﬁb)g(xo) with
all functions symmetric would, in the case considered in 3 also cause

the vacuum expection values to vanish.

Johnson and Low ] suggest writing
&ollgoo,gopll > = (&S ) ok

and passing to equal times by integrating M(k,q) over ko. As pointed
out by these authors, there appear polynomials in the integrand which
cannot be integrated in the nalve sense, so it Is therefore necessary
to examine more carefully what is meant by the integral, With the

requirement that the points be kept separate as they approach one
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another, this integral clearly can mnot be considered as the limit

obtained by integrating over part of the axis

3 ‘io | | 7 . ] . A;-ka("’g
M(qdadke = | X, . (ko) Mk, 9> dk o f k= A4 AL e
Jﬁ L 3 As 3¢ %o AT\ Bl ke

and letting the range of integration expand, since this cqsresponds
to smearing the current in Eowith the Fourier transform XAB(EQ) of
the characteristic function of the range of integration, and in order
that this function vanish in the ﬁeighborhood of the origiﬁ, it is

necessary that
dﬂ- At - B »
0= (Em XAB[é));-'=o "Sﬂk O[k

which certainly does not happen for even n. .Thus it appears that in
order to give this integral a definition for which the concept of
keeping the points separate makes sense, one must introduce a damping
function whose fourier transform vanishes in a neighborhood of the
origin, and let this function approach 1. Adding differentiability
and falloff, one is lead to the definition adopted here.

B. Comparison of ‘Results

The results of Brandt agree with ours since he deals only with
conserved currents and claims to obtain zero for the commutator of
zeroth components, and the Schwinger terms are apparently not expected
until fourth order. We recall that in first order, our method gives

noe extra terms for conserved currents.

The work of Hamprecht, insofar as his results differ from
those of Johnson and Low, is discussed in the next section where the

relation to ours is commented upon.
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It would be deceptive to compare the results of the text to
those of Johnson and Low since it was impeossible to retain sufficilent
generality with regard to the nature of the coupling to treat both cases
simultaneously, and the results are qualitatively different. 1In oxder
to have an idea of the relation between the two methods, however, we
consider as an examéle the commutator of two zeroth components of
vector currents in thelr model in the case gps = 0. All terms

occurring in their calculation eventually take the form

C]o SP ([Aa, Apl Lo, 9 s]) ¥ divergence

In order to make sure we do not get a term which these authors would
claim to be able to cancel by the renormalization term on the right
hand gide, we consider the case in which the masses of the nucleons
are not split (m is a scalax matrix) in which case the presence of the
commutator causes all thelr terms to vanish. Assuming further that
SP(L\A,M} g4s)+ O and proceeding in the same manner as in the
calculation for photons, we obtain, in addition to the canonically
expected renormalized current term, the contribution from the zeroth

”~
order term in the JZ& expansion

2 N 5T T
ko [ e oo GR] = Coeqd GR ) Kay iy ¢ i
[koz(q3'+fml) -+ t;'-(?”z +q£') —_ '%.!]POQU ﬁ « ) ? A

Since in powers of ® , it stands five to four in favor of the
numerator, all other contributions, haviang at least one extra power

of & in the denominator, are finite. The part of the numerator
containing t, leads to a term independent of r which, multiplying

the antisymmetric fA gives no contribution to the integral. Collecting

the remaining terms

pLics B 4 m Wk ddY 4 2qyx £ D P
- e Po . ol

- . - -3
and making the transformation g=8-¥ -1k (remembering ;_)’= T+ r’+§k-+§3

we obtain
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S [ ke (2w - 1‘-"'3-‘*'-")i--"’”~‘3k!‘¢>j|d (5(g_)+m-s ¢(
(2 @ ) 0 G T+ R0 5o

in which the first half of the numerator gives no contribution. As
before, the higher order terms imn 41 will yield only finite results

(for t'-*O), whereas the First term will diverge. We observe that the
integral as it stands is symmetric in r and will therefore antisymmetrize

QF — 1"" ‘}
in Ta usinga%ﬁz?' +a+2&\c?.? f_ + '_l[ ] with the result

o 2 ot ol 2
¢(—1)—> Quprt-K Ko gﬁ:&;‘h@( ”

where the last arrow symbolizes the result of the following divergence
criterion: If 0(-{:“——}{ pointwise and detm'::oa then f?idg-wo .
To this we need only mention that the two terms in.the denominator are

positive for all values of q,\" andl‘ in case 4dm? 3 l»l"" -and all q v

in case kz 5(* ghowing that the divergence can never be avolded by a

clever choice of the masses.

