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Abstract

We present a Bethe-Salpeter model, in which phenomenological potentials

are used to reproduce the p peak in the aT scattering amplitude.

Then we take the off shell amplitude to calculate the pion electromagnetic
form factor, We use the Bethe-Salpeter equation in ladder approximation and
solve it by iteration and application of the Pade approximation method.

Reasonable agreement with the vector dominance model is achieved,



I. Introduction

The concept of the vector dominance model! (VDM) has proven to be fruitful
in explaining the pion electromagnetic form factor in the timelike region.
In this framework one starts (in the limit of zero p meson width) with the

current field identity

l'['l2 m2 m{%
» = - _9_ Q L . _e .
Ju(x) ZYp pu(X) + 7, wu(X) + 2¥¢ ¢U(X) s (1)

where ju(x) is the electromagnetic current of the hadrons, VU(X) denotes
the vector meson fields and my, their masses (V = p°,0,4). The constants

Yy determine the strength of the photon vector meson coupling.

Physical conlusions can be drawn from the assumption that
2Yp o
<2 |KP (0)|0 > = = =& (£ - )< 2n |p° (x)|0 > (2)
] mp &) y
is almost constant for 0 <t £ mg . Here Kﬁ is given by
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t= (p - p')2 » P and p' being the pion momenta. From the normalization
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For a finite p width, the Omnés formula?

l s(t")de! %)

o
F,ﬁ,(t) = Pn(t) exp ’:;T_ ET(t - £')
4mﬂ

satisfies the normalization condition (3) and the requirement that Fﬂ(t)

has the same phase §{(t) as the elastic a7 scattering amplitude. The
usual assumption is that Pn(t) is a constant (Pn(t) = 1) and the phase

§ 1is smooth above the resonance. A special model for the elastic wn
scattering phase was given by Gounaris and Sakurai3 introducing an effective

range expansion.

We want to investigate whether the assumption of slow variation of the r.h.s.
of Eq.(2) can be understood in a Bethe-Salpeter model of the p meson, where
the photon couples to the elementary constituents of the p ., In Feynman
graphs the pion form factor is given by the coupling of the photon to the
interacting wn system according to Fig.!, where the blob stands for the umw
scattering amplitude, which we calculate in ladder approximation (Fig.2). Our
concept now is to look for a potential which gives a BS scattering amplitude
in close agreement with the experimental p shape, and then use the corre-
sponding off shell amplitude to calculate the pion form factor., The normal-
ization condition (3) is obtained by the renormalization of the ymm vertex
at t =0 ., The main difficulty was to find a suitable potential. The single
scalar particle exchange with large coupling constants and large exchanged
masses give a p width about three times larger than the experimental value.
Also spin one exchange with a cut off did not work. Therefore we tried scalar
particle exchange with derivative coupling to the pions as well as a two
channel potential where the p 1is essentially a bound state in the second
channel with a threshold at t = (7u)%. Both models for the ¢ gave reasonable

coincidence with the VDM,

IT. The gm Scattering Amplitude

The wm scattering amplitude is calculated from the BSE in ladder approximation,
which in graphical form is represented in Fig.2. The kinematics are chosen so
that in the CMS p = (W/Z,g) is half the total four-momentum of the incoming
particles and the q's are relative four-momenta. The partial wave yields for

the partial wave amplitude the following integral equation:
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W=+Vs and u 1is the pion mass. In the case of scalar particle exchange

the Born term reads

2
Mﬁ(q,q') . gl Qﬂ[af(q,q‘)) . (6)

214/ 14"

Qﬁ(z) is the Legendre function of second kind and its argument is:

W (a,a") = - [(a, = aD® = [d]2 - [3']2 - w21/2[4] 3] )

where m is the mass of the exchanged particle. g 1is the coupling constant

of the exchanged particle to the pions.

