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Abstract

The multi-channel relativistic Schrddinger equation is solved for the
3/2+ partial wave amplitude with a potential obtained by computing the
baryon exchange contribution to pseudoscalar meson-baryon scattering.
Thé extrapolation of the poténtial off the mass shell is done in such

a way that both initial and final particles are treated symmetrically.
In addition wé maké thé replacémént a, + b + ¢, + d + 2V/8 , where
8y Cyo bo’ and d denote the energles of the mesons and baryons
respectively and /_ the total energy of the system. Tn this way we
cbtain an energy depéndent potential and instead of 1ntrodu01ng a cub=
off parameter use the coupling constant as an adgustable parsmeter,

Thus ve teke g 2/km = 38 in order to obtain the ‘N*(1236) at the
correct experimental energy. Thé modél yiélds thé ususal 3/2+ decuplet
and predicts in addition the éxisténcé of a 27 diménsienal SU(3) re~
presentation (to which ‘P33(11690)_, P13,_(186o), 21(_1900} and some higher
Z, 8, and A resonances could belong) as well as a second decuplet at
much higher energies, Certain résonances ("exotic" onés with I = 2,
Y=0; I =3/2,Y=~and I=1,Y=-2) are very broad (>1000 MeV);
others (the usual ones 1nclud1ng the exotlc L= 1, ¥ = 2 KN resonance)
have a width < 400 MeV. The dependence of the resonance spectrum on
the breaking of SU(3) symmetry as well as on the coupling constant and
on thé F/D ratio is discusséd' A valué of the /D ratio of about 0.4
sSeens to fit vest to experlments Thé résults aré comparéd with the
3/2 predietions of other models such as N/D calculatlons, gquark model,
strong coupling theory and SU(S)"rsymmetry. In the latter two models

a 27 appears also as & higher Supermultiplet which is forbidden in
_the guark model. Addltlonal octets and TU representations (predlcted
also by the SU(3)" and the quark model) are obbained as unphysicsl

objects in our calculation.




I. Introduction

Considerable study has been devoted to the theoretical
understanding of the baryon spectrum. One of the main
motivations for this is probably the large amount of
existing experimental data as compared to the lack of
understanding of strornginteraction physics. Among the
techniques employed in the study of baryon spectroscopy
particular attention has been devoted to the quark model
{11 ,[2]. 1In fact, its agreement with experiment is in
general quite impressive. Nevertheless, usual arguments
based on this model are nonrelativistic and qualitative.
Quantitative calculations based on a relativistic quark
model would certainly be of interest, but in addition to
presenting the usual still unanswered questions such as:
where are the quarks? , which form of statistics should

be used? , what is the form of the potential? , why should
baryons be three quark states ?, ete. it would also require
the solution to a relativistic three body problem. How-
ever, even if the above problem had been solved, the quark
model cannot account for exotic states belonging to a 27
or higher 8U(3) representation, and which may be present

experimentally.,

In addition to the quark model and the usual procedure of
assigning resonances to irreducible representations of
internal symmetry groups such as SU(3) and SU(3)" [3],

[4], there are at least two additional main techniques which



are frequently used to study the resonance spectrunm,

The first consists in finding connections between masses,
widths, and parities of groups of resonances, [5], (671,[(7].
The second type of technique, to which this paper as well
as ref. [8] belong, consists in performing dynamical cal-
culations of the resonance spectrum under the assumption
that its members are obtained as bound states or resonances
of a subset of them. This is carried to a logical extremum
by the boostrap philosophy in which one assumes that all
particles are composite systems bound by forces obtained

by the exchange of the particles themselves {9 .~ 13].

O0f course, in dynamical calculations of scattering ampli-
tudes the question arises as to which relativistic equation
is to be used. These calculations should ideally employ
the principles of relativistic invariance, unitarity, analy-
ticity or causality, and crossing symmetry., It is customary
to take into account the first three principles exactly and

to ignore the last one,

Far and foremost the most common method used in calculating
scattering amplitudes is the N/D method. Among the main
disadvantages of this method are the C.D.D, ambiguities [14]
as well as the presence of overlapping cuts in dealing with

mtltichannel problems, so that the N/D coupled system of

integral equations cannot in general be solved exactly.

Thus, most calculations involving this method use in one form
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or another the determinantal approximation, which essentially consists
in solving the multichannel coupled system of integral equations to

lowest order.

Another method which could in principle be uséd is the Bethe—-Salpeter
equation. One important practical disadvantagé of thié equation is that
it involvés, évén afﬁér‘angular momentﬁm décomposition; a two dimensional
intégral équation, which ie difficﬁlt to solve numerically. In addition
it contains a rélativé énergy variablé and ovérlapping singularitiés which
afféct the compactnéss proof; for which one must pérform a Wick rotation,
which cannot bé rigorously justified. A pOSsiblé furthér aisadvantagé of
this equation is that two particle ﬁnitarity is satisfiéd only below the

three particle production threshold.

In this papér we gtudy the 3/2+ baryon spéctrﬁm by solving the multi-
channel'rélativistic Schr&dingér'éqﬁation with a poténtial obtainéd by
compﬁting the baryon éxchangé contribution to pséudoscalar méson—baryon
scattering. Thé model. accounts for thé usual '3/2+ decuplét {as in
Réf.[8 1) and prédicts thé existéncé of a 27 diménsional SU(3) répre—
séntation (to which A{1690) could belong), as wéll as an additional
3/2+ decuplét gt much highér énérgiés. Thé.depéndénce of thé résonance
spectrum on the breaking of 8U(3) symmétry as well as on the pion —
nucleon coupling constant and thé F/D ratio is discusséd. The results
of thé caleculation aré comparéd with expérimént in Séction V. Finally,

in Section VI we summarize our results and compare them with other theories.



IT. Relativistic Schrédinger Equation

1., Discussion

e Tt 24 T . sy Lt ik e

Our calculational method consists in solving a multichannel
relativistic Schrédinger equation. Starting from the usual
decomposition of the hamiltonian H = H0 + V , we obtain

the integral equation for the T matrix T = V + VG T, where

V is the input potential and G =( 3 - H, + 1 & )'1,

with Ys being the total energy of the system and Hy

the free hamiltonian. This equation can be assumed directly
or obtained from the Bethe-Salpeter equation if one imposes
two particle unitarity by - use of the Landau-Cutkosky rules
and drops the extra term corresponding to the energy denomi-

nator (/s + Eq + u)q)_1 as discussed in ref. (8].