VII.Further Remarks Concerning Cutoffs

Since the only extra terms we have found which must disappear
in the presence of a cutoff are gauge depéndent and thus not physically
observable, it may be of interest to display a_cutoff procedure which
makes the entire non-~canonical céntr;bqtion to' the commutator vanlsh
for two zeroth components of poséibl§‘;onconserved currents. A
similar statement is made by Hamprecht = for the ''extra terms' in the
sence of Johnson and Low, 1.e. those which are left after the removal of
not only the canonically expected curreat, but also a divergence
similar to the renormalization infinity that must be subtracted from
the current itself, The difference is that we show the vanishing of
not only the extra terms, but also this renormalization type infinity

in the presence of this particular cutoff,
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To begin with, we rewrite the one-photon terms

gj; [Sp (A 3(3-5)28“(3- 2P {(nz—x)) + SI’ lS(*t)K-i) @z )SA(z—:pZS(u -x)/\)l - (x A ’32)

1
with the help of the relation 28 ¢S+ S™ in the form

SRey- P2y Stz -x) Sp(x-BYR%) Stz-¥) ‘
Sp AS”&-p}l -+ — Sp + ZS“’:«J-nA
Sty-2>Piy Satz-x) Stx-25%Pez> S‘A& p
S“(‘u'i)@(z)&‘z-x) §My-ny Pis> Sy (2
+ 8y [AStpl + —Sp 4+ TS cy-/)
Spiy- 092 -0 Satr- Pexr SV

The argument of appendix 1| will be applicable to the terms containing
Sr?xnd) provided that the integration over the variable q appearing
in the Fourier transform of the S-function is cut off symmetrically,
g0 that these terms will have a limit of zero. The other two terms

will have the finite limit
Y3 Sp ([/\,J} ,Z]{§ -2y Py Sy (20 + Sy -0 Prso> é‘mt’z-x)b

A
4)
where the Sl —functions are the ordinary Sm ~functions symmetrically
cut off in momentum space. Considering one of the terms in momentum

space

SSP (LA 3o ) g Ptk gz 10 ) d,

G-h) e wm
we may, again with the aid of an anticommutation, calculate the trace

appearing therein and obtain the simple expression:
Alkyak — ke Gul®) — 2.9, Aulb)
gk — ke G 9 Aplk1 e

Including (q--k)2+m2 in the denominater, we perform the summation over
forwvard and backward mass shells as required by the measure dﬂ. with
the result

Ao - (e - BEA®] 2 23 A

qlz vy k3+ml
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which is sufficiently asymmetric to cause a symmetrically cut off

integral to vanish.

It may be observed from a comparison of the cutoff limit and

the renormalization infinity

jSP(A\ Sw"“‘d‘ Qg Spty=% -+ S x-1p Prgy SWey. ")Dd‘}‘j

oceurring in the first order current, that the calculation with the

cutoff mentioned above leads formally to the statement

%A o, 4 — ()
L4375 2) o »36) 2 e

i,e. the commutator of two renormalized currents gives the canonically
expected unrenormalized current without extra terms in the sense of
Johnson and Low. This fact was pointed out by Hamprecht 4 who also
discusses the cutoff dependence of the extra terms. It may also be
of interest to note that the vacuum expectation value of the current

commutator in zeroth order

§§5i=§39 (A 8%F¢x- 3\2:55($'05-x3)

= -3 [SP(I\S(?)ZSW(g-%)) - SP(AS‘?;:-J)):’S(-&))]

A
will have an equal time limit when the 53( functions are cut off

that amounts to

SLE)Sp (Ao Z) 8%-x) = 135 3 B, i g1 bep] 1 0

in which we recognize the vacuum expectation value of the unrenormalized

current in zeroth order.
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Appendix 1

Smearing the term ﬁﬁutpg SP({]'Z‘ Oizy S-n /\'\P(x)dk with
“ ?;i) 14 (Xo) §é£o) gives

