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Abstract:

In this report we give an introduction to questions related to polarization ex-
periments in deep inelastic lepton-nucleon scattering. After discussing the ki-
nematics we present a summary of the results from different models which have

been proposed as descriptions of spin effects in the Bjorken scaling region. We
estimate longitudinal and perpendicular asymmetries at various incident lepton
energies and scattering angles in order to show how to distinguish between mo-

dels which give nearly identical results for spin averaged cross sections.




Inttroduction

Deep inelastic scattering of unpolarized electrons on unpolarized proton
and deuteron targets has been a field of intense activity in the last few years.
Experimentally, a 'scaling' behavior |i] is suggested over a very wide kinema-
tical range |2]: for momentum transfers |Q2| 2 0.5 GeV2 and C* energies of the
virtual photon-nucleon system W» 2 GeV. Poughly three theoretical pictures have
emerged—two intuitive and one more abstract in nature. The first one, Feynman's
parton model, assumes that in the CMf system of the electron and nucleon the tar-
get appears to be a set of free constituents which scatter incoherently |3-6[.
In the second, the scaling behavior is assumed to arise as a result of a collec-
tive and coherent process: the excitation of asymptotically many overlapping
nucleon resonances [7[. The third picture is based on the more abstract light
cone analysis, in which the scaling behavior is taken to yield information on
the structure of the commutator of the electromagnetic current with itself near

the light cone in configuration space }8,9,6].

These models, and (probably) those to be expected in the near future, have
the common property that they do not determine the functional form of the scal-
ing functions F](w) and Fz(w), which enter the cross section from first prin-
ciples alone. All models can be expected to involve unknown parameters which are
adjusted to fit the data, The extreme case is the light cone analysis, in which
the functional form of F, and F, is unknown except for some constraints in the
form of sum rules. It is clear that decisive tests of such models cannot follow
from measurements of the spin averaged deep inelastic scattering alone. That
measurement of this cross section alone is insufficient to give detailed tests
of models beyond checking the validity of the familiar sum rules is also clear
from the naive observation that cross sections often only contain information
about gross properties of physical processes. In order to make further progress
in understanding the physical processes underlying the scaling phenomenon, one
has to turn to quantities which are more sensitively dependent on the physical
structure of the various models than the spin averaged cross sections or, equi-
valently, the structure functions F1 and F2. The quantities of interest in this
connection are the two spin-dependent structure functions of the nucleon, which
average to zero when one studies spin-averaged inelastic electron-nucleon scat-
tering |10-17].

Deep inelastic scattering to date has corresponded to the measurement of to-—

tal cross sections for virtual photons with a partial linear polarization.

Measurement of polarization asymmetiries will mean that one has the
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additional advantage of having a circularly polarized virtual photon., In the
spin averaged case, the linear polarization components of the virtual photon are

added together incoherently. With a polarized lepton beam, on the contrary,

these components of the virtual photon are coherent.

A parallel worth mentioning at this point is the relation of measurements
of differential cross sections for ﬂ_p > ﬁon, measurements of the polarization
P in this reaction, and the Regge models for the process. It is well known that
measurements of the spin averaged cross section do/dt are insufficient to con-
strain the Regge fits to T p 7°n. In order to discriminate different models,
one has to measure the polarization P. These measurements have had a decisive
influence on the growth of Kegge pole theory and, one hopes, of the general un-
derstanding of hadron-hadron scattering. The parallel is inexact, as the study
of inelastic electron nucleon scattering till now has not yet reached a very
detailed level, but it can be expected that measurements of the spin-dependent
effects in this process are as important for understanding as are the measure-

ments of spin-dependent effects in the example we have just mentioned.

The report is organized as follows. We discuss the kinematics in the next
Section I and the scaling behavior and specific models in the following Section
II. In the last Section III we give a summary of the results so far obtained,
and finally an Appendix containing some useful formulas and a list of various
authors' conventions and definitions together with the relations between the
different conventions. A series of figures can be found at the end of the re-
port. They, together with their captions, are designed to be independently in-
telligible. We have chosen to give asymmetries for beam energies 5 Gel (DESY),

I5 GeV (SLAC), 50 GeV, 100 GeV (CEFN II, Batavia).