In order to make use of the relativistic Schrédinger equation
in dynamical calculations we must make sure that the principles
of relativistic invariance, unitarity, and analyticity or
causality are satisfied. To satisfy the first principle we
use the relativistic expressions for the particle energies

in HO + It can then be shown that relativistic invariance
is satisfied, [15],[16]., Two particle unitarity also follows
directly as shown in section II. 2. The causality properties
of the equation were discussed by Coester [17]. He showed
that such an equation obeys the principle of macrocausality,
which states that the behavior of a system of particles should

not be affected by the presence of other particles at a large

distance from the system. It is worthwhile to remark at this




peint that from the physical point of #iew there is no

-a priori reason for microcausality to hold since only
macrocausality can be experimentally proven. Thus some
interest has been recently devoted to the study of macro-
causal theories within different contextssuch as, for
example, in ref. [18], in which a macrocausal field theory
is proposed in order to avoid some of the divergence probh-

lems which one frequently encounters in weak interactions.

Since the principles of relativigtic invariance, unitarity,
and analyticity or causality are satisfied, it follows

that the relativistic Schrédinger equation is certainly

an acceptable technique to be used iﬁ dynamical calculations,
and may perhaps be a better method than other techniques
based on the N/D method, since it includes iterations

of the potential.

Starting from the S matrix

Sy = &, - (2m)* 16(4) (p; -~ Py) }/ oy,

(1)

M
4 aobocodo fi ,

and defining

M, - - dn kao+b0)(co+do) ., (2)
V oy, Mg
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we obtain for the differential cross section

g....Q:.(}.:.E. IT |2
an  q; ' fi ’ (5)
when qQy and A denote the magnitude of the momenta

in the C.M. frame in the initial and final states respective-

iy. Expanding

J J
T= 2 (2041) 4, T,
J t (4)
where A==, ps= Ao = A4
and dku(a) _ denotes the usual d function as given

for example by Jacob and Wick [19), the two particle unitari-

ty condition can be written in the form

J J &
Im T ) = 2V . q.p T .
Mohgitghy ST A Agirre e A AN A (5)
where der denotes the momentum of either particle in
the two particle channel ef in the C.M, frame., Using

matrix motation, and defining

= yap 7 Vg (6)
we obtain
1 _ 1 .
-f-lT - KrJ -1 ) (7)




where we have used the symmetry of the matrix T'J R

which follows from time reversal -invariance., Finally we

define the real symmetfric matrix Kﬂby

1
=l | (8)
o'd g |

¥
The K' wmatrix is discussed, for example, by Dalitz and

Tuan [20].

J

The relativistic Schrédinger equation for K! is then
o0
d(E_ +w_) _
J J 1
K'(qpay) = V' (apq4)- EPJV'J(qf,q.) L9 x'(q.,q,),
}/‘_I_E - R
Dm : Qa 4q

(9)

where Zanis the lowest threshold .

To solve the coupled system of integral equations (9)

we make the transformation

CLXi o 2,

_ _ i
(Eq + wy)y = BT Vs= RETRRY (10)
where o is a scale factor chosen so as to make the inte-

grand peak around the middle of the interval of integration,

and where 4; is the threshold for the corresponding

1



channel 1 .

To take care of the principal value singularity in eq. (9)

we define

1 -1
dx!
U'(x,2) = ¥'"(x,32) [‘* - %J — K'J(X',Z)J . (1)
‘ 5 z~x!

We can then rewrite eq. (9) in the form

U'J(x,z) = V'J(x,z)- (12)
1
dx!'! 1 -3 dx! -
- [ - vz, 2) ]wx'.z).
" Z-%x' 1 =x! % -X
o
The above equation for U'J(x,z) is now solved by

using Gaussian quadrature megh points to convert it to a
matrix equation which is solved by matrix inversion., In-

verting eq. (11) we then obtain K'J(x,z) .
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IITI. Potential Used in Calculation

e oy s e i 2 i s b e i S e o kP L I e P i o T el U S R A S S S g

Our calculation deals with the application of Eq.(9) to the
problem of pseudoscalar meson-baryon scattering in the P3/2
partial wave amplitude. We chose the baryon exchange force

as shown in Fig. 1 as our input potential and perform the

B B g M Fig, 1
B Baryon Exchange Contribution
d to the Driving Force

off shell extrapolation as discussed in section III-2Z2,

The following SU(3) 8ymmetric Lagrangian is used
. =i r J pk k 537V -
- = 1V gy BY ypl(1-20)By P+ BY )
- " ‘ >
TNTN + gupw (T-A % + hie) - 1 85,4 Z x5 ) +
- -
(NAK+ch4—%mﬂN$§KHLm)+

+ gAK¢(§AKC+h.c.) + gZ.Kn(L:j"ﬁ-*»Z_K°+ h.,c.) +

+ By TN Bpga nA A t Bz m 2L
- (13)

e
)

+ 8

%

)

L |
‘-”

In the above expression &N denotes the pion - nucleon
2
coupling constant (with the physical value gnN/4n =14.6)
f the F/D ratio (physical value®0.33) , Bg and Pg the
baryon and pseudoscalar meson octets respectively, and in addition

we have defined:
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2(1-£) g
%

=2fg ,
g:_';"11"-q = (1"2f) g ]

1
EAKN = 1/?(1+2f) g _
(14)
sy = (1-2f) g

By = fy%(1"4f) g

i = 8

Bugw = —z(1-4£) g

th V? Y
Bayd = "}/%(1”f) g ,
2

gz,}g =ﬁ(‘!_f) g ,

and g, . = ﬁ/%(1'2f) g,

where g = gnN .