[fei-g2. Fo7a®r et ks p 2252 22§10 Glorekedeps-m dumd Mg
* d4r.s,p.9.k.

where, because of the equal time limiting process, 5, and To do not

appear in the smearing functions. With the identities

T:-'f- = SJ dlritefmy) and Q= IJ’ECS({HTC)"+W‘)

(e is the unit vector (1,0,0,0}), the part between 2: and /\ may

be written 4as
j dTE 1+ T -m) SrtTey +m) Plk) 5{—r+k+s) fps-m) 5(g=+m‘)
The transformations Y-> T-7Te K s§—»s-TE , T-»-Tglve it the form

“de—ha‘r ~yn) B'(f“l'*’m‘) Pkd §(~r+k+s) (13*(s+fre) —m) S((Sf-re)"-;r»m*-)
T

Again using the two identitles, one completes the transformation of the

first term into minus the second.

Appendix 2

A, Zeroth Components

We want to evaluate the sums
£ g+ -m ¥ . ay( ky-m
T Sp g% EEIRE P  TO Syl ™Y L e

with & = 0,1 in the cases (:\=V and ft= O0+¥». The €= 1 term will occur
as the coefficient of ﬁj , and the & = 0 term, the coefficient of Q§A .
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To clear the dependence on + out of the denominator tht———" Qk‘,(ﬂ]onq"}.

we multiply both numerator and denominator by iQa‘i‘qn obtaining Qk. (f]f'+m’~)
in the denominator and simple summations in the numerator. To simplify

the above terms, we make one commutation keeping in mind that {gk,‘?’(k)}=
=2+ kA= O, d”-m)n'”i-m) =qt+mt=0 . Let M= X'f-ftx&—m\]';, » then

SP(F{:’W‘V““”‘)‘F“'K“]"'“’) = 2199 Sp(Mtepq=wo) + Sp (MPaipi-g- -m) tipg-no) =
= Q\Cj ¢ Sp( Ph‘r‘] - my) "':lSp ( P‘P'Xh (1'31.1,”\))

Sp (Fr;ﬁ -m)‘Pf;T(aI—h)—"m)) = 1qF Sp e ﬁ'“ﬁ)’wﬁp (m‘lﬂ‘cl"”‘) 3’" P

Making the transformation p,q ~» —p,—q in the second line, we notice
that In the trace terms, the relative signs of !"3“1 and m need n.ot be
changed since they affect only cross terms containing the trace of an
odd number of gammag, Thus effectivelyrl r d F and ‘13‘(1-k)-m->‘ir(t'+1<)-metc.

under this transformation, and the second line reads

~ 2iq® Bp(Muyg-m) + i Sp (P(iﬁ -mYo”‘-CP)

]
If we specialize to the case | =¢a’t"m as in the commutator with @ = L
then this term is the negative of its partner above since 34( anti-
commutes with CP s and so the second half of this term is

1:5{:(1‘«6-1) a‘]vol r‘rk Q) = -1 S (1'1\' 1'.1'{ Tk ®) ——Q,H‘q SP(Tk(P):'
This justifies the statement made in the text that only the symmetric

-3
component of f(g) contributes to the commutator. From here, the

calculation is straightforward.
%P((ir’c—mmﬁ-m) = —tq+mt 5 Splyt Pipk m) = -9)gR>+ (Hk)(Pq)

and thus each of the original terms becomes

~2iq P (tg-m>) + i(+@ qk — tkq¥P)

Making the promised transformation, p,q ~® + p,+ g and inserting +97 9

into the numerator, we carry out the summations
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7+ &R~ PYaqotqd) Mﬁ = —_‘iﬂ?ﬁl

€=1: =
_M' 3 2(9;2+m#2) ko Ko (92 + m?) Ko (qitant)
2qk ) P -«
£=0! 5 (390-FPICt%+q) _ P P—uqP P - pq®
%‘Z 35‘]1.*“‘*‘)% % ko E:—(ﬁq__’i—:’hﬁ
>
fgqe . 7 Prate -1 = g
249k )
£=0; Z (e "Tb’ﬁé) = :gé-

