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Abstract

We generalize, by including an electric dipole moment that leads to parity
non-conservation, our previous investigation of the scattering of a charged
vector meson by a static Yukawa potential, or in particular a static Coulomb
field, The existance of a solution that satisfies Meixner's corner condition

requires the following inequality between the anomalous magnetic moment «

and the electric dipole moment w

k > 1 + w2 .

In the special case where the electric dipole moment is absent, this condition

reduces to the one obtained previously.



1. INTRODUCTION

1n connection with the charged intermediate bosoni for weak interactions,
we have recently reinvestigated2 the Corben-Schwinger problem3 of the scatter-—
ing of a charged vector meson with anomalous magnetic moment by an external
static Yukawa potential, or in particular a static Coulomb field. It is found
that, in this example of a non-renormalizable theory, a finite solution that
satisfies Meixner's corner condi}:ion4 of finite integrated energy in every
bounded region can be found if and only if the anomalous magnetic moment « 1is

larger than | :
K > 1 . (1.1)

Lf parity need not be conserved, then the charged intermediate boson may
have in addition an electric dipole moment.s’6 It is the purpose of the
present paper to show that the condition (i.1) can be generalized in a completely

straightforward manner to
2
k> 1 +w {1.2)

where w 1s the electric dipole moment. Furthermore, all the miracles that
happen in the previous case of w = 0 to make an explicit perturbation ex-
pansion possible for small coupling constants also happen in the present more
general case. In fact, the underlying fourth-order ordinary differential

equations are altered only by the redefinition of one constant.

Since the development follows very closely the investigation2 of the

special case w = 0 , we shall emphasize the differences and be rather sketchy

otherwise.

2. FIELD EQUATIONS

Wwith the presence of an electric dipole moment w , the Lagrangian density

for the interacting charged vector-meson field and electromagnetic field is

~ieKFu‘¢*¢v'—%iwa c ¥ ¢ . 2.1)



where the notation is the same as that of Ref.2, As discussed further in the
Appendix, this quantity w does not appear explicitly in the energy density

EV for the wvector-meson field:

jnal
[

%{(8/3xi+ie Ai)¢§~(3/8xj+ie Aj)¢§]xa/axi—ie Ai)¢j—(3/3xj—ie Aj)¢i]

+

{(v+ig A or+(a/ot-ie A )p*1-[(V-ie A)g +(8/dt+ie A )¢ ]

") 0, + 47 ¢ grie (A, + AR 4, - 43 @)

+

e (VXA (* x 9) (2.2)

We are here only interested in the case of a static external electric

field described by A = 0 and Al = V. UWhen the time dependence of ¢” is
-iEt . Y. . . S
e * ~» the field equations from the Lagrangian density (2.1) are explicitly

vz - 1)¢0 -iV s (E- eV)g + 1 e k(W) - 4 =0, (2.3)

and

[(E - eV)2 + V2 - 119 = V(7 » ¢) + i(B - eV)V ¢_

S

tiexd W-1ewopxVW=20, (2.4)
0 -

The Lorentz condition that follows from {(2.3) and (2.4) is

V¢ - 1L(E - eV)¢0 + el =)V « [(E - eV)p + 1 V ¢O]
-1ex by V2V + 1 e w(VV) » (V%X ¢) = O . (2.5)

From the Corben-Schwinger case3 w = 0 , we learn that the result « > |
can be .obtained without .considering the situation where the incident nlane wave
is transversely polarized. We therefore restrict ourselves to the case of

longitudinal polarization. However, when w # O , all three components of

28

in spherical coordinates are present, i.e., for w # 0 the simplification

¢

= 0 no longer holds., The five field equation are therefore explicitly

¢
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The partial wave expansion takes the form
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It follows from (2.6)-(2.11) that the radial equations for the partial waves

are

[r_z(d/dr)rz(d/dr) ~ n{n + l)r_2 - 3]@en

—{r_z(d/dr)rz(E—eV)-e(!+n)(dV/dr)}@rn + n@+r EmeV)e, =0 (2.12)
for n 20 s

~[(E-eV)d/dr + e(1+n)(dv/dr)]q>0n

+{(E-eV)2 -1 - n(n+!)r_2]¢rn + n(n+i)r_2(d/dr)r®en =0 (2.13)
for n 20 ,

—r'](E—ev)@on - r_l(d/dr)cbrn

e 2a/dr)r?@/dr) + (E-ev)? - 1oy + e w(@v/dr)a, =0 (2.14)

forn=>1,



e w(dv/dr)e, + [ 2(d/dr)r2(d/dr) + (B=eW)? = 1 - n(n+3)r"2]¢¢n =0

(2.15)

for m 21 , and
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1 . Note that (2.186)

[}
~
I

for n = 0. We have again used the notation n

can be obtained from
-2 2 —1
-(E-eV)(2.12) - r “(d/dr)r“(2.13) + n(n+l)r (2.14)
without using (2.15).
Although this set of radial equations looks much more complicated than the
corresponding set for w = 0 , we show in the next section that the behaviors

for small r are very similar for these two sets of equations.