I. Kinematics

1. ‘The inclugive reaction 2(?,8) + N(p,a) » 2'(k',R') + hadrons is de-

scribed in lowest order electromagnetism by one-photon exchange [Fig. 1].

k'JB k’B

T
A P,a Fig.1

g =k - k' is the 4-momentum of the virtual photon and 8, B' are the polari-
zation four-vectors of the in- and outgoing leptons (we assume y— e universa-
lity and refer to 'electrons' in what follows), and o denotes the nucleon pola-
rization vector. These are spacelike pseudovectors, orthogonal to the respec-
tive momenta. In the particle rest frame they have only space components whose
length is put equal to the mass of the particle. Otherwise ignoring the lepton
mass, we have in the laboratory frame with the 1-3 plane as the scattering plane

FFig. 2].

k = (E, 0, 0, E)
k' = (E', B'sin®, O, E'cos0)

a= (0, o , o

L 4oy

~
~12) Fig.2

where ) dencotes the polarization component parallel to the incident electron

momentum, o the perpendicular component lying in the electron scattering plane

1

and oy that component which is normal to this plane. We remark that the leptons
have to be longitudinally polarized, as transverse lepton polarization leads to

effects porportional to the electron mass.

The T matrix element |*| for producing a hadron system I is

T= el U BV ul,8) 5 <1 out |1 ] pya >
q
|*| Wwe define § = 1 + i(2ﬂ)4 da(Zp)T; states and spinors are normalized as

<A]B> = (211)3 2E 63 g SB(BAHSB) and u u = 2 m, respectively,
A B



and we obtain the total cross section

: 2 3., uv
a3 - o x| (e)\/\/ (o) (1)
uv

@AY wn?

where HJ“v(B) is the electron tensor and \A/ uv(u) the (spin-dependent) hadron
tensor. This factorization is the nice property of one-photon exchange. We can
write the electron tensor as the sum of a spin averaged symmetric piece and an

antisymmetric piece which alone contains the explicit spin effects of ﬁ, o

uv S R A iouv
m; 8) =5 L +5 A (B)
YooY + ket e %—qz gV ) (2)
v o pvpo
A =4 € qpﬁg

In the same way, we decompose the hadron tensor into a symmetric piece and an

antisymmetric piece under exchange o <> — ai

W W = i 2 (@

m 2

o

wWYoo= l—-f d4x.eiq.x ] {<p,a|{1u(x),1v (0)1 | p,a>
+ <p, -a [1,6, vaO)] lp, = o> } (3)

| dtx T S kpsol 11,60, 1] fpsa >

sxMV - 1__[ 4 igx
- < py,=a} | IH(X)’ Iu(o)] lpy, = a > }

The tensors LPY and WYY are already familiar from the spin average case.

2. We are now in a position to write the cross section in terms of the

unpolarized cross section and the asymmetry, defined as [l4!



doaB = dUunpol L1+ Aaﬁ ]
3 .
d'k! pv Hv
dy = ¢ (4)
unpol 2((12)2‘/ (p-k)2 e uJ ‘VJ

uv uv pv
L "Im Xuv(a) + AT (R IT an + A" (B) Re X“v(u)

of VoW
[V

By the hermiticity of the electromagnetic current and invariance under parity
transformations, which we assume from now on,Im wuv = 0., Since in the labora-

L . + I3
tory system Aus has then to be linear in a , we have three independent asymme-

try components for E parallel to K, namely

NN
A =h+a with Al = A”
af @ 5 1 (5)
A" = by

We see now that one has to carry out three experiments to get all the available
dynamical information. However, we can assume time reversal invariance for the
strong and electromagnetic interactions so as to eliminate AN = 0. For o per—
pendicular to the scattering plane [Fig. 3a.] we have listed the nonvanishing
expressions in Table | together with their transformation properties under P

and T. Clearly, there exists no T invariant term corresponding toAN # 0. We note

that the vanishing of A_ is not, however, a sufficient condition for T invari-

N
ance to hold. Restricting ourselves to AII and Al , the parallel and vertical
asymmetries, which one must measure assuming P and T invariance, we give ex-

perimental configurations in Fig. 3b., and 3 c.