%

€= 3+ (S betn J(tqaq)o 3$ x*‘?o*q*) = qo - :
N ; S ty -qm 3 (qJ a-iﬁicf

29k —
- ~ PPN Qe+ % @ - i q:
E=0‘.; Gt e']&q"% q“ﬁ)( i ) = —to ‘i; +:j - "th L‘P" “2_:,,-, )

20qF+me)

The parts of the last two groups contalning ‘Po will completely cancel
Thus, as was mentioned in the text, the

>
leaving behind conly {'.L(P .
Written together, the results

entire contribution comes from £ = O sum.

will be:
& p
| 24, (tq-m¥) . & (toqy — %ott) QP
£ = N k’. + z 2
o (@2 4+ m?) Qs+ m
e _ . . &({q "ml) ('PD + QCQu -q-).L $) (tC!" ml) ++“ q'f (:1’1(‘6 - tbﬁo ‘q)j, %
= ()] kg " (‘?j_‘l"mz) aIlL*HL qf’?'ml —

6, 9.

B. Schwinger Terms
We make the commutation of Qf(q-i-k)_m)@ =Q{Q'CP+‘Pf-lé/(¢;+k)--m) in the

two traces

Sp (1 (A3 (qth)-m) P ci-m-m)) Sp(Tugq-m P (ly('?-k) ~m)

e"‘(P 9-ikr¥ e:q: 9+2k)*
which combined with G+k)z+m,_ and Q’I 3%amt resp., comprise the

extra terms in the commutator [JO ,39],\;*0 We let P %hﬁ MSJ;; and,
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using standard manipulations with Dirac matrices, obtain for these

quantities respectively

3. (T l | Sp (lf‘(irag-k>=m)) 2199 +
SP(W‘IY"'m)) Qiq? 4 -+ S?(F(ﬁi{rq,,m')d’rcc,_k) --w\:)) -

4 - —vnl(tyg- ‘)zl
8p (M@ [-iyeir-wliyq-m) = Sp(Miyq-m) 24qP —

= SP(F(;ﬁ-m))?i‘rqcP“ ._isp(r'c?rkcqlrci»m)) +
~ i Sp(]'P ykupy-m) + Sptlyk) (2q9) - 2qk 8p(I'®)

Making the transformation p,q¢ —» -p,—q in the second integral glves

a -1 from rearranging the sum over %, taking inte account that c’&)fdil )
= 0‘*0-512;3. The factor containing the exponential becomes %.
We notice that the term EEP(Fﬁfj—ﬁND is unchanged by this transformation,
and that the -1 obtained is cancelled by the factor qﬂP s0 that these
terms give a contribution symmetric in é s, L.e. do not give rise to
Schwinger tevms. On the other hand, 8‘;([’@04.; ({m_m)) remains the

same and has no coefficient so that the result is antisymmetric. We
thus collect, along with this term, the antisymmetric parts of the last

two obtaining

[2i8p(rdgh 61149 -+2qk Sp(e) - 24P Sp(ryh)| 23 s

The term in brackets becomes

-2 Sp (Jo, Ppk) + 2Sp(Pepk yq) —2qk Sp(I@) + 29 Sp( Tyl
From a well known rule, we have
Se(M@ykyq) = qk Sp ("'®) ~ 9@ Spyk) + P Sper pq Prky -
1P Se (R Y@k + Qo Splppye Ppk)

giving the result
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3 k
2l@prm) Splpgy @pkd) - (v Spl TTPCPTH »{-qoSp(Jﬂ‘v‘-Py ))ls}';ii)ﬁ +m3¥

The divergence freedom of (P) k(P = 0, simplifies the traces considerably,

(let 2 be a unit vector in the ¥ direction)

