


MLFIT: A Program to Find Maxima of Likelihood Functions

by

Volker Blobel

The purpose of the FORTRAN IV subroutine MLFIT is to find
a local maximum of the logarithm of a likelihood function
F (a) of n parameters and to calculate the errors of the
parameters. The method is based on the quadratic approxi-
mation of the function. The calculation of the function
value and of the first and second derivatives of the
function with respect to the pavameters must be programmed
by the user. The number of parameters is not limited by
internal dimensions but merely by the total length of a
labelled common., It is posstble to fix some parameters

on given values during the iteration and to perform a

special error analysis for some parameters.
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1. Introduction

A common problem in physies is the estimation of parameters a1y g eee )
of a given function from experimental data. The method of maximum likeli-
hood is often used for the treatment of these problems!»>Z. A likelihood
function L (a) is constructed (a = (al, Boy ern an)T) which gives the
relative likelihood that the parameters ay, a5, +e. @, assume particular
values. The maximum likelihood estimator is the value Ef which maximizes
the likelihood function L (a) or the logarithm F (a) =gn L(a). The errors
o, of the parameters aj can be estimated from the behavior of the

function F (a) in the region near the maximum.

The subroutine MLFIT searches for the maximum of a function F (a) by
carrying out several steps (iterations) in parameter space. The methods
used for the recognition of convergence and for the error analysis
assume F (a) to be the logarithm of a likelihood function. Each step
carried out in parameter space is calculated from the gradient (vector
of the first derivatives) and the matrix of the second derivatives of
the function F (a) with respect to the parameters aj._Subroutines for

the calculation of the derivatives are provided.

If the behavior of the function F (a) is quadratic, i.e, if the matrix
of second derivatives is a constant, one step starting from an arbitrary
point may reach the maximum. Under the same condition the error matrix
of the parameters equals the inverse of the matrix of the second

derivatives,

Likelihood functions F (a) are often nearly quadratic only near the maximum.

In certain regions of parameter space one step may yield a smaller function



value. In such cases one or more shorter steps in a different direction

are carried out.

Begides the errors defined by the matrix of the second derivatives other
errors can be calculated which depend on the function values in the region
near the maximum. This error analysis is time consuming, because additional

iterations are necessary.

2. Method

2.1 Search for the maximum

Under certain regularity conditions the function F (a) can be expanded
into a TAYLOR series at the point a = (a], Ays eeo an)T.

T

Flasan) = F(a) + o ae - % aa Gaa + ()
= ’BF 3
%3 %Q‘& (gradient) (2)
3 F ,
G = N (matrix of the second derivatives) (3)
AR 'So,,& oy

Neglecting higher order terms of the expansion the following two basic
methods are applicable to find a step in parameter space toward the

location of the maximum of the function F (a).

In the first method the derivatives of the TAYLOR expansion eq. (l) are
taken and are set equal to 0. The resulting system of n linear equations

is solved for Aﬁl'

¢ - G g =0 )

-1

pa, = G g (5)



In the second method a step is carried out in the direction of the
gradient g. Putting Aa = t.g results in a function depending on t.
The best value of t can be calculated putting the derivative with

respect to t equal to O,

Flastg) = Flad + t %T% - %_ t* Q‘TG% (6)
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The methods are illustrated in fig., ! for the case of two parameters.

The first method yields a large step Ei] toward the maximum, if the
function behaves nearly quadratic. The second method yields a smaller
step Aa,, whichrgives a better (higher) function value even in the case

of strong non-quadratic behavior of the function.

In general several steps in parameter space are necessary to reach the

point gf, which maximizes the function F (a).

The method used by MLFIT combines both methods described above. The step

Aa is calculated using a matrix K (with € =G 1):

.
¥C0%
§ %

-A)

K =G + ¢, (2 1 (10)

(I = unit matrix)

aa = Ko g (1)



For 2=0 K equals G and the method is identical to the first method. For
81(22~l)$i the method is nearly equivalent to the second method. In sub-
routine MLFIT the parameter % of eq. (10) is modified according to the

result of the preceeding steps.

The expected variation of the function in the case of quadratic behavior
is 4F .
e

A T
AF, = g a4 - 540 G aa (12)

The true variation of the function is AFt.