By ™ P T
a(kxk?) 0.K. X
2(Bxk") X X

Table 1.



3. Using P and T invariance, we can write for%%/ or the full Compton
—
amplitude I’ a decomposition in terms of the helicity amplitudes in the s-chan-

nel for forward off-shell Compton scattering. We have four independent ampli-

tudes
g
(e ——) = -] Bl <
S .
(e ] = =) Ela172 <1 =172
fS
(e ) = @ e | 01/2«01/2
S
(¢ =)= o = Eo-1/2 < 1172
where the helicities are as follows: " é,__E?'u‘,Ay= +1, " @ "°°‘AY =0
and ' & "%, = + 1/2 . Therefore, we have four independent functions in the

N
invariant decomposition of W/ , which we choose as follows

BV
2 . . 2
WY (- g™ e L) wo(v,q%) + Y- BN V- B2 oY) WD)
_ qz 1 q2 q2 2

(6)

xuv euvlo HVAC

2 2
q e, X (v,q7) + (arqde q,Py Xy (vsa7)

and where we have defined v = p * q. The symmetry of W and antisymmetry of
I3V

X

MY

are consequences of PT invariance; the hermiticity of Iu(x) requ{res then

v . , .
and W' real. Necessarily, both target and beam must be polarized in order
to get an effect, or else one has to measure the final lepton polarization with

a polarized target and unpolarized beam.




4, Having discussed the discrete symmetries and the invariant amplitudes,
we now turn to crossing and to constraints from the positivity of the tensor

AV A . .
\MU“ y a:WVU a, > 0 for arbitrary complex vector a. From crossing,

2 2
w],z ( V,q ) =" w]’z (\)iq )

X, (-v,a) = = X, (9,49 )
X, (v,4%) = + %,(v,aD).

From positivity we get four constraints [lll,

(D 0w (va)
.2
@ 0 <, (v,a) | (8)
@ 0< (a i Ix) (0?1 < 0D g v,ah)
@ o< |vE (e + 08 - AP x, (0,00 | 2y (w0

The first two constraints are just that the familiar transverse and longitudi-

. , . . 7 d
nal virtual photon cross sections O and 9, satisfy UT,L > 0 since OTNIT an
ULmWL, where

WT = Wl

(9)
2 2,2
= (M7= - I
WpoE (MT-vT/qT) W, -

The second two constraints arise from the condition that the asymmetries be

< | - again a condition from positivity of cross sections. We define (see the
Appendix) the cross sections GT and ap as porportional to the absorptive parts
of the corresponding helicity amplitudes

Q
It

| ,
p=C3mml[£ a2, 112 Y -1 1

op = CIm%y 190172



Then we can write corresponding relations for the T as

]

~
il

|
p=CyImUE v fimiy2-172

C Im £

"L 1 1/2, 0-1/2

The proportionality coefficients are irrelevant to the positivity conditionms,

(1) 0 < UL

(2) 0 2 oq (10)
2

(3) 0 < ()% < 2 o0

@ 0 < )’ < (op?,

from which the origin of the inequalities becomes obvious.

The third constraint equation provides an interesting lower limit of the

. , : 2, . .
longitudinal cross sectlon'oL, once 7, or Xl is measured., Anticipating for the
moment the model dependent light cone algebra result Xl +'vdl, we see that WL

cannot vanish faster than (—q%/v2 [*].

We conclude this section by summarizing the properties of the asymmetries

A and A, . In terms of laboratory variables,

1

A = do(44) - do(4t)
I do (t4) + do(+1)

M(E+E'cos0) X](u,q2)+M2(E+E')(E—E'cos@)Xz(v,qz)

(I

Wl(v,q2)+ % cot2 8/2 Mzwz(v,qz)

|*r The physical interpretation of Ty is obscure because it is related to a he-

licity amplitude with one off-shell longitudinal and one transverse photon. It
vanishes at least as fast as -q2 as —q2 + 0 (see the Appendix). In contrast,

2 . .
tp Can be measured at ¢ = 0 from the total photoabsorption cross sectlon of a