Our technique to solve the BSE was to iterate it up to the order gl6 utmost
and form the associated Padé-approximants* for the T-matrix. Since we work
below inelastie threshold, the singularities in the BSE are simple poles in
both variables and are subtracted numerically and added analytically according

to standard methods,

Searching for a suitable potential we began with spin zero exchange (6). Our
experience was, that this potential can produce a resonance in the p region,
but varying g and m we were not able to bring its width below 400 MeV,

As the bootstrap idea sﬁggests a p exchange, the next potential we investigated
was a spin one particle exchange. The propagator of a massive spin one

particle is

k k_
A = (g, = L) /02 -m?) ,  k=q-q'  (Fig.2).

uv

Even dropping the longitudinal term k'“'kv/m2 in the nominator, a cut off has

to be introduced, which we did by the subsgtitution (mC = 5n):
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This potential did not give much narrower resonances than the scalar particle
exchange. Thus we examined the longitudinal term separately. Introducing

a cut off, the Born term which we finally used is (s. Fig.2)

_g2 (p-q2-(+a) ) (-2 - ¢+ a? J2 - w2y,
bn (o - a2+ (p+q)2 M) {((p - 2 - (p + q?) - M?}

M being a cut off mass. Even with a cut off of the order of 5 GeV the width

was larger than 400 MeV,

The next trial was a derivative coupling (DC) of the exchanged scalar particle

to the pions. This results in the substitution (s.Fig.2)
g2 o2 » \
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where we chose
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This can be looked at as introducing a form factor at the vertex between the
exchanged particle and the pions. Such strong off shell effects can only be
understood if multiparticle intermediate states are important at the vertices.

This potential gave reasonable results.

As it turned out to be impossible to produce a resonance of the mass and the
width of the p meson in the 77 channel via one particle exchange without
derivative coupling, we also examined a two channel potential® (TCH).* 1In
addition te the uw channel we introduced a second channel of scalar particles.
This second channel is chosen in such a way that the p wmeson can accur mainly
as bound state in this channel, Thus its elastic threshold has to be above the
p mescon mass and the coupling has to be strong compared to the coupling as the
KK channel because we see no reason for a stronger coupling in the =7

channel. We don't like to interprete this second channel as the KK channel
because we see no reason for a stronger coupling in the KK than in the mw

channel. A more realistic picture could be provided by the NN channel, the

*A dispersion model for the pion form factor involving several channels has

been set up by S, Serio®
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spin complications of which prevent us from treating it properly. For

definiteness we call the second channel the NN channel in what follows.

The two channel scattering is described by a system of two coupled integral
equations, which in graphical form are represented in Fig.3. 1In the direct
channel the exchanged particle has to be a meson, in the coupling of both
channels the exchanged particle has to be a nucleon. We have taken the mass
of the exchanged particles equal in both Born terms, simply in order to save
computation time. According to the mechanism explained above, the TCH

potential can produce very narrow resonances.

The results we represent here, are calculated with the [4,4] Padé-approximants
and dependent on what we have calculated, we used an integration of about

14 Gaussian points in each variable. As this takes quite a bit of computation
time even on the IBM 360/75 computer, we find it more convenient only to re-
produce roughly the p peak in the w1 scattering amplitude and then compare the
resulting electromagnetic form factor with the GS form factor in which the

width has been matched® to our phases with an m = 767.7 MeV."

For the DC-potential we report our results for the following two parameter

sets (Fp parametrizes the width in the GS-model and is determined by the

fit to our phases):

1) 82/4ﬂ = .92 , m=5.5p , m = 4.8 u , m, = 9u (Fp = 162 MeV)
2) g2/4ﬂ = 174 ,m=7 uyu m,o=5.15u , m, = 9 (Fp = 196 MeV)
and for the TCH potential they are according to Fig,3:
8 Jan £ 0, gi/hr = 8960 2 J4n = 1180 , m = 7u (T = 123 MeV)
m » BNN > BN ’ o '

Both of these potentiais we used to fit the =T scattering amplitude involve
four parameters., This is actually a large number to reproduce roughly the
resonance shape of the p meson, but m and m, may vary in a wide range
without changing the results significantly. For the DC potential we cannot
really give a physical interpretation and accept it just as phenomenological
potential that gives us the desired result. Likewise the large coupling
constant in the direct nucleon chanmel of the TCH case seems to be somehow

unphysical., This may be due to our neglection of spin.