The multichannel relativistic Schrédinger equation is then
solved with the above potential,which is formally equivalent

to performing the infinite sum of ladder diagramms shown in

Fig, 2.
B M B M B B M B M
B + B B + B B B
R W Pt B
M B M B M M B M B

Fig. 2. Infinite sum of ladder diagramms considered in the

calculation.
The bound states and resonance spectrum are then studied asggeu a8
their dependence on the parameters f and g and the symmetry

breaking,
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In our calculation SU(3) symmetry is assumed for the coupling
constants. However, the input masses are in general assumed

to be unequal within each SU(3) representation.

Either the physical masses are taken, or in order to study the
effect of symmetry breaking, the masses are obtained from the

expression

M=M [ 1+ x-{alY + b'(I(I+1) - %;BJ (15)

1
0
in case of baryons, and

M2 = 102 [1 4 x b fI(I+1) - %:—2}] (16)

in case of mesons. The SU(3) symmetry breaking effects

are then discussed by studying the dependence of the results
on theparameter x so introduced. Note that in the above

x= 0 correspondents to perfect symmetry, while x;=1 corres-
ponds to fully broken symmetry, since the parameters M, , Mé N
ah' b, b are to be determined by the fit to the physical

masses in case of x= 1,

e s WS M g ) B o e T R I i d d e I L (T A M IR T St Bty o ek e Py S

We write in the usual way

Meg = ﬁ(a){ - A+ iy(ﬂggﬁ%u(g)

where a, ¢, b, d denote the energy-momentum of the pseudo-

scalar mesons and of the baryons reéﬁpectively.
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Defining

B
X = [7 A - §(a0+b0+co+do-mb—md)]
(17)

(b mb)(d —md)
Y = [A-— 2(a, +b te +d +mb+md)hv J
mb)(d0+md)
and
+1
X\ J X
v :-é- dx v Pg(X)) (18)
-1 '
we obtain
b a
Vo= - V( S +md)]/b”d P lx,+ v,,,) (19)
e (b +mb)(d +md ’

The contribution due to the baryon exchange force As Showw

in Fig. 1 is then

A = b* Ta ! (20)
o ( & 2 )[<5+a)2- Lo —a —c +a )2 + n2y
- 4YY0 Yo Yo "o é]

and

(21)

TV 2 D’
[(b+d)c - E(bo“ao"°o+do) + mZ )

where the mass of the baryon being exchanged is denoted by m, .

*) In our calculation we shall make the replacement

aytby+t ¢ + d — 2 ¥ , since only the on-shell potential

is known. In this way we avoid a cutoff and obtain an energy

dependent potential. Possible other ways of performing the

off-shell extrapolation have already been discussed in ref.{8}.
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Thus A, and By may be written as

mb+md (_1)Q+1
A = m. - P Q (Z) (22)
¢ [ e 2 J Z’gndl 2 . .
and {4
R (23)
B = - Q,(z)
¢ 2 Blld] 3
with
=0 412 1 ) 2
o 1512+ [3l° - E(ao—bgldo+co) +m5 (24)
> 1B ilg

Once the momentum dependence of the potential is calculated,
the total potential is obtained by multiplying the above

expression by the corresponding SU(%) contribution.

e o o et i e . o B e e e P S e . et S e ] R S N n e VA S e e T

By use of the BPB interaction Lagrangian given in Eq.(13)
we obtain as a result of the contraction for the process

in question the expression

J &k k 43 ¢y L1
2 g2y [ (1-2£) By PY + By P} 1[(1-28) BJ.x Py + By Pg‘]
5 .k k3 g i i g (29
- 3 {(1-20) By P} + By pt [(1-2£) B, Py + By P,J,

from which we obtain
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[ (ax-2s41)[ D) 01 - 2(42-2841) le <o, |
| (26)
+ £(42%4102-5) [8,0< 6, ] - 8(2£%-£-1)|D) < D]
. %(4f2_5f+.,) |5) < B - %(4f2+10f—5) 1s><s] Je&y -
In the above expression |SJ , ,@S> ) }98? ,ID) ,|D),

and }Tj) denote the normaliged scalar, symmetrical octet,

antisymmetrical octet, 10, TQ and 27 states respectively.

The contribution to the different isotopic spin,hypercharge
states is easily computed in case of perfect symmetry once
we have the crossing matrix given above by using, for example,

de Swart's table.

In case of broken SU(3) symmetry the above procedure can

also be used, except in case of A and L exchange, where
it is more convenient to calculate the crossing matrix direct-
ly by multiplying the relevant SU(5) coupling constants by

the isotopic spin crossing matrix, calculated in the standard

fashion.

We next list foreach relevant hypercharge, isospin state the
SU(3) crossing coefficients which we use in our calculation.

as a matrix whose (i,j) element represents the crossing coeffi-
cient for scattering from channel i to channel Jj, and where

the symbol in parentheses next to each crossing coefficient
represents the particles being exchanged. Due to symmetry we

need only to list half of the off-diagonal terms.
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|
|

I=0,Y=2;2°

KN

N | F(1+4£442%) (A)
+3(1-4£44£2) (2)

I=1,Y=2’;Z1

KN
3 144£+4£%) (A)

KN
¥ 3(1-40445%) (2)

1
I='§,Y=1 ;u

y r N 'ZN
alN | -1 (0 (1-4£) (M)
YN -%(1—81‘-:»161‘2) (N)
KA
KZ

\
I-2,1=1; A

Y kZ

n N ( 2 (N) - %(1+f-2f2) (A)

- 2(1‘«21‘2) (Z)

2 (2)

K

kA Kz

= 2(1-3£+2£%) (2) %(1+f—2f2) (A)

C2(26-417) (£)

%(1+f—2f2) (A 2(1—3f+2f2) (&)
1 2 o -
-5(1-8f+16f Y (2 - (1-4£) (2)

- 1(2)

/

\

/
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I=0,Y=0; A

n knw~ 71 kZ \
K - $0-0)2 () G2y () 43002 (1) 1B (1-20) (@)
-85% (2)
KN 0 ~{%—ﬂ(1-21°-sf2)(1v) - -%-(1—2f—8f2)(/1) )
A <3(1-28) (2)| ®
1 4 2 Yz 2\ o
3(1-1‘) Ay - 3(1—2f—8f )6=)
k= ,
\ -/
I=1,Y=0; &

A r Z kN w2 k= .
TALS0-02 @ ofe?) @) fBwen) ) -0 () Bo-sned®) @)
"z - 31-0% () 2(1-21) (1) -4f2e-r2)(@)  -2(1-28) (D)

452 (2)

kN 0 @1_6f+8f2) () - -%-('I-—2f+8f2)(/1)
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Ke 0
/

I=2,Y=0
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IV. Results of Calculation

Phe lower 3/2+ decuplet has already been discussed in Ref.{8} for phys-
ical input masses and an F/D ratio of 0.33. The coupling constant was
chosen to be g /4n=%8 in order to fit the resonance energy of the A(1236),

(See discussion on the gz/dn value in section V).