. , . ‘ 2
circularly polarized photon scattered on a polarized target. Note, that TL(q =0)

appears in the Drell-Hearn-Gerasimow sum rule
@® 2
a »
(4 [o,, (v q2=0)—0A (v,q2=0)]= 21 u 2, where ¥ 1s the anomalous magnetilc
v ik ol M2 p p

0
moment of the proton in units of the nucleon magneton.
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and

A - do(4+¢) - do(4+»)
1 do (4«) + do(4>)

ME'sino [Xi(v,qz)"M(E+E') Xz(v,qz)] (12)

2 2
w] (vyq )+ -%— cot” 8/2 Mzwz(v,qz)

It is possible to separate the structure functions Wl and W2 by measuring the
spin averaged cross section for fixed v=(E-E')/M and q2= - 4EE'sin2 0/2 but with
different incident energy and different angle. The same procedure for Xl, X2 is
only possible at small energies, measuring Ali with v and q2 fixed, since for

large energies E >> M, this asymmetry parameter becomes |12]
2
AII [VERY) XI (v,q7) + v2 Xz(v,qz).

Since one must separate Xl and X2 in order to test models, the measurement of

ﬂj_ is unavoidable for large energies.

The boundaries of the asymmetries following from the positivity constraints

are [see [17]]

2
1 1
R (5B coso)- MEED  p proos0)| + HEED  (p pioos0)
i o2 el
oy | < L L 706 TR as)
7 ot 3 )
| - Y _
A
and
1] 1
ME'sin@{ ——%—5 [ 1 vg(EZEZ)} + M§E+E ; }
-q M v —Mq v =M g
Il < | 4 ocot? & IR o
2 3 7]
1- v
)

where R = GL(v,qz)/UT(v,qz). These boundaries appear at the end of this report

among the figures.
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II. Scaling Behavior and Models,

The functions Wl und W2 seem to scale, in the sense that they become func-

tions of the dimensionless variable
2 .
w=2v/(-q") with | < w < @

2 . . s .
as q° and v become large enough (Bjorken 11m1t)1|,2[.The factor v in front of

W. is present on naive dimensional grounds:

: —qu /w=1/

Lim wl v, q2) - F! () V
v,!q21+ - ’,,,»/””/”/”f
.

fixed

ﬂém vwz(v,qz) = F, (w) //
YV, lq l—)’ el
w fixed // F ll
: 3V ig.

The scaling functions are nonzero and the limit appears to be reached rapidly

I<w<®

in the v,qz plane, vwz becoming roughly constant along rays w = constant al-
ready for ]qzli 0.5 GeVz. Wle shall take this scaling behavior as established,
although there may be deviations not yet apparent. We can now ask what sort of
behavior for Xl und X2 is allowed assuming that, apart from a definite power
of v, these functions 'scale', too. From the positivity conditions, and the

requirement that W and WT be functions of & alone, we find that the maximal

L
allowed v dependence would lead to scaling in the form

-1/2

Xl(v,qz) > v x (scaling function)

3/2

Xz(v,qz) > v x (scaling function)

1f, however, the longitudinal structure function WL vanishes in the asymptotic
limit a stronger decrease with v is enforced. Naive counting of dimensions

leads as well to the guess
2 -1 , .
Xl(v,q y > v x (scaling function)

Xz(v,qz) > v"2 x {scaling function)
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which is, in fact, realized in scme of the models we shall discuss now.

IIa. Quark Light Cone Algebra

1, A heuristic argument suggests that the main contributions to the Bjor-
ken limit of wduv(a) come from the region where the arguments of the electro-
magnetic currents are separated by a lightlike interval ISF. In the nucleon rest
frame where q = (qo, 0, 0, q3) we have in (3 ) the exponential factor

exp(i q+x) = exp 1 [ﬁ (xo—x3) - % x3 + O(v_])}

and the significant contributions to the fourier integral can be expected to

come from the volume where the phase in the above bracket is bounded, namely
0 3 3
[x° - x| < M/v and [x~] < wM