AFt = Fla+aa) -F (a) (13)

In addition a value AFC is defined, which is used for the comparison of

different function values (with €, = 0.1, €, = 1079y,

AFC = maX (El i E3 ' IF(S-"&')’) (14)

The strategy of the program depends in the following manner on the result

of the preceeding step, in which a was replaced by a + Aa (with

e = 0.5, %

i a2
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Classification of step Condition Action

% is replaced by 2+£d 3
I. Divergent AFk + aF, <O parameter values are
replaced by preceeding

values.

II. $Slowly convergent ¢ is replaced by 2+l
and., AF‘E) AFC

£ is replaced by
max. (&-1,0)

ITI. Convergent

The next step is calculated according to eq. (10) using the coxrresponding
values of g and G and the new value of &. Final convergence is assumed, if

the following conditions are satisfied:

1. AF@ 4 AFC
2, At least two iterations are performed

3. =0

If these conditions are satisfied andﬁFc 5_%3 the last step lies within

the error ellipsoid of the quadratic approximation eq. (1) for one standard
deviation. In this region of parameter space the function behavior is assumed
to be nearly quadratic and the last step carried out with £ = O should reach

the point Ef in parameter space, which maximizes the function F (a).

Due to some physical constraints a certain region of parameter space may be
forbidden. If a step is carried out into the forbidden region, the program

simply treats this step as divergent.



2.2 Calculation of errors

The error matrix E = (Ejk) of the parameters ig found by inversion of the
matrix G of second derivatives. The error Oj of the paramter a; is the

square root of the corresponding diagonal element,
-A
E = G (15)
¢, = (E ) (16)

These errors are good estimates 1f the function is nearly quadratic near

the maximum. They are symmetric by definition.

For a discussion of the error definition a functiecn Fj (a, a) is defined:

%
1[(g,m=r*'l.ru\{i:(g\i Q= ay +0L} a7

¥
j

The following relation is valid for a one standard deviation error oj:

Fj (a,0) is the maximum function value under the constraint aj = a, + o,

. 4
Fla¥) - Fola, @) = 3 (18)

A 1
FLa - Fpla s = 5k (19)

In the subroutine MLFIT the error analysis for a parameter aj is performed

in the following way!

The parameter aj is modified by k = te, symmetric standard deviations
(e.g. €5=].0) and according to eq. (17) the maximum of the function F (a)

with respect to the other parameters is determined. Using this function



value a nev error Sj is calculated according to eq. (19) by using the
following second quadratic approximation:
2 Al

R
ng hq‘&(l(F(f}“F?(&RG@n) (20)

These errors may be asymmetric. The geometrical meaning of eq. (20) is

illustrated in fig. 2.

Because of the difference between two function values these errors may
be subject to large rounding errors. To get a more precise value for

F (Ef) an additional iteration is performed after convergence.

3. Usage

3.] Formal rules

A program that uses MLFIT may be divided into three parts. The first

part (A) is the initialization of MLFIT. The other two parts are executed
once per iteration; in the second part (B) the function F (a) and the
derivatives are calculated; in the third part (C) the results of the last
iteration are tested, and a new step is calculated,. Execution of part B
and C is repeated, until either convergence is reached or a given number

of iterations is performed,

The communication between the user program and the subroutine MLFIT is
partly via arguments, partly via the common PARCOM.

COMMON / PARCOM / NP, NE, NF, NW, FCT, PA (dim)

The length of the array PA must be dim > ndim,

ndim = 3(n? + 5n)/2 for n parametersS. In MLFIT the length is dim = 75
corresponding to n = 5. All the vectors and matrices (in symmetric

storage mode) are stored in the array PA.
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During After
iteration convergenée
PA (1) Ca PA (n) parameter a parameter gf
PA (n+1) . PA (2n) gradient g errors g
PA (2n+1) Che PA (2ntn(n+1)/2) matrix G error matrix E

The remaining part of the array PA is used internally.

Part A

The subroutine MLFIT is initialized by the call:

NPR

ITR

IAD

[}

CALL MLFIT (NPR, ITR, IAD, IPR)

number n of parameters

maximum number of iterations

| Part B is executed finally (additional) using

the best values of the parameters {(in case of

convergence or non-convergence)

IPR

I

0 No additional execution of part B

0 No print—out

1 Print-out of results

2 Print—out of iterations and results

The number of parameters is stored in NP by MLFIT. The other variables of

common PARCOM are explained in Part B, The initial values of the parameters

may be defined before or after the initialization by the user program. After

initialization of MLFIT the user program may use the following options:

l. By calling FIXPA (j ) the parameter aj is kept fixed on the given value

during the iteration.
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2. By calling ERRPA (k) an internal flag is set, and.after convergence
an error analysis is performed for parameter a .