+
In this paper we first wish to discuss the dependence of the g- decuplet

on the F/D ratio. In Table I the bound state and resonance energies for
the members of the decuplet are given for different values of the F/D ratio,
namely, £ = 0.25, 0.33 and 0.5. HNote that similar to the N/D results
[11] this model exhibits a very weak dependence on the F/D ratio, as the
potential strengbhs for the decuplet suggests to be the case.

Next we wish to discuss the effect of SU(3) symmetry breaking. Before
doing this we wish to note that {see Fig.3 and .in Ref,[8], Table I,

Column 3) when physical input masses are used in the calculation, the de-
cuplet masses are obtained in qualitative agreement with the equal spacing
rule. The average mass difference between consecutive members is

then obtained to be about 185 MeV and one obtains an inerease of this mass
difference with increasing hypercharge. Similar results were obtained

using the N/D methoguf21], although in that model there is an even stronger
hypercharge dependence., In order to study the symmetry breaking effects we
proceed as has been previously done in the N/D calculations [11]. That is,
the validity of Eqs.(1k) and1 i5) is assumed. These equations are obtained
from the Gell-Mann=-Okubo [22] mass formula upon introduction of a parameter x
which may vary between O and 1, The case x = 0 corresponds to the perfect
SU(3) limit while the case x = 1 corresponds to fully broken SU(3) symmetry.
The parameters of Egs.(1B) and (1§) are determined to be

39/9’%

~141179 /,qu

i}

ML=y, el = -195.5/m b
(27)
bll

il

It
=

Nl“
o]

3
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The values of the above constants were obtained using physical masses for
My s My o, My o mn and m_ . However, the values me = 1330 MeV (instead
of 1318 MeV) and e = me = 480 MeV (instead of 496 MeV) were used in order
to require the Gell-Mann Okubo mass formula to be exactly valid. The x
dependence is shown in Fig.4. It is worthwhile to note that the results
for x =1, i.e. fully broken symmetry, deviate by less than 1 MeV from the
case in which all masses are taken to be physical. For x = 0 , i.e. per-
feet symmetry, all decuplet members appear {for a coupling constant

gz/hw = 38 ) as bound states at an energy of about 1565 MeV.

The dependence of the decuplet energies on the coupling constant was also
studied, The results are shown in Fig.5, in which the resonance and bound
state energles are plotted as function of (g2/hﬂ)-1 . From this figure we
see that this dependence is nearly linear in the range 10 = (gg/hw)-1
especially for very large coupling constants.® Notice that Fig.5 shows
that the equal spacing rule is better fulfilled the larger the coupling

constant, since for lower values of ge/hﬂ the Y* and =* resonances

come closer and closer together. Let us also note that for ge/hw = 1h,6
the equal spacing rule is less fulfilled than for g2/hn = 38, amlthough the

average mass splitting then becomes about the same as the experimental one.

*A proportionality of the resonance energies on (gg/lm)—I follows from
Wentzel's strong coupling approach [23] if one only keeps the lowest term

in an expansion in terms of (gg/hﬂ)”1 . In numerical applications of this
theory [24], [25] it was usually assumed that these lowest order terms should
already give the main contribution, even for the physical coupling constant
g2/hﬂ = 14,6, Our model seems to be in agreement with this assumption. As
it will become clear in the rest of this paper further analogies between the
model here considered and the SU(3) modification of strong coupling theory
[26] are the weak dependence on the F/D ratio and the gecurence of 19 and
27 dimensional SU(3)} representations in case of spin g' . Among the

main differences between both models is the fact that in the strong

coupling limit these resonances become siable. An additional difference
between them 1s that our model predicts z second decuplet and could never

prediet 35 dimensional supermultiplets.
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The model prediets a 27 dimensional SU(3) representation at emergies of

about 400 MeV above the usual decuplet together with a singlet -

vhich appears at lower energies. The resonance energies are given in Figs.3
and 5 while the eigenphases and Argand diagrams are given in Figs.6-12., Note
that all states which are common to both the 10 and the az dimensional repre-
sentation, namely, A, £ and E resonate in different channels in eéch of these

two cases.

While the first A resonance A(1236) (which is a member of a 19), is &
purely elastic wN resonance, the second A resonance (which is a member
of g gz) appears at an energy of about 1852 MeV as a predominantly K&
resonance, The width of this resonance is about 300 MeV. This is in
qualitative agreement with experiment (see page 24). Fig.6a shows the
eigenphases of the A state when both the #N and K& channel are taken
into account and the phase shifts when only one of them is considered.
Notice that in the case of A(1236) the. decoupled =N phase shift is very
close to the corresponding eigenphase when both channels are included, i.e.
KI effects are unimportant in the study of the A(1236) resonance. In
the case of the second resonance A(1690) the KI eigenphase goes through
90O while the 7N eigenphase does not, If we uncouple the channels we
note that the uN phase shift does nol exhibit a resonance behaviour in
addition to that at A(1236) (except at much higher energies where the
second decuplet resonance occurs, which will be discussed in Section IV,
'3.) Note also thet the decoupled K& phase shift is very close to the
corresponding eigenphase in the resonance region. This implies that the

second A resonance is mainly a KI resonance,”

The eigenphases and Argand diagrams corresponding to the other isospin,
hypercharge states are given in Figs.9-11, Note in passing that according
to a theorem derived by Wigner eigenphases do not cross so that the
resonating channel may be recognizeg unambiguously also for higher energies

(see Figs.6-11).