*The phases at the lower half width and the resonance mass have been made to

coincide,



III. The Pion Form Factor

The integral equation for the renormalized vertex function f“ of the ymw

vertex reads’

d”q'

e hp(p + q') x

Le+dap-a =2 *2q - f

(8)
x T (p+a'p-ah Bi(p - a"Dk(a, q') .

Here K 1is the kernel of the integral equation, given by the sum of all
two particle irreducible graphs for mm scattering, for which we take

the same approximation as in Part II. 3} is the meson propagator including

self energy contributions due to strong interactions, Zl being the vertex

renormalization constant. If we neglect self energy effects by taking

k2 - u2

where u 1is the 7 meson mass, we violate the Ward identity

U~=”1 —-\J' _
2p" T = Ap(p + @) ~ Bp(p = a)

since we do not couple the photon to all charged lines in our diagrams.

Tterating (8) shows that the vertex function can be written in the form
r+da p-q =

2q&

_ { : dqql 1
= Zl 2qu =1 M(S: 9, q )
4n3 [P - "2 - w21[(p + q")2 - ¥?]

where M 1is the wnm scattering amplitude and CM - coordinates have been

chosen according to Fig.2, From Lorentz invariance we conclude that Pll

can be written as:



f, = 2{2q, F (0,0) + 2p, G (P} (9)
F0 and G0 being unrenormalized form factors.

We observe that the two particle scattering amplitude (even off shell) is
symmetric under simultaneous change of sign of:

qo,qé R —qo,—qé (CP conjugation). Using this symmetry we get for GO(WZ)
by contraction of (9) with pﬁ an expression which is antisymmetric in g
and which for q, on shell (q0 = 0) vanishes. This means that on shell
our model is gauge invariant, although we have selected only a small class

of diagrams for the photon coupling.

Evaluating Fo(t) again by contraction with p, We see after angular
integration, that only the p-wave contribution of the amplitude M(q,q')
remains (the s-wave part drops out because of q, = 0). So we finally get

for the form factor:

. o0 o +'
P = 1 [aa [ 17 afdr) b
e % lq |
(10)
M (s, 4", q)

[ - 2 - [q]2 - w21l + 2 - [§']7 - 2]

Our model is superrenormalizable and so Zl is finite and is given by I/FO(O).
These observations are also valid for the two channel potential. In this case
the photon couples to the pions as well as to the nucleons in a way analogues

to Fig.l, where the Clebsch-Gordan coefficient for the nucleon channel is
1/v2,

IV, Numerical Results for the Form Factor

We present the results for the pion electromagnetic form factor according
to (9) and (10), where Ml is calculated by the proceedure described in
II and compare them to the form factor of the GS-model with a similar phase

as explained.
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The results for the DC potential are represented in Fig.4 for the two
parameter sets given above. The dashed curves show the GS-form factor
for T =62 MeV and I' = 96 MeV while the crosses and circles represent
four values of |Fﬂ(s)|2 resp., which we obtained from our model. We
observe that our p peak is slightly higher., The rencormalization constant

is Z, = 0.064 for both parameter sets.

In Fig.5 }F“(s)]2 is plotted for the TCH potential and the comparison with
GS in this case shows that the peak is too low compared to the VDM, the
areas under the curves differing by 25%, The normalization constant in this
case 1s Zi = 0,15, For this potential we also calculated Fﬂ(t) in the
spacelike region, the resulis being plotted in Fig.6 in comparison with the
p pole and the GS model. Deviations can be understood by the observation,
that our p meson does not exhaust the dispersion integral for the form
factor. 1If we calculate the scattering amplitude

2i 6
£(s) = e sing ’