3. Constants internal to MLFIT may be modified (see Chapter 4).

Part B
The values of the function F (a) and the first and second derivatives are

to be calculated by the user program and stored in the common PARCOM.

Function value: FCT =F{ &)
gradient g: PA (n+]) = %‘:T;
. : 2 F Lk
matrix G: PA (2n+j+k(k-1)/2) = - Al
e,y

Special conditions are to be flagged by the user by defining the flag NF.

NF

I step into a forbidden region

NF

2 parameter (s) modified by user program

The number of terms used in the calculation of the function may be counted

in NE. NE and NW are not used by MLFIT.

The variables NE, NF, NW, FCT, PA (n+1) ... PA (2 n + n (n+l1)/2) are set

to 0 by MLFIT before part B is entered.

Part C

One iteration is performed by calling:
CALL MALIT (a‘sl, & 52)

Depending on some tests the program branches by using different returns

to the calling program.



Normal return convergence reached

return | (jump to
further iteration required

statement no. SI>

return 2 {(jump to nen—convergence after ITR

statement no, 82) ’ iterations

At normal return the results (parameters g%, errors ¢ and error matrix E)

are stored in array PA., If return | is used, the next values of the para-

meters to be used in part B are stored in PA (1) .,.... PA (n). At return 2
(non-convergence) the best values of the parameters obtained so far are

stored in PA (1) ... PA (n).

The formal rules are summarized in table 1.

3.2 Function evaluation

Three subroutines are provided for the calculation of the function F (a)
and the first and second derivatives of the function. They are applicable

in three different problems of parameter estimation, described below,

1. Method of least squares
An experiment consists of N independent measurements Yis i=1 ... N, of
some quantity y at coordinates s The errors of the y, are dyi. The

values y; are to be fitted to a function f(xi, a) dependent on n para-

meters a, ... a_.
] n
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According to the method of least squares the best fit is defined by the

minimum of the weighted sum of squares:

2

N
Sta) = 2w (fUriia) -y (21)

-2
o= {dyy) (22)
In the case of normal distributed errors dyi the logarithm of the likeli~
hood function F (a) for the problem equals -~ % times the function S (a)

plus a constant term:

P (a) = -5 (2) + const. (23)

Omitting the constant term the following equations are obtained for the

function F (a) and the derivatives:

1
-4 E_' woi (20, ) - yi) .

H

Fla)

1

BE }f__»\o,‘,—}j‘— (4 - 30x ) s

Bq@ %m%

B M.‘(M (Y S F SIS \) 6
%Q@’aqh ZL * %Q% 'b(ln %Q_{bqn(\%‘- g( ‘L\S‘ (2 )

2. Poisson distribution

An experiment consists of N independent measurements Yy i=1... N, of
some quantity y at coordinates X The values y; are poisson distributed,
e.g. they represent counting rates (numbers of events) in a small region
of x. The expected counting rate be f (xi, a) depending on n parameters

a a

] -
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Problems of this kind are often treated by the method of least squares by

associating an error dyi = (yi)”2 or (f(xi, g))l/z to each Yy Difficul-
ties arising in this method, if some y; are small or even zero can be
avoided by using the poisson distribution in the method of maximum likeli-

hood.

The probability of observing a counting ratey. in a region X, expecting a

counting rate £ (xi, a) is given by the following expression:

\a‘.
. g) = _i&‘:;—\ exe ( ‘ngtt -—) Qn
. "}‘L !

The likelihood function L (a) is the product of all probabilities P(xi, a).

—

Yi
in,‘g\ exp (h Er(x,;‘&\) (28)

1. .

R
Ju————

L (a) =

}

The following equations are obtained for the logarithm F (a) = &n L (a)

and the derivatives:

Fla) = % qy I Alxpe) - %&Lx-\‘g\ & Conat 29
3
N E - 2 4i D @, X
Ry TS ’bqé( (30)
N 5y % %ﬂﬁ cgq_;%}n L 5 XS o
Vo, %y 3 37k, ) AT

3, Method of maximum likelihood

An experiment consists of N independent observations (events) at coordinates

X, i=1 ,.. N. The expected distribution of the observations (probability

density) is given by a function f(xi’ a) depending on n parameters ap e d .
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First f (Xi’ a) is assumed to be normalized to unity (X=range of obser-
vation):

f %Lx\g\ dy = A (32)
X

The 1likelihood function for the problem is given by the following

product:

Lt = T 40

(33)

The following equations are obtained for the logarithm F (a) = fn L (a)

and the derivatives!