Thus our model suggests that in order to understand the baryon spec-
trum using the technicues applied in Refs.[6] and [7] it might be
helpful to include SU(3) effects explicitely,
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Figs.9~11 show that in addition to the A there are two more exotic 27

kaon resonances, namely, the I = 1, ¥ = +2, Kp resonance at an energy

of about 1609 MeV, and the (I = 1, Y = =2) EE resonance at about 2140 MeV,
There are two exotic pion resonances, namely, the one channel I = 2,

Y = 0 1% resonance and the two channel T = 3/2, Y = -1 resonance, for which
the 7% eigenphase goes through 900. The resonances in the N , £ and

% states (which are usually fitted into an octet) resonate in the channels
(nN), (EN) and (EE), respectively., The A 1is a special case which shall be
considered separately. The resonance energies for the members of the EZ

38 and

i}

(as well as the two decuplets) are given in Fig.3 for ge/hw
£ = 0,33, in Table II for f = 0.33 ag well as for other F/D values, and
in Fig.13 for gz/hw = 100 and f = 0.33. All thé resonances mentioned
above fill a complete 27 SU(3) representation., For ge/hﬁ = 38 +this is
the only gz supermultiplet. In addition note that there is no Eesonance
behaviour in the I =0, Y = +2 state, so thabt in our model a'% super-

muitiplet belonging to a Ei:representation does not occur,

The widths of the members of the 27 are also given in Table II., Note

that those exotic resonances vhich have not yet been observed experimentally,
namely, the I =2,Y =0, I =3/2, ¥Y=~1 and I =1, ¥ = -2 states appear
in our model with extremely large widths. However, an exctic KN resonance
I=1,Y =2 (for which there may be some experimental indication) appears

in our model with a width similar to that of A{1690).

Fig.3 shows that the Gell-Mann Okubo mass formula is also approximately valid
for the members of the g}. Note, however, that the A resonance appears at a
somevwhat lower energy. {(This is probable due to singlet, er mixing (see
below)). It can also be seen from Table II and Figs.3-11 that even though

the lower decuplet is very weakly dependent on the F/D ratio, the width and
resonance energy of the members of the %z supermultiplet are much more strongly

dependent on it.

In Fig.5 we give the inverse ge/hﬁ dependence of the resonance energies of
the members of the az {(as well as the other supermuitiplets). Note that these
resonance energies increase much more rapidly with decreasing coupling constant
than the members of the usual decuplet (except for the A)}. A linear inverse
gz/hﬁ behaviour appears only for ga/hn > 100, and in this region the slope is
the same as that of the decuplet.
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Tt is also worthwhile to note that for ge/hﬁ = 14,6 the 27 appears at
an energy of about 5000 MeV, while the lower decuplet then appears at an
energy of about 1800 MeV. From our point of view a sénsible model must
first fit the lower decuplet energies at about the correct experimental

values. Thus we use the value ge/hﬂ = 38 1in our celculations, since

*
3/2
we do not have an arbitrary cutoff parameter in our calculations we

only then N¥, (1236) appears at the correct experimental energy. Since

use the coupling constant as the only variable parameter to fit the experi-
mental energies of the members of the lower decuplet. Therefore, we believe
that in our model the results corresponding %o gg/hﬂ = 38 are the physical

ones., I

|
|

The only state which does not fit very well into a mass formula of the Gell-
Mann-Okubo type is the A state I =0, Y = 0 , vhich could alsc appear as a
singlet. Fig.11 shows that (only in this casel) the variation of the F/D
ratio changes the phase shifts qualitatively. For the physical value f = 0,33
there is only one A resonance in the =wI channel at an energy of about

1600 MeV. This appears at lower energies for f = 0.25, and then there is a
second resonance in the nA channel. This one fits better to the otherf27
states, - Finally, for f = 0.5, the A appears again only as a single re-~ -
sonance , bub is, however, in the EN channel. The critical dependence on the
F/D ratio of the A in case of the baryon exchange contribution is due to the
gtrong T dependence of the potential [28]. The A state has probably to be
interpreted in our model as a singlet~27 mixing, which is predominantly in

the singlet state for an F/D ratio f = 0.33.

3, Higher 5/2+ Resonances

Even though one should not expect the predictions of this simple

model to be valid also at very high energies,
ch energies. This we do in this

it is nevertheless

amusing to see what happens at su

section,
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At much higher energies than the two lower supermultiplets (namely at about

*

3500 MeV) a second decuplet of resonances™ appears with much broader widths

(of about 2000 MeV). In particular, Fig.6 shows that the A state resonates in
the 7N channel at an energy of about 3182 MeV. Even if we omit the KIZ
channel, & very broad resonance still occurs in the 7N channel at an energy of
about 3540 MeV (dotted line in Fig.6a). Fig.8 shows that in case of the

% state the iN channel resonates ab an energy of about 3532 MeV, whereas

in the KE channel the eigenphase also goes through 90o at exactly the

same energy, but in the wrong direction. This 'antiresonance' is a

member of & Ié_representation of such objects with the additional states

I =0, Y = +2 at an energy of 3070 MeV, N(3660) and I = g-, Y = -1 (3610).**

For a cougling constant gE/hﬁ = 38 which fits the A{1236) there are no additionsl
higher % resonances. It might be worthwhile to mention that for g2/hn=1h.6

the 27 appears at a very high energy {at about 5000 MeV) and that there is no
longer a higher 10 (Fig.3). On the other hand, Fig.1% shows that for

gg/hﬂ = 100 a second 27 supermultiplet sppears close to the second 10. It is
remarkable that the Gell=Mann-Okubo mass formula also holds approximately for
higher supermultiplets, Note that the spacing between consecutive members

seems to increase as the average energy of. the supermultiplet increases.

*Note the difference with the result of strong coupling theory which predicts

a 35 supermultiplet at about the same energy as in our model the second de-

cuplet appears.