2p

we observe that the width of the p in the scattering process is essentially
the same as for the form factor, the resonance peak being shifted to higher

mass values for about 10 MeV,

V. Conclusions

In our two simple BS models for the p meson the slow variation of the matrix
element (2) seems to be not automatically fulfilled but depends on the type

of the interaction. If one takes a simple one particle exchange interaction
of the Yukawa type (and in that case only by the TCH potential the p can be
reproduced) the renormalization constant is not very small compared to 1,

and in that case we observe deviation from the VDM and from experiment.® 1If
we neglect the coupling of the photon to the "nucleon'", the discrepancy is
still larger. Probably the inclusion of spins with the corresponding contri-
bution of higher momentum components in the BS wave function would improve

the situation,

For the DC potential the renormalization constant is smaller and agreement

with the VDM is better. Since the physical interpretation of this potential
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is dubious, we cannot claim to have achieved a good understanding of

" the p meéson as a pure nW resonance.
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Figure Captions

1) Diagram responsible for the vector meson - photon coupling, The
broken lines indicate structureless pions.

2) Kinematics of the Bethe-Salpeter equation

3) The coupled system of integral equations representing the two channel
BSE. The second amplitude (NN->NN) decouples from the two others and
is not calculated, gﬂw, &N and By are the coupling constants at the
corresponding vertices and m is the mass of the exchanged scalar
particle,

4) fFﬂ(s)|2 calculated with the DC-potential at four energies with
two parameter sets as quoted in the text, is compared with the
GS=formfactor, in which the width has been matched to our phases,

The dashed curves 1) and 2) correspond to m = 767.7 MeV and Fp = 162 MeV
resp. Pp = 196 MeV, The corresponding values from our calculation
are indicated by crosses resp. circles,

5) |Fﬂ(s)|2 calculated with the TCH-potential (full curve) is compared
with the GS-formfactor (dashed curve), the latter corresponding to
m= 767.,7 MeV and Fp = [23 MeV.

6) Fﬂ(t) in the spacelike region calculated with the TCH-potential
is represented in comparison with the pion pole (from VDM) and the

GS-model again with m = 767.7 MeV and PD= 123 MeV,



_..12_.

References

1) J.J. Sakurai; Procéedings of the International School of Physics
"Enrico Fermi' Course XXVI (1963)

H, Joos; Proceedings of the VI, Internationale Universitidtswochen
fiir Kernphysik, Schladming (1967)

2) P, Federbush, M.L. Goldberger and S.B. Treiman; Phys.Rev,!12, 642 (1958)

3) G6.J, Gounaris and J,J, Sakurai; Phys.Rev,Lett. 21, 244 (1968)

4) G.A, Baker; Advances in Theoretical Physics, Vol.!

5) The BSE for the two channel scattering problem has been solved
with other methods by W.B. Kaufman; Lawrence Radiation Laboratory
Report UCRL 18220 (1968) (unpublished)

6) 5. Serio; The Rockefeller University New York (preprint)

7) J.D. Bjorken and S.D, Drell; Relativistic Quantum Fields,
McGraw-Hill Book Company (1963)

8) Nuovo Cimento Lett., II, 214 (1969)



Fig. 1



\\ /
N J/ p-g
~
\\ ,
_ N
// N
v
/ \ 7
/ \\ P-q
/ AN
P-q p+(

Fig 2

P-4 i
\\ . //
AN v
| ¥ ]
p-q | p+g
/ AN
/ AN
// \\ .
p-q p+g



O T+



L0

LI Fals)1?

] Fig.4

+
i 1

]

\

- III \
!
/
_ /I ©
1 [I //’"\\o
L/
1 N \
- II,?
/
J1 \+
7/ k
B 1 \\
1 //// \ Oy
/ WO
i / W\
//// \ \\”
i / N2
| ! : ! 11 ! i
0.2 0.4 0. 0.8

s in GeV?



—
—
—
— ——
i
i i
I
———
o
—

——
—— —
—
—
—
—
T —
—— —
——
—
—
—
——
- —
—

Figh

s in GeV?



Fig.6

This model
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