Flay s Tt f0ns) o
N |

AF L0y 3%

a Z; HEPIY >

o4 _
’El‘: = z '-BJ‘;: B‘\k ’GQ,B% )g(x“?:\

TR T 2 (ke 8)

(36)

Often the probability density is not normalized to unity but the integral

eq. (32) equals the expected number of observations (events) ﬁ(ﬂ).

[ Plx,a) & = B(R) a7
X

2 is to be used, which con-

Then the extended maximum likelihood function
tains an additional factor representing the probability of observing N

events, if ﬁ(g) are expected,

LLa) = e ~Xfi(\Xl@ “) T\— j{—(u.‘ﬂ (38)
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The following equations are obtained for the logarithm F(a) = &n L (a)

and the derivatives:

Fla = T g d ) - [ ) & 39)

SE LT L (g, (40)
&y P ACIES xo0ay 3

3 Y -
AF N z 2, dUn DU,k %{(x“g)

BQQBQR i gl(\xllgj

+fﬁ_d$ ay
A

’BQQBQR :

The equations (26), {(31), (36) and (41) for the second derivatives of F(a)
contain the second derivatives of the functions f (x, a). Apart from the
labour of programming and computing these derivatives there are advantages
in neglecting these second derivatives of f (x, a) with respect to gé. The
position of the maximum of the function F (a) is not influenced by this
approximation, although the errors of the parameters defimed by the inverse
of the matrix of second derivatives of F (a) are influenced. The change

in the errors, which in general will be small can be checked by performing
the error analysis, which uses the values of the function F (a) itself

in the region near the maximum.

Neglecting the second derivatives of function f (x, a) the summation
necessary for the calculation of F (a) and the derivatives of F (a) can
be done with the subroutines LESQU, POISS and MLIKE, respectively, for

the three problems,

The common EQUAT serves for the transmission of data to the subroutines.
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COMMON / EQUAT / EV, FV, FD, WT, A (dim)

The length of array A must be dim > n for n parameters.3 In the sub-
routines the length is dim = 5., In a loop on index i the values corre-
sponding to a single measurement (yi, f(xi, a) etc.) must be stored in
co@mon EQUAT and the appropriate subroutine must be called. The meaning
of the variables in common EQUAT and the calculations performed by the

subroutines are given in table 2.

4, Program structure

The subroutine MLFIT has additional entries MALIT, ERRPA and FIXPA. The
subroutines GMAT and PFIT are called by MLFIT. The subroutines LESQU,
POISS and MLIKE are independent of all other subroutines. All working
areas except local indices are contained in the commons PARCOM (see

Ch. 3.1) and MALARR,

COMMON /MALARR/FPA (20), NPA (20), NN(9)

The meaning of the variables in common MALARR is given in table 3. Rele-
vant to the user are especially those words, which are initialized to
certain values, These values are given in parentheses; they can be modi-
fied by the user after the call of MLFIT,

After return from MALIT the variable NPA (3) contains the status of

the program. The meaning is:

NPA (3) = 0 convergence reached

1 further iteration necessary

1]

2 non-convergence



If NPA (4) = j#0, the error analysis for parameter aj is just completed,
the results of the error analysis are contained in FPA(I), NPA(I),

I =17 ... 20, A frequent change of the fitparameter & (see eq. (10))
between O and larger values during the iteration indicates a strong non-
quadratic behavior of the function F (a). In such cases it may be useful
to start with 2>0 (e.g. NPA (1)=2), or to increase Zd and decrease £,
simultaneously (e.g. NPA (8)=4, FPA (1) = 0.05), If the accuracy of the
function caleulation is limited by large rounding errors, it may be useful

to increase £, and €, (see eq. (14)).

Subroutine GMAT:

All the matrix operations of eqs. (10), (11) and (12) are performed in
subroutine GMAT. If the condition of matrix K (eq. (10)) is very bad,
e.g. 1f two parameters are strongly correlated, some elements of the
Matrix may become very small during the process of matrix inversion. To
avoid absurd results due to rounding errors, the matrix is only partly
inverted, if certain matrix elements decrease by more than a factor of
TOL (TOL = 10™%). The parameter corresponding to this matrix element

is not modified during the current iteration, and the corresponding

error is not defined, i.e. the parameter 1s treated like a fixed parameter.