**purther 'antiresonances' appear in our model as complete su({3) multiplets,
i.e. two octets at energies between 2000 and 3000 MeV and a decuplet at sbout
4500 MeV which is connected with the real second decuplet, with repeated occur-
rences at higher energies. For perfect input symmetry they eppear all ab the

same energy.
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In the range 38 < g2/hﬂ < 60 {where a fit of the fundamental decuplet
makes sense) the first three supermultiplets of dimensions 10,{1 + 27)

and 10 are present unambiguously and there appear no further resonances

gt higher energies.

V.Comnparison with Experiment

The wasses,widths,and branching ratios of the usual decuplet were
already compared with experiment and with other models in ref.(8),

At presegt there is not much experimental information on the

higher 2 resonances. Most phase shift analyses (287] seem to indicate

2
the presence of a P33 (1 =3/2,Y = 1) resonance which appears

at an energy of about 1690 Mev with a width of about 280 Mev;'

and 1is mainly a K2 ©resonance. In the quark wodel this resonance
is attributed to a radial guantum number excitation of A (1236)

and thus should belong to a decuplet. On the other hand, our model
predicts a K3 resonance with the supposed propexrties fto be a
member of a 27 SU(3) re presentation and not of a 10.

Phase shift analyses seem also to indicate the existence of an

N resonance P15(1860) with a Yidth of about 300 Mev. This resonance
could be fitted into the I = =

2
In addition there are some resonances in the Rosenfeld table [29)

y ¥ = +1 state of our g]. _
( of still unknown spin ) in the energy region in which they would
be expeocted to appear in order to fit into the gz. These are

2 (1690) or 3 (1780) and T (1705) . However there seems to be

*%
no indieation for a A resonance of sufficiently low energy.

*Note that table II shows that both the A and N resonances can
be made to appear at the correct experimental energies with the
correct widths if one chooses the F/D value to be about 0.4 .
**Note that a similar difficulty arises in the guark model in
which a N is needed in order to cowplete the octet,and that a low
lying N is also predicted in SU(3)" ,
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Assuming these resonances have all spin %-F they could of

course fit together with the P53 and P15 resonances of the
pion-nucleon system to an § and a 10 .

However, these representations would at present be incomplete and
have a missix@;h , = ,and Q. . If we believe in the conclusions
of our wodel one could predict the above resonances to be
wembers of a 27 and then only the N would be experimentally
wissing - . (The exotic states will be discussed later ).

It is worthwile to note that in the guark model whenever there

is a A resonance one tries to complete it to a decuplet and
whenever there is an N resonance one tries to complete it 1o an
octet., Thus,whenever there is a A and an N resonance one needs
two $ 's and two T ‘s, However,if both the A and N resonances
are wewbers of a 27 {(as it is the case in our model) ore needs
only one 2 and one = to complete the SU(B) supermultiplet,

As recenily pointed out by Harvari [31] there seems to be
experimental indication to the fact that most of the = 's and
many 2. 's which the quark model predicts have as of yet not been

found in experiment. This seews to be in support of our model.

O0f course,our model could probably be ruled out if one finds =
second K17 at sufficiently low energies,since then A (1690) and

{1 could be taken as mewbers of the same SU(3) decuplet. On the
other hand,if exotic resonances are in fact experimentally found,
then one cannot in general expect cuark model results to hold also

for higher resonances,

_i.
#¥¥ Phe qguestion as %o whether the % N is mainly a singlet or
not has been discussed by Capps {30) who pointed out that there

3+

should be a predominantly singlet A of spin % as a conseguence
of the existence of a spin % singlet\ . Also in our wodel the

+
% f\appears as predominantly a singlet A for an F/D value of

about 0.33% .
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It is amusing to note that our model is in agreement with the quark
model in the sense that it accounts for the lowér 3/2+ decuplet, and
prediets g higher 3/2+ decuplet which could, of course, also be fitted
in the quafk‘modél. However, the resonances in between the two decu-~
plets are in our model members of a 27 , wvhile théy would be members

of & 10 or an 8 in the quark model.

Whether exotic resonances exist or not is still an open question. How-
ever there aré some doubtful candidates for exotic rescnances in the

K p channel in the Rosenfeld Table [29]. The I = 1, Y = +2 states
21(1690) or 21(1900) {which is usually attributed to spin 3/2+).could
for example belong to a 27 as in our model Z1(1609)_(and have spin
3/2%), Other exotic states appear in our model with such large widths
that_they probebly cannotlbé expérimental;y obgeryed. Thé question of

the existence of exotic resonances has been freguently discussed in

oL

the literature in comnection with the concept of duality [32]. Note
. , : ‘ . . +
that in our model an I = 1, ¥ = +2 KN resonance of spin 3/2 auto-

matically appears once one performs the dynamical calculation.

S0 far we have mainly réstrictedrour atténtion to'thé résonancé béhavior
of the phasé shifts. Next.wé would liké to compare thé P33 and P31
phase shifts obtained in our model with the experimental ones. This is
done in Fig.12, where wé also givé the résults of Réf.[33] in which a
Bethe~Salpeter equation for uN scattéringrwas solvéd by use of Padé
approximgnts. The P33 phasé shift agrées fairly well withrexperimént
near threshol@ and in the neighborhood of the first resonance, except, of
coursé, at the right hand side of thé résonancé position in which the
phase shift goes up somewhat slowér.* In Fig.13 we comparé the Chéw-Low
plot with that of our model. Note that‘thé slopes at the resonance

position are identical for both, and there is some deviation near threshold.

*This is a common disease of all dynamical calculations in which only
the baryon exchange force is taken into account and also of many others

in which more exchanges are also considered.
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In case of the P phase shift there is some deviation with experi-

31
ment although the qualitative behavior is reproduced. Namely the P31
phase shift is repulsive and does not show a resonance behavior st about
1860 MeV. However, the nN eigenphase resonates at about that energy

{see Fig.Ta).