Because of causality, {Iu(x), Iv(o)] =Qif x2 > 0; the region dominating the
integral in ( 3 ) is given by

oix2§,2w/v—x

i < 1/(-q°)

whieh collapses into the light cone as q2 > - 0@,

2. In order to get further, we need some information on the commuta-
tor near the light cone |9]. It should suffice to pick out the structures which
are most singular at x2 = 0, since we are assured that these will dominate\A/uv
for large momenta. The obvious method to use is analogous to that which led
Gell-Mann to conjecture the equal-time commutators of the weak and electromag-
netic currents; one calculates the relevant commutators in the free quark mo-
del, and selects the part which is most singular on the light cone. The result
for the antisymmetric part of the electromagnetic current commutator we will

need is the following:

F, 60,1, (0)] 2 = 4= [P e®)sD T ¢

. %'{ %5-120 (o]x) + 1§° (o]x) + 2V‘§ 12“ (o|x) (15)

%5 129 (xfo) + 137 (x[o) + 2 % 2% (xfo) }
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The symbol " = " means "equal as x2 + 0" and the index 5 refers to an axial
vector current. The local current I(x) and the bilocal currents I(olx) are de-

fined in the free quark model as

I ) =3 oY =5
- A
Yooz 1 ¥ (oYY —L?f P(x)

As X, 0 along the light cone one recovers Gell-Mann's algebra of currents at
equal times from the complete set of relations analogous to (15). Fritzsch and

Gell-Mann conjecture that this light cone algebra holds in nature independently

of the free quark model,

We can now use this algebra to get predictions for the structure functions

lt3]. Taking the nucleon matrix elements of the two sides of (15) we can write
5 a
<pya | [ L7 (ofx) + 1% (x|0)] |pya > 3

-2 Lo S (pro) + 0% x4 A (0n) (16)

-~

+ x° aex N, (pex) + 0(x2) }

Defining fourier transforms by |*'

o~

i .
S, (p+x) = dg elgp X 5 (8) ete.
k k
-1
we find in the Bjorken limit (denoted LIM) just

LIM v Xl(v,qz) = G, (w) =

l i -1 -1 2 -1
3 { 73 88 (w ) + S3 (w ) + 2/‘; So (w ) (a7
|*| The function Sy? Ak and Nk are assumed smooth. Then the spectral function
in @ = vanishes for [m [ >t , as can be proven using the Jost-Lehmann-

Dyson representation for causal commutators.
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LIM vz Xz(v,qz) = 02 (w)
a7

9 i -1 -1 ] ~1
——— {— Ag(e ) A )+ 2 /T A (0w )]

+ L
6

We shall not discuss the consequences which can be drawn from the SU(3) structure

of these relations for weak and electromagnetic structure functions, but turn

at once to the sum rules of interest to us, First we use the property that

A(w_}) vanishes for ]wdllzj and assume that it can be integrated. Taking into

account the derivative representation for G2 we obtain (since G2 is even in w):

<«

2 [ ‘—i% 6,P™ (o) = 0 (18)
] 3]

where tbk superscript designates a proton or neutron target., This sum rule is
consistent with G, = O but does not imply it, since G, is not positive definite.
The octet members of T (o]x) are related to Iio (o), the axial currents fami-
liar from baryon 8- decay. The SU(3) singlet current T (o) cannot be measured
as can the 15 (0), k $ 0. We can eliminate it by taklng the difference of proton
and neutron targets since the singlet current must contribute equally to pro-
ton and neutron and so cannot contribute to the difference, This enables us to

find a second sum rule -- thlS time 1nvolv1ng Gl' Namely, taking into account

il

that the integral Jli d(w ) S(w) = S(pex=0) is given by the nuclecn matrix

element of the local axial vector current, we can easily get
2 [ % [P w-ct w1t s (19)
| m2 1 3 A

f, denotes the B-decay renormalization constant, f, = 1,23, This is equivalent

A

to Bjorken's sum rule for the asymmetry structureAfunctions IiS,!OI originally
derived as a fixed q2 sum rule. We now are sure that at least one structure
function G?’n is nonzero. (It would be without meaning to postulate scaling be-
havior if there were no evidence that the resulting scaling functions did not

vanish identically.)
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3. Do the above sum rules converge, i.e. was our smoothness assumption
correct? It would certainly be useful to have an argument that (18) and (19)
are consistent in the sense that the integrals are finite. We can attempt to
check this by supposing that the limit w + © can be connected to the Regge li-

mit v + « |[19]. That is, we assume that the

. -2/
structure functions as W > « turns to //
the leading J-plane singularity in LIGHT CONE

leading light cone singularity of the

Xi for v + @ and q2 large and fixed,
The standard Regge folklore gives for
fixed q2 )-=c0