Subroutine PFIT (IG@):
All print-out is done in the subroutine PFIT.

iG@ 1 call after one iteration

2 call after the last iteration, if convergence is reached

3 call after completion of the error analysis for one

parameter

4 final call before the last return from MALIT
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The print-out is explained in table 4.
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5. Example

The example given below demonstrates the use of subroutine MLFIT and sub-

routines LESQU, POISS and MLIKE.

In the main program N measurements ti in the region ta < ti < tb are faked
according to the probability density ~exp (-b + t), using random numbers
(random number generator ZPF). The N values ti are related to NB t-regions

of width At, in order to fake counting rates ¥y for NB values'Ei.

The parameters a and b of the model dN/dt = a *+ exp (-b * t) are estimated

by three different methods.

The first and the second method (subroutine XPBFIT) use the counting rates

Vi The expected counting rate at Ei is given by
Y, A2

fa exp (-bi) dt
¥ - athl

which is approximated by

JUE ab) = b o erp (-bE)
/2

The first method, the method of least squares, uses an error dyi = (yi)l
associated to each counting rate i3 values Vis i > k are not used, if

Y < 5. The second method is based on the poisson distribution for each
value Y5 all values y; are used. The only difference in the program is

the use of subroutine LESQU in the first method and the use of subroutine

POISS in the second method.

The third method is the extended maximum likelihood method, using the N
values £, . The integrals necessary in this method are calculated in sub-

routine XPMFIT, which in addition calls subroutine MLIKE.
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The results of the second and the third method are nearly identical. The
computer time for the third method is much higher, however, because of the
greater number of terms used. The first method yields slightly different
results and larger errors for the parameters, partly due to the smaller
t-region. The error analysis indicates a sufficient accuracy of the

symmetric errors.
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COMMON/PARCOM/ NP ,NE JNF ¢NH,FCT,PA(TS)
COMMON/TUF/ IX
REAL T{2000),TZ{120),YZ(120)
REAL A(4),8(4)4C(4)4R(4)
1X=842919591
N=2000
8(1)=10.0
TA-’-0.0I
TB=0.5
NB=49
ERTA=EXP(~B{1)%*TA)
EBTR=EXP{~-B{l1Y*TB)
DAB=EBTA-EBTB
A{1)=FLOATIN)*B(1)/DAB
DO 10 I=1,N
2 T{I)=-ALOG(EBTA~ZPFI{DUMMY)*DAB)/B(1)
IF(T(I)LE.TA.OR.T{I).GE.TB) GOTO 2
10 CONTINUE

BIN={TB~TA)/FLOAT(NB}
TZ{1)1=TA+0.5%BIN
YZ(1)=0.0
DO 12 J=2,NB
TICJII=TZ(J=11+BIN
12 YI1J)=0.0
DO 14 I=14N
J={T(I}-TA)/BIN+1.0
14 YZ(JI=YItJ}+1l.0

CALL XPBFITI{NBsTZ4YZ,1}
Al2)=PA(Ll)
B{2¥=PA(2)

CALL XPBFITINB,TZ,YZ,2)
Al3)=PAL1)}
B(3)=PA(2)

CALL XPMFIT(NsTA,TB,T)
Al4)=PA(]1)
B{4)=PA(2)

WRITE(6+101)
TV=TA
DO 18 K=l44
IF(A(K).EQ.0.0} GOTO 18
CLK)=A{K)XEXP{-B{K)%TV)
18 CONTINUE
DO 30 J=1,NB
TV=TV+BIN
DO 20 K=1,4
R{K}=0.0
IF(A(K}.EQ.0.0) GOTOD 20
H=C(K)
CKI=A(K)*EXP (=B (K)*TV)
R{K)={H~C{K}) /B{K)
20 CONTINUE
WRITE(6,102) TZ{(JY,YZ{J}sR
30 CONTINUE
sYop
101 FORMAT(LIHL 11X 'TY 48Xy "Y' 46X THENRY " 4y5Xy 'L SQ=-FIT?Y,
1 1X,"POISSON=FIT! 46X "ML=FIT'/}
102 FORMAT{1X1F15434F6.044F12.2°
END
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SUBROUTINE XPBFIT(NR,TZ,YZ M)
COMMON/PARCEM/ NP,NE,JNF,NWFCT,PA(T75)
COMMON/EQUAT/ EV.FVFDWT,A(S)

REAL TZ2{1},Y2(1)

BIN=TZ{2)~T2(1)

