


Strong Focussing in Linear Accelerators
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Summarz

To focus large emittance positron beams in linear accelerators, both
a solenoid field and a FODO channel consisting of a set of quadrupoles
with alternating gradients may be used. A thin lens theory for a

FODO channel in accelerated particle systems was given by R. H. Helm.

In this paper, the transformation matrices for such a FODO channel con-
sisting of quadrupoles of finite magnetic length are derived. It was
found that the thin lens theory gives too optimistic results with
respect to the transmitted beam emittance. The deviations from the thin

lens theory are shown in diagrams for various parameters.



A. Object.and Scope

A cylindrically symmetric particle beam is characterized by the area

of the ellipse occupied in the transverse phase plane (y, y')} or

{y, py). The term emittance € will be used as the area of the phase
ellipse in the plane (y, y') whereas the emlttance E is the corres-

ponding area in the plane (y, Py)'

According to Liouville's theorem, the emittance E remains constant,

and for a right ellipse we have:
= . = ' = - . .
E P, ' € = PIL'T const. | ‘ (1)

This emittance E 1is very small in linear accelerators for electrons

because of.their small initial energy in the gun (50 - 150 keV).

E_ = (0,005 - 0,01) n (22) (em) (2)

For positrons, the emittance E 1is one to two orders of magnitude higher:

Frascati (Am 63) " E, = 0,3 7 (M&V/c) (cm)
= 10 (MeV/c)
NINA (CM 65) E, = 0,25 1 (MeV/c) (cm)
p = 10-(Mev/e)-
SLAC (He 62) E, = 0,2 (MeV/c) (cm)
' p = 16 (MeV/c)
DESY (Wi 66) E, = 0,6 m (MeV/c) (cm)
p =6 (MeV/c)

The emittances of the above positron sources are in the range:

E, = (0,1 - 0,6) = (ﬂgza (cm) ' . (3)
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With solenoid focussing, the magnetic field needed to hold a beam of
emittance E within a cylinder of radius 2p is given by:

B=3 L
3o (%)

To get high positron intensities, the whole free aperture in the acceler-—

ating structure is used so that 2p = R,

Equ. (4) shows that only a weak magnetic field is necessary to focus
electrons. For positrons, however, the solenoid fields with 2p = | em

are in the range of some thousand Gauss.

The FODO channel proposed by Helm (He 62) represents a more effective
focussing system. Helm's analysis of such a FODO channel in "thin lens
approximation" results in a constant field gradient for all quadrupoles

and the following equation for the length Ln of the n~th drift spacc:

(5)

In this paper, the finite length of the quadrupoles will be taken into

account, leading to a modification of this result.

B, Formulation of the Transformation Matrices.

We start from the well known equation for the motion of a charged particle

in an electric and magnetic field.

pe et 2[i 3] — (©)

c

Inserting _E = (z, x, s), E = (0, O, 9‘) 5 _ﬁ = (gx, gz, 0) and p = Po * % 5,

Equ. (6) gives:




o, + o) toay reegy =0 T N €

y being x or =z. From (7) we obtain for highly relativistic particles

with 8 = ct:

n k
T O i 0 o )
R A A =t (8
1 U 1+ n,s 0 PpC
1l + ns
With 1 = , the sclution of this differential equation is given by:
[&]
= . -- .+ .
y =€, I 2V« « 1) c, Y, (2Vk + t ) (9)

K o= ko/no 3 C;» C, are constants

IO and Yo are the first and second order Bessel functions, respectively,
with the index zero and the argument 2v¥k + T .

From Equ. (9) the transformation through a quadrupole field in an acceler-—

ated particle system is found to be:

y - Io Yo YlO Yoo/ﬂz Yo (10)
- T k,
' n 1) 7k, Y,

vl o+ noﬁ Y1+ n0£ IIO Ioo //‘45; y'o

with Z, = Z 2 vk (1 + n 2) ) and 2, = 2, (_Ji vk )
i i no o o) io io no 0

For a drift space with k = 0 we get:

! . .
v 1 e log (1 + nOL) v | (1
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The Bessel functions in the transformation (10) may be expressed for

large arguments in terms of circular and hyperbolic functions (JE 60).
In linear accelerators, the arguments are usually large enough
(-%— ﬂ;; > 40 >> 1) for this approximation which gives the following

O .
transformation matrices.