VI. Comparison with other Theories and Discussion

Besides the gquark model [1]. [2] and strong coupling [26] (which have al-
ready been discussed) there is another model which predicts multiple SU(3)
representations in case of spin 3/2+ . In that model {4] there is besides
the usual SU(3) symmetry a further SU(3) degree of freedom, called SU(3)".
Except for the usual decuplet which is assumed to be the lowest super-
multiplet, that model predicts a 1ow lying singlet, another decuplet
which is connected with a 10 supermultlplet {in the manner as descrlbed
in Fig.12), a 27 , and in addition two octets {which are degenerate for
perfect symmetry) Tt 1s remarkable that our model predicts all these
supermultiplets for & /hﬂ = (see Fig.3). However, the two octets and
the 19 appear as unphysical ! antiresonances‘ {Phase shift going down

when passing 900).

In N/D calculations [11] second resonances were-not predicted. As far
: N S Nt . ,
as the usual 3/2 decuplet is concerned the N/D results for the baryon

decuplet are similar to the predictions of our model.

In N/D caleulations [10], [11] the F/D ratio has been usually chosen 80
as to insure thst the decuplet representation is the only one that is
resonant in the low energy region. Thus in Ref.[11] F/D was chosen to be
0.35. However, as discussed in Ref.[10], for values 2.8k < F/D < 0.34

one would also obtain a unitary singlet in addition to the deeuplet
resonances. In addition (Ref.[1o}) it is also probable that one would
obtain a resonating 27 SU(3) representation in an N/D calculation by
chosing F/D > 0.56. Even though the baryon exchange diagram is one of the
main contributions to the P3/2 psrtia; wave amplitude, it is of course
not the only one. Thus if one takes the baryon exchange process as the

only contribution to the driving force as was done in Refs.{10], [11] end
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in this paper, one has three possibilities to perform the calculation,

The first 1s to do it w1thout 8 cutoff and Wlth a physical coupling
constant g /hw = 14,6, One then obtains the resonance at too high
energies and a not well satisfied equal-spacing rule for the decuplet,

The second-poseibility is to introduced a cutoff in which case one

fixes the coupling constant at the physicsal value and adjusts_the cut=

off to fix A(1236) at the correct experimental energy. However, ‘this

has the disadvaentage that sometimes one obtalnes incomplete supermultiplets
for some values of the parameters (see Refs.[8], [10] and [11]). 'The third
possibility, which was chosen by the euthors of Ref.[11] as well as in this
paper, is to perform the'calcolation without a cutoff and to chose the coup-
ling constant as an adjﬁstable parameter chosen so as to fit A{1236) at

the correct experimental energy.

Bethe—Salpeter caleculationsof the baryon spectrum would certainly be of
interest [33]. However, the inclusion of spin and SU(3) effects certainly

places this problem far beyond the capsbilities of present computers.

In summary, the relativistic Schrddinger equetion wa.s applied to multi=-
channel pseudoscalar meson = baryon scabtbering in the 3/2+ partial wave
amplitude. The input potentiel was obtained by computing the baryon ex—
change contribution to the driving force. Since the Schrodinger equation

is an off—shell equation and the potential obtained from a Feynmen diagram
is known only on—shell,'the question arose as to how to perform the extra-
polation off the mass shell. wé chose to do it in such a way that both
initial end final particles are treated symﬁetrically. In addition we have
made the replacement aor+ bo te do +2{§' (eince, as we have already
discussed only the on-shell potential is a priori known). In this way we
have avoided an arbitrary cutoff parameter in our calculation. Instead we
uee the coupllng constent as an adjustable parameter whlch we chose to be

g /kﬂ = in order to obtain A(1236) at the correct experimental energy.
The P33 phese shifts have been explicitely compared with experiment in
Fig.[12]. Hote that they are in qualitative agreement with experiment near
threshold and in the neighborhood of the first resonance, except, of course,
at the right hand side of the resonance position, where the phase shift

goes up somewhet slower. In Fig.13 we compare the Chew-Low plet with that
of our model, HNote that since we start with a large coupling constant the
effective range predicted by the model &iffers from éxﬁeriment by about 30%.

However, we still obtain the correct slope at the resonsnce position and
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for example, the calculated P33 phase shifts sre_in gualitative
agreement with experiment near threshold and in the neighborhood of the
first resonance. Thus we expect that the phase shifts predicted by the
model somewhat higher energies are also in qualitative agreement with
experiment. The model accounts for the usual 3/2 decuplet and predicts
the existence of a 27 dimensional BSU(3) supermultiplet (to which the
experimenﬁal 3/2+ resonances A(1690) N(1860), 2(1690) or £(1780), E(1705)
and % (1690) or Z, (1900) might belong, if they were to be confirmed to
exigt and to have Spln 3/2 ). In addition a second 3/2 decuplet is present
at much higher energies and with very broad widths., However, this statement
should not be taken seriously, since cne should not expect the predictions
of a simple model such as the one discussed in this paper to be valid at
such large energies. The dependence of the coupling constant of spectrum
was 1nvest1gated. wé found that the lower 3/2 decuplet has an approximstely
T/g dependence in the phys1cal region, while the resonances belonging to
the 27 and £o the higher 1Q supermultiplets increase rapidly with de-

creasing coupling constant.

The dependence of the spectrum on the F/D ratio as well as on SU(3) symmetry
breaking was also investigated. It was noticed that the usual decuplet has
8 very weak F/D dependence, while this is not the case forAthe resonances
belonging to the 27 .« For an F/D ratio f = 0.5 these resonances are
about 100 MeV‘lower'than for f = 0.33 , with widths of about a factor of

2 smaller. A value of £ = 0.4 would best fit the experimental energies

and widths of the members of the 21 . _In_addition, for this value of the
F/D ratio the equal spacing rule for the decuplet is then better fulfilled,
and the energy difference hetween the two A resonances becomes closer to
the experimental value, The Gell—Mann-Okubo nmgss formula for all the 3/2
supermultiplets is in general approximstely satisfied when the physical
masses for the incoming, outgoing and exchanged particles are tsken, and
there is an increase of the mess difference between the different hypercharge
members of s given SU(3) representation as the average resonance energy of
the supermultiplet increases. In phe limit of perfect sU(3) synmetry the

resonances of & given_supermultiplet tend to appear at about the same energy.
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TABLE I

I Y Symbol f = 0.33 £ =0.25 f = 0.5
3/2 1 A N* 1236 ' 1235 1238
1 0 S & 14k 1443 1448
/2 =1 z zf 1627 1627 1633
0 -2 Qo 1801 1790 1840

Q~ sppears as & bound state bound state resonance
Tyd  -mp 208 208 210
Mgx  hyx 185 184 185
mg ~M ¥ 172 163 207

3+
Table I: The 3 Decuplet

Caleulated resonance and boﬁnd state énérgies of the lowér %f decuplet are
given in MeV for values of the F/D ratio f = 0.33, 0.25 and 0.5 for a

coupling constant g2/hﬁ = 38 ., The last three linés contain the mass differences .
between consecutive members of the decuplet. Experimentally thé equal spacing

rule is fulfilled and these mass differences are about 150 MeV.