IF{M.EQ.1) GOTO 10

IFIM.EQ.2) GOTO 20

GOTO 60

10 ASSIGN 42 TO NFIT
WRITE{6,101)
DO 12 1I=1,NB
IF{YZ{T1).LT.5.00) GOTO 14
12 CONTINUE
I=NB8+1
14 11=]-1
GOTO 30

20 ASSIGN 44 YO NFIT
WRITE (6,102}
II=N8
ESTIMATE INITIAL VALUES

30 TF{YZ(1).LE,O,0) GOTO 60
K=11/2

32 K=K=),
IF{K.LY.3) GOTO 60
IF{VZ{K).LE.O.0) GOTO 32
PA{Z2)Y={ALOGIYZIK)=ALOGIYZEL D)} /U(TZ(1)-T2(K})
PALLY=YZ(1)=EXP{PA(2)*TI(1))/BIN

PART A

CALL MLFIT{246,0,2)
CALL ERRPAIL)

CALL ERRPA{2)

PART 8

40 DO 50 I=1,11
EV=YZ{1)
DV=EXP{=PA(2}%T2{T))*BIN
FV=PA(1}*DV
A{l1)=0V
A{2)=-TZ{1)1*PA(1)*DV
GOTO NFIT41424+44)

42 WT=1.0/Y21(1)
CALL LESQU
GOTD 50

44 CALL POISS

50 CONTINUE

PART C
CALL MALTITI(E8404860)
GOYO 100

60 PA({1)=0.0
PAL2)=0.0
100 RETURN
101 FORMAT(/'1 LEAST SQUARE FIT'/)
102 FORMAT(/'1 PDISSON FITt/)
END
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SUBROUTINE XPMFIT(N,TA,TB,T}

LOMMON /PARCCM/ NP 4NEyNF ¢+NW,FCT,PA(T5)
COMMON/EQUAT/  EVFV,FDsWT,AL(S)

REAL T(1)
TF(PA(LY.EQ.0.0.0R.PAL2).EQ.0.0) GOTO 30
WRITE(64101)

PART A

CALL MLFIT{2:6+,0:2)
CALL ERRPAL1)

CALL ERRPAL(2)

PART B

10 EBTA=EXP{~PA(2)*TA)
EBTR=EXP{=-PA(2)*T8)
DAB=EBTA-FBTB
FCT=~PA{1)*DAB/PA(2)
PA{NP+1)=~DAB/PA{ 2}
PA(NP+2)==PA( 1) *{TB*EBTR~TAXEBTA~NDAB/PA{2)) /PA(2)
DO 20 I=1,N
DV=EXP(~PA(2)%T(I})
FV=PA{1)}%DV
A(1)=DV
AL2)==PAL1¥*T{1I)XDV

20 CALL MLIKE

PART C
CALL MALIT(E10,+830)
GOTO 100
30 PA(]1)=0.0
PAL2)=040
100 RETURN
101 FORMAT(/'1 EXT.MAXIMUM LIKELIHOOD FIT'/)
END



LEAST SQUARE FIT

ITERATIONS

iT FCT ESTLFCT NE L X F

0 =18.0933 EX) 0

1 =14.4981 -14.5219 3T 0 0O

2 ~1l4.4841 ~14.4844 3T ¢ 00

3 ~14.484]1 0 o

ERROR ANALYSIS ERROR = 1.000 SD

H PALI) SYM ERROR ESTOFCT

i 22341 .4 BL7.713 0.500

2 10.1464 0.287851 0.500
CONVERGENCE FCT= =14.484] NFCT= 3

NE= 37 = 0

I PALD) SYM.SD

1 22341.4 B17.713

2 10.1464 0.287851
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pA - - -

22063,9
22276.5
22339.1
22361.4

pFCT(+}

0.+484539
0.4T76391

3.616%0
10.1019
10.1453
10,1464

ERROR(+)

830.654
0.294897

NECT

X

put oot

DFCT (=)

0.502509
3.502403

ERROR{-)

~0.287162

NFCT

2
2

_gz._

X



POISSON FITY

ITERATIONS
T FCT EST.FCT NE L X F
0  6673.00 ' 49 0
1 6674.84 6674.93 49 0 0 0
2 6674.84 66T4. 84 49 0 0 0
3 6674 . 84 0 o
ERROR ANALYSIS ERROR =  1.000 SD
1 PALE) SYM ERROR ESTDFCT
1 22142.1 762.323 0.500
2 9.94240 0.244930 0.500
COMVERGENCE  FCT=  6674.84 NEC T= 3
= 49 = 0
1 PALT) SYM.SD
1 22142.1 762.323
2 9.94240 0.244930