Svcﬁgvcpxk) = kﬁ (ﬁ'g - %?"é = kb ("(E‘E};:"cﬂg"“ @g)”%i‘&é = k°$l€

Sogp@yk) = kep@- Brk ~ RS FH -0l =~ kR

~ ke @, +.l:°-—q)k\<‘é" TRGE o
Solyey ol = pk¥E —pPEE = 7 we e

poko & — Pk e +PP RS

s

LPPRE-1ebFe =

With the formulas

4 _ -ﬂ'_(‘i‘-ﬂb‘*‘qﬂ o qo " ‘f _ =il—__‘:j

we may evaluate the contribution of these three terms to the summations
Z(ﬂ;) SP( o q:r)‘ In the first two and part of the third, the only

quantity depending on + is the denominator. These terms add up to

@GP RBE +TERBER — qopelee BE — et AP ho® +7E kFF

whereas the part of the numerator proportional to * is ““fo (ﬁt‘}? L)é_- ?’F '*1.:9—)(
Thus the summation will result in
— —y L o —y —
fn-ap @18 + € AP 1A - [RP ke %E']ﬂr;q: P =)
W\"
- e am bt
[t g G2 + & pu® ]q =, — [feke -~ prde] %Jr , =0)

After splitting ? into 'c'f“ + "(;1 , cancellations again occur, and these

expressions become
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G- [on-q®> 48+ qE BT | B

— =)

(£=0) [(m"—q;;7 ?fg;er + q,& :‘;:QE]%'LW P E)lé" ~ PP ke

Gauge invariance results from the absence of the longitudinal part of

the electromagnetic field, and locality from the absence of 4y and Py

in the £€ =1 sum.

Appendix 3 'Gauge Invariance and Divergence Freedom-

In the computation of the [3 0,7, ? 30,'13_] commutator, we have
obtained a nongauge invariant term, that contained &Fp . In this
sectlon, we investigate some aspects of gauge invariance of the currents
that we start with, and the connection with divergence freedom. We first

note that for the comservation of the current j’\ey in view of the
Dirac equation, (1'3*9._ m) s =a P« formally impfies

o) =9t‘¢(mg‘t®,\.¢(;¢) = Poxy (ami Yoy + Py A ]Poy ey

i.e. we should have [A,mj =0 = [a,)

The expression for the current in first order is

"]':Dcx) = j{ Pexs A BN T Pip ’chad):gha + he

A necessary condition for gauge invariance is that if we make the

transformation (Elx,'a 4))

isk
At* > At& -+ €9¢~x Yo e P
the derivative with respect to & should vanish at £ = 0. Taking this

derivative and setting the term containing no photon fleld operators
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equal to zero, we find

O =j:‘l'.6(x)/\8glx-‘;])‘fa‘9xlj) "\bfn)] d43 + h.e.

In p-space, the first integral becomes

,[: ‘F‘PV\ - fr'trk ey f{k) @p+qt kXX dip,ak

(4+kd* +m?
or, assuming, as is the case in our problem, the commutativity of T

and m,

Jibe Ar %;?LIL): f}-kqﬁfq*m) Pyt @ PR Y GHI%P:Q =

= [Tep Aebquf e Prr Rx g ky Py =

_ {/(m 32‘2 7%

Adding the hermitian conjugate, we find then the transformation

> o) ) (0) -
— N
(%) J, 0+ s/{cxs ) g G P)
d A diral
i.e., the current density itself will not be gauge invariant unless

[A,T] = 0, the condition obtained above for divergence freedom.

Without carrying this calculation any further, we may also
point out that conversely, if the current is conserved, then the extra
terms disappear from the commutator and thus the entire result will be

gauge invariant.

The fact that we obtain a non gauge invariaunt contribution
to the commutator that is supposed to give the gauge invariant
73 current, and that this part disappears when a cutoff is made
parallels the situation encountered in 2 pp 280-8 in the calculation

of the current in the presence of an external electromagnetic field.
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The divergent integral Ktw(x-'a) must be divergence free (QFKI"’ = 0)
in order that the current be gauge- invariant, and the first calculation

indeed reduces the divergence freedom to the statement

[pv Ocpramy oty = 0
which 1s true if the integration is symmetrically cut off in 'iF?|z.
However, an explicit calculation of l{rv involving several substitutions

of variables leads to an explicitly non gauge invariant quantity which
is subsequently rejected in favor of the first.,

In our calculation, a similar integral appears which would
have an equal time limit of this very function Ktw + If the calculation
is to be done correctly, however, the cutoff must be renounced and those
variable transformations made which enable us to eliminate the terms
threatening divergence before the limit is taken, and it is therefore
not surprising that our (sometimes convergent) result lies between the

two extremes calculated, and that it i3 not gauge invariant.
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