Y Fig. 5

VK, N X, ~ NS (20a)

l _ ,
x, v v (07 (20b)
as v + o, where G(o) and o' (o) are the intercepts at t = 0 of the leading Regge
singularities which can contribute to the X The only singularities which can

appear are those with unnatural_parity, charge conjugation C = 1, and signature
+ in (20a,b), respectively. Because of spin conservation in forward scattering,

however, X, does not have any contributions from factorising Regge singulari-

ties (see ihe Appendix). Hence we are left with cut contributions like P x f,...
p % etc, with effective intercepts o'gsr(0) < 1/2 l*[. The leading contribu-
tions to vxl + V2X2 come from Al’ P % A],.. exchange, all expected to have
Ogre(0) § 0. The correspondence of Regge and light cone behavior which we have

assumed leads us to expect:

o

Gl(w) + Gz(w) Yo eff < const for w +
a'eff+1 3/2

Gz(w)'\aw S w for o + o

We thus see that the sum rule for G1 + 62 may even converge rather quickly. The

case of G2 is more unclear: the sum rule only converges if the leading

P % meson cuts do not couple. On the other hand, this difficutly indicates that
the correspondence of Regge and light cone behavior may be doubtful for cut

structures.

(o) =1,

l*]We do not consider P % P cuts, whatever it may be, having %t
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4, These sum rules provide a rough estimate for the order of magnitude

expected for the'asymmetry ]lOI. For E >> (—qz)/M'but —q2 large we have

-a%) G () * 6yw)

ME Fz(w)
From the sum rules (18) and (19) we expect

® l
f] dw '—m—i ( Gl(w)‘ + G2(w) ) = 0,2

for, say, the proton. An estimate for the mean asymmetry is then

® dw -
<All>w J = Fz(w) = 0.2 (21)

1w

ME

(-qz)

and leads us to expect parallel asymmetries of ~ 20 7 for E ~ 10 GeV, —q2%2GeV2,

averaged over wu.

Finally, we note a curious and amusing consequence o¢f this estimate. The

positivity condition (8) can be written as

G (w)

- 2

o < (g’ !
AY

!_ = R(Vsqz)
WT(w)

the left hand side of which is, given the Bjorken sum rule with G2 small, ~ 0,2
for not too large [qzl and E. We thus find two things: first, R cannot vanish
faster than (-qz)MZ/v2 and second, in the region where the asymmetries are

n 20 %, so is R, This is an intriguing connection, but we sghall not dwell on it.

ITh, fuark-Parton Models

1. The various parton models |3,4[ provide a physical intuitive picture
of the inelastic.electron—nucleon scattering. In the infinite momentum frame
(f.i. the eN center-of-mass as E > =) the conditions for the validity of the
impulse approximation may be valid. The target nucleon is assumed to behave
like a lot of free constituents with bounded transverse momentum,and the inter-

action time of the photon is vanishingly small compared to the lifetime of this
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state. The scattering is then incoherent. If the number of free constituents
("partons" or quarks and gluons) of type j with spin direction ¢ relative to the
nucleon spin and with longitudinal momentum XPll is denoted by Djo(x)’ one

has |4,14]

1 -1 . 2 .
1 o sl o

Gl(w) )
19 (22)

Gz(m) = Q

Fig. 6
where the sum runs only over the charged constituents (hence the prime).

An immediate conclusion from (22) is that, perhaps surprisingly, only one
of the scaling functions has a nonzero scaling limit. The result G2 = 0 is much
stronger than the sum rule (17) from the light cone quark algebra. We make two
remarks in this connection:

(i) The result 62 = 0 actually follows from the fact that in the infinite mo-
mentum limit point fermions are responsible for the scattering. In this case
only one structure function appears for each fermion - the single particle asym-
metry function is just that for a free fermion, Auv in equation (2). Assuming
that one can use infinite momentum techniques at all, it is clear that G2 =0

is a nice test of the idea that the proton constituents behave like pointlike
fermions in this limit.