Focussing quadrupole:

g cos (z ~ zo) 7%; sin (z - zo) (12)

3 - 3 -
g #E;-sin (z zo) o° cos (z zo)

o (3,1 I ) _
8 |2 *;)Si“ 5 %%W(z z)°°s (e =2
) [ )
+
363 1 _ 1 _ _a¥f1 3 -
5 |7 z) /E;' cos (z zo), 3 (z * sin (z zo)
0 0
Defocussing quadrupole:
o
¢ ch(z - zo) 7?; sh(z - 20) (13)
M =
3 - 3 -
o VE:' sh (z zo) c° ch(z zo)
o {3 1 _ _ g 11 _
5 (Eﬂ +-;) sh{z - z ) B (z . ) ch(z zo)
o 0 o
+
3




Drift space:

]
| ; log (1 + QOL) (14)
M = ©
N S
i+ nOL

- 2 ; =2 A T .
with =z ; /ko {1 + noﬂ) » 2o =7 ko £ and o WA
) 0 0
Neglecting terms of relative magnitude < 10-4, we get with
7 - 2 o~ ‘/i-(-« o I, = ¢ and 8§ = .l- ._3—— -+ l ~ _l. _1._ + ._.3_
o o 81z z 81z z
o o
1
4] 0 cos ¢ el sin ¢ § sin ¢ G
M+ = o + {(12a)
0 o3 - #E;_sin ¢ cos ¢ 0 -~ § sin ¢
o 0 ch ¢ 7&— sh ¢ § sh ¢ 0
© (13a)
M_ a +
8] o3 /E;-sh ) ch ¢ 0 - § sh ¢
1 - & log ¢
° (14a)
M =
o
o "

It is easy to see from these matrices that vanishing acceleration leads

to the well known transformation matrices.



- b -

C. Transformation through a FODO half period

|

fa é—period E—
f— —
f*iiihﬂ L —{ L :
!

41 P pL |
I, k. |

i I %3

The transformations derived in the last section are not only related to

the magnetic

the particle momentum.

therefore be

M

| —

M

D |

The method of calculating beam envelopes with these matrices is well

knowm®,

length of the elements and to their strenghts, but also to

written:

M_ (ﬂ, k3: P3) * MO(L’ pz)

M+ (ﬂ, k3: P3) ¢ MO(L’ pz) *

A2 aap B2 Eg
= | AC AD + BC BD E E!
O O

c2 2CD D2 A2

(8]

F2 2FG G2 E2

o]
= | FH FI + GH ¢GI E E!
o O

H2 2HI 12 Ai

®»

‘ M+(£> ki’ P])

M (L, ks pl)

see e.g. K. G. Steffen, "High Energy Beam Optics'.

For a FODO half pericd, the transformation may

(15)

(16a)

(16b)
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Here, M_ 1 # M_1 , i.e. some symmetric properties are lost due to
the acceleiation. éith given quadrupole length 2L, out of the three
parameters kl, k3, L only k3 and L are free variables, because ko
is already determined by the previous FODO half period. The parameters
k3 and L may be used to match maximum beam envelope E at the end of
the half period to the available aperture with vanishing beam divergence

(ﬁ‘ = 0).

v
Then the minimum beam envelope E as well as the beat factor m = E/E
are no more free variables, but are given by the formalism and are

varying from half period to half period.

D, Numerical Investigation of FODO Channels.

In the optimization procedure as described in the last section, the
quadrupole strength ko and the beat factor m at the beginning of the
FODO channel are not determined. These parameters may be used to maxi-

mize the admittance of the FODO channel for given cost.

To do this, it is easiest to start from a FODO channel without accelera-
tion, for which the following equations for the acceptance ¢ and the

beat factor are given by Steffen (ST 65):

L /2

__m R2 ¢ tan ¢ (ctnh ¢ + 7 ) - |

1 + m2 £ 1 + ctnh ¢ (tan ¢ +'% $)
a7n
L
| + tanh ¢ (tan ¢ + z’¢)
m? = T ; o = bk

| - tan ¢ (tanh ¢ + I $)

For thin lenses, the value ¢/R? reaches a maximum if the focal length

of half a quadrupole is given by:

f0=/z_-L (18)
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Then, the maximum acceptance of this FODO channel is:

e = R (19)