3. BEHAVIOR FOR SMALL DISTANCES

As before,2 let eV = g e "/r , R =1/g so that

E-eV~E' -R | (3.1)

where E' = E + ug , and approximate (2.12)-(2.16) by

(R (a/aR)R?(d/dR) - n(a+DR 210,
(3.2)
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In (3.2), (3.5), and (3.6), we have used the notationms

Q!n - ®on/g
and
an = ¢¢n/g : (3.7)
Let us consider the case n = 1. It then follows from (3.3) that the
relation

(=2
I

n (d/dR)R %00 (3.8)

still hold even for w # 0. From (3.2) and (3.6) with G&(R) deleted, we get

5, = (nG+nl™ (@/dRR? @/aRR? (@/dR) = (1) [n(a+ )17 (@/dR)

= 0 Ha/dRR? + (&' - RO - w n N @d/drR)R 5 (3.9)

whenr f =R Gan . The substitution of (3.9) back to (3.6) then gives

%42 /dR2)R? (d/dR)RZ (d/dR)-n (n+1) [ (d? /dR?)RZ+(d/dR)R? (d/dR) -1, R™%]

- n{1+n)(d?/dR2) + n?(n+1)2}f

= w n(n+1)RIR 2(d/dR)R? (d/dR) - n(n+J)R_2]¢Wn . (3.10)



It is miraculous that, by (3.5), the right hand side of (3.10) is simply

w2 n(n+l)R_2 ) We therefore get the following fourth-order ordinary

én *
differential equation for £ :

{(d2/dR2)R2 (d/dR)R2 (d/dR)

-n(n+1){(d2/dR?)R? + (d/dR)R*(d/dR) - (n-w?)R %]

-n{1+n) (d2/dR?) + n?(n*+1)2} £ = 0 . (3.11)

In (3.11), not only E does not appear, but also w merely modifies n

The method of solution given in Appendix A of Ref.2 applies step-by-step

here, Alternatively, we may define

n' = (W) /(n - W), (3.12)
and

R' = (n2+ w2)!/? R/|n - w?]| . (3.13)
Thus

I+ =n(l +n)/(n-~w?) (3.14)

and, in terms of R', (3.11) is

{(d?/dR'2)R'2(d/dR")R'2(d/dR")

ca(n+ 1) (d2/dR'2IR'? + (d/dR'IR'2(d/dR') - n'R' 2]
—n' (1+n') (d2/dR"2) + n?(n+1)2} £ = 0. (3.15)

In other words, w can be transformed away.



4. CONDITION ON THE MOMENTS

Since w does not appear in the expression (2.2) for the energy density
EV or in the field equations (2.12) and (2.13), the situation for n =0 is
completely independent of w . This merely reflects the fact that an electric
dipole moment has no effect on a spherically symmetrical wave. Thus2 n must
be either positive or less than 1. Next, we apply the previous considerations
for n =1 step by step. Instead of n > O for the special case w =20,

we get more generally

n' >0, (4.1)
By (3.12), (4.1) means that

n o> wl o, {4.2)
which is identical to (1.2). This is the desired result,

To solve the differential equation (3.15) when (4.1) and (4.2) are satisfied,

define2

v o= %-[l + dn(n + (1 + ") (4.3)
and
x = 220w g1 4R T2 (4.4)
By (3.12) and (3.14) ,
is actually independent of w ; furthermore
j ay11/2
v o= 5{1 + 4n(n+1) n(1+n)/(n—-w=)] . (4.6)

Therefore, this redefinition of v 1is the only change necessary to generalize

to w # 0 all the results given in the Appendices of Ref.2,

5. DISCUSSTIONS

We plot in Fig.l the region in the « - w plane where the condition (1.2)
is satisfied. Note first that the admissible region is two-dimensional, not

one-dimensional. Therefore, it is not possible, even in the present exactly
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solvable model, to obtain our result by the procedure of studying certain low-
order terms in the perturbation series and requiring some non-renormalizable
quantities to be multiplied by a coefficient which is zero. The information
about restrictions on coupling constants for non-renormalizable theories is not

contained in the first few terms of the perturbation series.