PA = . o

22065.5
22153.6
22142.5
221%42.1

DFCT{+)

0.484375
0.492188

9.62174
9.95597
9.94258
9.94240

ERROR(+)

774.518

0.2646866

ERROR(-)

Pt

0.511719
0.500000

-7153.544
=0.244930

-

- 97 -



EXT.MAXIMUM LIKELIWOOD FIT

ITERAYIONS
IT FCY EST.FCT NE L X F
0 15887.4 2000 0
1 15887.4 15887.4 2000 0 0O
2 1588T.4 15887.4 2000 0 90O
3 15887.4% 0 0
ERROR ANALYSIS ERROR = 1.000 SD
I PALT D SYM ERRQOR ESTOFCT
1 22158.5 TE2.624 g.500
2 9.95196 0.244868 0.500
CONVERGENCE FCT= 15887.4 NFCT= 3
NE= 2000 = 0]
I PALT) SYM.SD
1 22158.5 762.624
2 9. 35196 0.244868

pA - - -

22142.1
22159. 4
22170.8
22158.5

DFCTI(+}

0.488281
0.492188

2.94240
9.95212
F.95495
G.95198

ERROR{+}

771.718
0.246803

NFCT

-

DFCT =)

0.503906
0.49609%

FRROR(-)}

-759.663
-0.245830

NFCT

2
2

_éz_



0.015
0.025
0.035
0.045
0.055
0.065
0.075
0.085
0.095
0.105
0.115
0.125
0.135
Oelab
0.155
0.165
0.175
0.18%
D.195
0.205
0.215
0.225
0.235
0.245
0.255
0.265%
0.275
0.285
0.295
0.305
0.315
0.325
0.335
0.245
0.35%
0.365
0375
0.385
0.395%
0.405
0.415
0.025
0.435
0‘4‘45
0455
0. 465
0,475
0. 485
0.495

191,
180.
157,
141
125.
120.
99.
103.
79.
5.
14,
66.
50-
47.
45.

41.

THEORY

191,75
173.51
156.99
142,05
128,54
116,30
105.24
95.22
86416
77.96
70.54
63.83
57.76
52,26
47,29
42,79
38.71
35.03
31,70
28,68
25.95
23,48
21.25
19,22
17,40
15.74
14,24
12,89
11.66
10.55
9. 55
Ba 64
7.82
7.07
6.40
5.79
5.24
b T4
4,29
3,88
3.51
3,18
2.88
2.60
2.35
2.13
IIQ3
1. 74
1.58

- 28 -

LSQ~FIT POISSON-FIT

191.95
173.43
156.70
141.58
127.92
115.58
104.42
94.35
854,25
17.02
69.59
62.88
56.81
51.33
46438
41 .90
37.86
34,21
30.90
2T.92
25.23
22.19
20.60
18.61
16.81
15.19
13,72
12.40
11.20
10.12
9.15
8426
T.471
6.75
6.10
5.51
4.98
4.50
4406
3.67
3.32
3.00
2.71
2.45
2.21
2.00
1.80
1.63
1.47

190.82
172.76
156.41
141.61
128.21
116.07
105,09
95.14
36.14
T7T.99
70.60
63.92
57.87
52440
4744
42,95
38.88
35,20
31.87
28,85
26012
23465
21.41
19.3¢
17.55
15.89
14.39
13.03
11.79
10.68
9.67
8.75
T.92
TeL7T
6.49
5.88
5.32
4482
4436
3.95
3.58
3.24
2493
265
240
Z.18
1.97
1,78
1.61

ML=FIT

190494
172.85
156,48
141.65
128.23
116.09
105.09
95.14
B6,12
17.96
10.58
63.89
57‘84
52.36
47,40
42.91
38.85
35.17
31.84
28,82
26.09
23.62
21.38
19,36
17.52
15.86
14.36
13.00
11.77
10.65%
9. 64
B.73
T.90
7.15
6.48
5.86
5031
4,81
4435
3.94
3.57
3.23
2492
2. 04
2.39
2,17
1.96
1ﬁ78
1'61
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Part A

dim > 3 (n? + 5n)/2 COMMON/PARCOM/NP, NE, NF, NW, FCT, PA (dim)
(COMMON/MALARR/ FPA(20), NPA(20), NN(9))

NPR = number n of parameters CALL MLFIT (NPR, ITR, IAD, IPR)
ITR = max. number of iter.
IAD = | additional exec.