With the aid of Equ. (17) those FODO channels have been determined which,
for a given quadrupole filling factor 2£/(L + 2£), have the maximum
acceptances. The resulting focal length £ = VE;‘- sin (/E;‘ﬂ) in the
focussing plane of the quadrupoles and the maximum acceptances ¢ of

the optimized FODO channel are given in normalized units in the Figures I
and 2 as functions of the reciprocal filling factor. It appears that

for a given filling factor, these optimum parameters do not depend on the
quadrupole length 2£. This is true at least for quadruple lengths between

0.1 and 2 m and for drift spaces between 2 and 100 m,

For a given acceptance the quadrupole strength ko and the beat factor m
of the corresponding optimized FODO channel without acceleration have been
used as initial values for the optimization procedure of the FODO channel
with acceleration, as described in the previous section. For practical
purpeoses, this will yield the optimum solution since, at the beginning

the two channels are almost identical.

Figure 3 shows for a given quadrupole length and different acceleration,
the quadrupole spacings of the optimized FODO channel with finite guadru-
pole length as compared to those obtained in thin lens approximation. In
Figure 4 and 5 the relative diviations from the thin lens approximation are

shown for various filling factors.

From the results it appears that Equ. (5) is still valid, but with a some-

what modified value of the exponent:

+ —
In + 28 _ e 1 ebn — (20)
d b p
o
b ~-b
The deviations Ob shown in Figure 4 increases with increasing

filling factor.
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As showm in Figure 5, the optimum quadrupole strengths varxy somewhat
along the channel. Since, however, this variation does not exceed the
order of 10%, the quadrupoles can still be powered in series, being
individually adjustable by a regulated power transistor parallel to the

coils,

E. Example.

The new 400 MeV linear accelerator for DESY incorporates a positron con-
verter system which, in its final form, will have an emittance E of
0.6n (MeV/c)(cm) (Wi 65, Wi 66), corresponding to an emittance ¢ of
1007 {mrad + cm) at 6 MeV initial positron energy. Figure 2 shows that
it is practically impossible to transmit this high emittance through

a FODO channel along a linear accelerator. Therefore, we use solenoid

focussing up to a positron energy of about 100 MeV.

A detailed description is given in another paper (Wi 67); therefore, only

the characteristic figures of the focussing system are given here:

100 7 mrad cm

"

Emittance of positronhorn: ¢

Initial positron momentum: p = 6 * 2(MeV/c)

A 4kG solencid field over the first 10 m of linac structure serves as
an initial focussing system, until the emittance e is reduced to

€ = 5,26 7 mrad + cm at p, = 114 (MeV/c).

By means of a quadrupole doublet, the solenoid emittance area 1s matched

to the FODO channel, whose characteristic data are given below:

0.6 1 (MeV/c)(cm)

= 0.623 m
22 = 0.303 m
g, = 0.374 kG/em
a = 9.17 MeV/m

8o is the field gradient of the first quadrupole and « is the averaged

acceleration along the FODO channel.
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This ideal FODO channel, however, cannot precisely be realized in practice
due to technical restrictions near the ends of the accelerator sections.
By slight variations of quadrupole spacings and strengths it was possible
to match the FODO chamnel to the practical requirements without any loss

In acceptance.
It may be interesting to note that the 10 m solenoid is powered by

250 kW whereas the 25 FODO quadrupoles along 27 m of linac structure only
needs about 60 kY.
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Used Notations

A

a (MeV/cm)
B (kG)

d

1
B By
E, E_, E,
(MeV/c) « {cm)

e (mrad ¢ cm)

g (kG/cm)
k (m %)

2 L

Ly

n

p, (Mev/c)
R {(cm)

p (cm)

e

..

angular envelope

acceleration

solenoid field

distance of quadrupole centers of the corresponding
FODC channel with o = 0 as defined by the required
emittance € and the available aperture.

beam envelope and its derivative

emittance or acceptance area

of the phase ellipse in the phase plane (y, py)
emlittance or acceptance area of the phase ellipse

in the phase plane (y, y'")

field gradient in the quadrupcles

quadrupole strength

magnetic quadrupole length

drift length between quadrupoles

index of n-th quadrupole

particle momentum at the entrance of the FODO~channel
minimum radius of linac aperture

maximum radius of trajectory spirals in the solenoid

field,



Focal length of optimal FODO-channels
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Emittances of optimal FODO-channels
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Comparison of thin (ens theory
with this paper |

- Dotted lines: Thin lens theory
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Fig.3



Corrections of quadrupole-distances

Parameter:—%l
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