For the sake of comparison, we also show in Fig.l the circle

w> + 2 + 3¢ + 1 = 0, which is the condition obtained by Wellner.7 This circle

happens not to intersect our admissible region.

By this example, we have shown that in general there are conditions between
the various coupling constants in a non-renormalizable theory. The next
question is: does this condition « > 1 + w” have any quantitative validity
for charged intermediate bosons, if they do occur in nature., We believe that
the answer is no. In order to get an explicit answer, we have here studied
a problem in potential scattering. This implies, among other things, that
every photon emitted by the vector meson is absorbed by the static change,
and vice versa. In other words, all radiative effects which the vector meson
emits and reabsorbs photons are neglected. Since these neglected terms are
in no sense smaller, this approximation is not justified for intermediate bosons
in nature. It is thus highly unlikely that our inequality (1.2) is quantitatively
correct in such cases. Rather, we have given evidences by example that such

conditions should exist.

The admissible region in Fig.l! does not intersect the line « = 0. Thus,
if (1.2) is correct, a vector meson without strong interactions cannot have
electromagnetic interactions through the charge only, or through the charge
and the electric dipole moment only. However, there does not seem to be any
reason why this qualitative feature of the present result should hold. Let
us therefore consider the possibility that the admissible region does intersect
the line « = 0, For example, suppose that the condition (1.2) is instead
k > | —w? ., Then this condition can in particular be satisfied by « =0
and |w] > 1. With this possibility in mind, we conclude that, if the changed

intermediate boson does not have strong interactions, then it is expected to

have either an sizable anomalous magnetic moment or a sizable electric dipole

8 . . . . . :
moment., If k = O, this conclusion is very similar to the one previous

9

reached6 through the &-limiting formalism of Lee and Yang. So far as we

know, this remains the only proposal to the question why CP is viclated.
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APPENDIX

We discuss here briefly the derivation of (2.2) for the energy density

EV' From the Lagrangian density (2.1), we get the Hamiltonian density
H= Hem + HI . (A1)
- .1 2 . L 2 _ 1 2 o Legay2
where H_ = - (3 A /3t)? + 5(3A/0t) (VA )2 + (VA) (A2)

is the electromagnetic part of the Hamiltonian density and

Hy = {(V+ie’§)¢z + (a/at—ieA0)¢* + w(V % $%+ieA x ¢$¥)] + (3 ¢/ot)
~t ~ ~ ~ ad

+ (0 9*/3t) + [(V - ieA)o +(d/dt+ie A )¢ + w(V x ¢ - de A x ¢)]

+ i e k(A/at) » (g% o, - bF ¢) - L, (A3)
with

Ly = - o1l + w2)[(3/ox; + i e AD#Y - Qfox, + 1 e A4}
% [(Blaxi - 1ie Ai)¢j - (B/BXj -1ie Aj)¢i]
+ [(V+ie A)¢% + (3/0t - ie A g™ + w(V x ¢F + ie A x ¢)]

+ (V-1 e 5)¢0+(8/3t +1ie Ao)¢+w(v x ¢ - i e A xdg)]

+ 00 0 - ¢ e 4+ dew(VA 4 3A/2E) © (% o, - 47 4)
—ie k(XA (9Fxg)y (a4)

Since
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-1 e{g* [(V-ief)s +(3/3t+ie A )¢ + w(V x ¢ =i ed x¢)]

[(V + ie nﬁ;)q;: +(3/9t - ie Ao)g* + w(V x 3’* + ieé X ?/*)] b},

S

the Hamiltonian density f can be expressed alternatively as

H=¢ +H2—v-{AO(VAO+5)+[(v-5)-gé-v)]g

em

+]'_eKAO(E),*¢O—¢§‘?/)} , (A6)

where Eem is the usual electromagnetic energy density, and

ot
|}
| —

5 (1« WZ)[(B/gxi +1ie Ai)¢§ - (B/BXj +1e Aj)¢z]

X

[(3f3x; - ie Ai)¢j - (a/axj_ -1ie Aj)cbi}

-+

[(3/3t - i eA) 3*]‘[(3/31: +1ie Ao ]
~[(V+ied) ¢z + w(V x 2;* +1eAhx E’,*)]
(V-1 e é)¢o + w(V x 4 - ie é X 3)]

by 4 b i e r(TxA) S(gF x ) . (A7)

o "0 ~ ~ ~

Finally, the EV of (2.1) differs from this H2 of (A7) by a divergence

By = Hys2v . Re{¢:’[(v - i eﬂ;})¢0+(a/at +1e A0)3+W(ng - iei\/ x 931},
(A8)
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Figure Caption

Fig.l: Admissible values of the coupling constants «k and w .
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