of part B

= 0 no add. exec.
IPR = 0 no print—out
= | print-out of result

= 2 print-out of iter.
and result

definition of initial values PA (1) =
PA (n} =
options:
param. aj fixed CALL FIXPA (3)
error analysis for CALL ERRPA (k)
parameter ay
modification of constants FPA ( ) =
(COMMON MALARR necessary) NPA ( ) =
" Part B
function value S] FCT =
first derivatives PA (n+]) =
second derivatives PA (2n + j + k (k~1)/2) =
number of terms NE =
if special conditions NF =1 or 2
Part C

CALL MALIT (s Sl’ & 82)

convergence reached .

non—convergence Sz v

Table | : Formal rules for usage |




17 91qEL

MITIH PUB $SI0d ‘nOSHET seurinoaqns ayi jo siinsai pue jndug

LESQU POISS ML IKE
Input: EV YU " _
FV L 2 £ ) Plxy )
FD — - —
1 =1 N o
WT o= (d\tll\ — —
sal. Dday Day Dy
Calculation:
FZTcu e - % 3 w0 { §lx @) —gdl 2 ogi O f(xg ) 2 in @L&:\Q
) 3 1A
. 3 aay 2 (ye-Dlxgel) | Ty 22y 2b 2y
PA (NP + 3) .E_M:L ‘BCL% %4. ay = T ‘i«. &(K;_“?_& c 'BQ% ; ?_Lf\;_l E\
2L DL 2 2t
PA (2 NP + j + k (k1)/2) 2)‘0"’%_2'_ %—c%_ Z% (\0‘15 Vin T .(‘aqn
i<k “ by TR L {an.‘}\ A ?.1 (xe 2)
= N A= N 7 4 = N
& ! ; :
NF =A i A0 €0 | = 4Pl a) €0

- i€ -
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COMMON /MALARR/FPA (20), NPA (20), NN (9)
I FPA (I) NPA (I)
1 N (0.1) fit parameter % (0)
2 €, (O.l} max. no. of it.in error analysis (4)
3 €, (]0“5] status
4 £, (0.5} | index j
5 €. (1.0) = JPR (argument)
6 A Fe = TAD (argument)
7 i N flag
8 . 2d ‘ (2)
9 working area number NE (")
10 no. of fixed parameters (%)
11 ¥ (H*) noe. of iterations (%)
12 Max F(a) no. of iterations
13 F(a) flag for convergence
14 F(g)-PAFe max. no. of iterations
15 AFe no. of fixed parameters
16 k=% eg index j
17 F(g*) - Fj (a, ES-Uj) no, of iterations (+)
18 Sj(+) no. of fixed parameters (+)
19 F(§¥) - Fj(é, - e Oj) no. of iterations (=)
20 Sj(-) no. of fixed parameters (-)

Table 3: Content of common MALARR. Values

values after convergence

marked by (*) are final
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IT =
FCT =
| EST.FCT =
NE =
PA... =

For each iteration the following is printed:

no. of iteration

F (a)

F (a) + AFe {previous iteration)
number NE

fit parameter &

no. of fixed parameters

flag NF

parameters a

I
PA (1)
SYM. ERROR
EST. DFCT
DFCT (*)
ERROR (%)
NFCT =
X =

n

|

"

For each error analysis the factor € and the following is printed:

index of parameter

a,

ok

€510, (symmetric error)
2

1/2*55
- 4 .

F(_a__) Fi (E_: = Eg Ui)

positive and negative error Si’ resp.

no., of iterations

no. of fixed parameters

Result print-out:

FCT =
NFCT =
F =
I =
PA (I) =
SYM. SD =
CORR =

¥

F(a")
no. of iterations
flag NF

index of parameter

*

parameter a;
_ 1/2
o, {one st, dev.) = (Eii)

correlation matrix ¢., = E. f(E,,'E )]/2
glk ik® *Tii Tkk

Table 4: Explanation of print-out
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Figure Captions

Fig.

1

Curve F(a) = const in parameter space for the case of
two parameters and the quadratic approximation using

the first and second derivatives of F(a) at a = a,

The steps égi and EEQ are the results of the two methods

explained in the text,

Geometrical meaning of the calculation of the asymmetric

error Sj according to eq. (20) explained in the text.



Fig.1

—— F(a)=const.

-~--- Quadratic approximation

Fig.2

4F(a*) el -~-= 1.Quadr. Approx.
i NI e 2.Quadr. Approx.
{Fla"-1

—