TABLE II

I Y Symbol | £ = 0.33 £ =0.25 £ =0.5
1 2 z1' 1609(336) 1631(382) 1502(83)
1/2 1 N 1755(385) 1776(245) 1606(250)
32 1 s | tesasam)  eriGsT) 17s6(ion)
© ° A 199701507 133357235 1710(290)
1 0 ) 1879(317) 1960(T16) 1729(127)
2 0 1990(1L440) 2079(1635) 1776(955)
1/2 -1 g 2036( T16) 2064( T716) 1881(29h)
3/2 -1 2083(1&30} 2108(1430)  1885(880)
1 -2 2140( 955) 2150( 1146) 1987(317)

Table II: The 27 Supermultiplet

Resonance energies in MeV for members of the 27 and singlet SU(3) representa~
tions are given for F/D values f = 0,33, 0.25, and 0.5 for a coupling constent
ggfhﬂ = 38, In case of the A the re-

sults are given in the upper or lower line according as to whether the singlet

The widths are given in parentheéés.

or 27 I =90, Y = 0 state is the dominant one.




Fipgure Captions

Fig. 1 Baryon Exchange Contribution to the Driving Force.

Fig. 2 Infinite Sum of Ladder Diagrams Considered in the
Calculation.

Fig. 3 Calculated %+ Baryon Spectrum for g2/4n:=38 and F/D
Ratio f= 0.33 .
Resonances are represented as lines in the energy
scale. Above each line the resonance or bound state
energy is given in MeV, Pasitions of 'antiresonances'
(i.e. the energies at which one of the eigenphases
passes 90° when descending) are indicated by dashed
lines. the Widths are given(in MeV] below the lines,

- +

Fig., 4 SU(3) Symmetry Breaking of the Lower % .Decuplet.
The dependence of the resonange or bound state energies
of the members of the usual % decuplet on the SU(3)
symmetry breaking parameter x ( as introduced in
in Egs. 15, 16 and 27 ) is given. x=0 corresponds to
perfect SU(3) symmetry, while for x=1 the symmetry
is fully broken so that the Gell-Mann Okubo mass for-
mula holds for the input particles with about the same
masses as the physical ones.

Fig, % Reciprocal g2 Dependence of the %+ Resonance Spectrum.
for the F/D ratio f=0,3%3,
The depegdence of the resonance and bound state energies
of the % spectrum on (gz/tl'n)_1 is given, The A states
are represented by thick solid lines, the £ states by
dot-dashed lines, the ¥ states by short dashed lines,
the SL° states by long dashed lines, and the /L states
by dotted lines. All other states are represented by

thin so0lid lines,
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Fig., 6a-c¢ Eigenphases and Argand diagrams for the ? A Btate

Fig.

Fig.

Fig,

Fig.

ba:

6b and c:

7 a-c Eigenphases and Argand Diagrams for the

I =
Ta:

T b and ¢

=3/2,Y =1 for g°/4n =

Eigenphases for the F/D ratios f = 0,33 (solid
lines), f = 0.25 (dashed lines) and f = 0.5
(dot-dashed lines). In addition the decoupled

% N (dotted line) and KX (two dot- dashed line)
phase shifts are given. Positions of resonances
are marked by full circles (®) and of 'antireso-
nances' by open circles (©).

Argand diagrams for the " N and K Z channels
of the A state for g°/4n = 38 and f = 0.33.

W%\
+

N State
1/2, Y= 1 for go/d4n = 38
Eigenphases for the F/D ratio f = 0.33 (solid

lines), f = 0.25 (dashed lines) and f = 0.5
dot-dashed lines,

Argand diagrams for the n N and n N channels
of the N state for g°/4n = 38 and f = 0.33.

+
Eigenphases for the % State I=1, ¥ =0

8
for g°/4n = 38.and f = 0.33, 0.25 and 0.5.
5t
9 Eigenphases for the 5 State I = 1/2, ¥ = -1
for g2/4n = 38 and f = 0,33, 0.25 and 0.5.
3+ -
10 Eigenphases for the 5 Exotic States and %2

for g°/4n = 38 and f = 0.33,

I=0, Y=-2 (decuplet @ state with bound
state position marked as (@) )

—fe—s— I=0, Y=+2 (belonging to a T0O represen-

tation)
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+
Eigenphases for the % A State I =0, Y =0

for g2/4n = %8 and f = 0.33 , 0.25 and 0.5.

Experimental and Calculated Phase Shifts for the

P33 and P31 Partial Wave Amplitudes.

The solid lines (dot-dash lines) indicate the cal-
culated eigenphase shifts for g2/4n=58 and f=0,33
(for g2/4n=38 and £=0.5).

The dotted lines indicate the decoupled nN phase
shifts for go/4m = 38. The dashed lines

indicate the calculated phase shifts using the
Bethe~-Salpeter equation with Padé approximants for
7N scattering as given in ref. [33].

The experimental CERN phase shifts as given in r
ref 28 are explicitely exhibited in the graph
by the error bars.

Chew-Low Plot.

3

Comparison of __EE_ cot 6 as obtained from our
W m
i3

model with g2/4m= 38 (solid line) with that ob-
tained by use of the Chew-Low formula

3

1Y ) 2
~—— cotd = ——=—— (1 - —) with f£° = 0,087
W m? 4 f2/3 “r

(dashed line).

Calculated 3/2% Baryon Spectrum for g2/4n=100 and
an F/D ¥Value f = 0.33,
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