(ii) Taking G2 = 0, the ratio of the absorptive parts of the helicity amplitu-

des as v > « at constant w is given by

2.2 1/2

s
53 Im £ 45, 0-1/2 |
S
m fl

_ §
N mf 2027 ™5 g0 02 v (23)
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This is in conformance with the parton model folklore that those amplitudes with
longitudinal photons vanish in the scaling limit relative to those with purely

. s vt 4 , 2 .
transverse photons, This is not a triviality, since we must have v X2 zero in

order to get (23}.

2. Going further with the quark-parton picture and assuming that any gluons
present do not contribute anything to the nucleon spin, we can calculate G1 for
neutron and proton gseparately. Since the squared charge matrix is Q 2/9 + Q/3

1
we can use J d(w ) X D (m ) <jo] %-o | 3 o >=1/2 (the nucleon spin) and
o)

take <Qc3>. from the Cabibbo theory of the axial vector baryon currents with

the D/F ratio 3/2 to get |14]

o £
do P _ 2, A D/F+3 |
2 j] 8 P () =2t Doy v 047
51}
o 2f
dw .0 _ 2 _ A D/F
2 Jl 2 G WIS e T 0.06

This is a far reachingresult: virtually the entire asymmetry effect is confined
to Gp(w), and Gl’ Gg and G; are much smaller. This argument is in the spirit of
SU(6) symmetyy, and in fact G] 0 would be a consequence of the use of exact

SU(6) symmetric baryon wavefunctions, as we shall see.

3. The detailed quark parton model of Kuti and Weisskopf |41 actually
gives functional forms for G?’n , 8o we turn now to this model. The assumptions
are:

(i) Nucleons are made out of three quarks gqq and a sea of q& pairs and gluons
which have vacuum quantum numbers and are responsible for the diffractive piece

of the structure functions. This latter dynamical mess is called the 'core'.

(ii) The single parton distribution functions which are related in the model

to the inelastic scattering structure functions are calculated in two steps.
First, the authors |4| write down distribution functions for the longitudinal
momentum which wéuld hold if the number of core partons, for example, were small,
(as in a gas of low density). The final single parton distribution function

must take into account the statistical weight of the states where many partons

are present, and the requirement that the sum of all fractional longitudinal

momenta is unity.
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The input distributions are taken to be proportional to longitudinal phase space
for the core partons (g or a), with no transverse momentum, ch ¢ gdx/x. The
gluons satisfy the same expression with a coefficient g'. The "valence" quarks
satisfy de & (x)l_a dx/x, the factor xl—a being necessary to get correct
Regge behavior, with o = aAz(o) = 1/2, for the difference sz - an in the
limit x + O, The constants g and g' are to be obtained at the end by fitting

F p(m). Using these assumptions,with the Ans#tze above for the dP(x) for the
whole x~range, the output single quark distribution functions D (x) for the
valence quarks, core quarks and gluons follow. To get these functlons, one has
to impose the two steps mentioned above: The multiparton state has to be con-
structed using the correct statistics and the longitudinal momentum constraint.

For details, see the work of Kuti and Weisskopf |4]

It is worth mentioning the distribution function for the valence quarks,

I'{6-3a) -0 L, 4=2a
Py v Ty Tz ¥ (X
which dominates as x » 1 |*|, The proportionality coefficient follows from the

SU(6) wave function for the 3-quark nucleon state. From all this one gets

the structure functions G, for proton and neutron as

p _ 5 T(6-3a) -0 ,,__4=20
€ =1 T 1o~ ¢ U™ (27)

T =0
The G?’n(w) obtained in this way obey Bjorken's asymmetry sum rule with the
SU{6) value for fA = 5/3,

Obviously, one can only use this for an estimate. There are also some qualita-
tive troubles with the model, namely,

(i) The apparrent experimental violation of F /Fp v 2/3 near w = | indicates
a strong violation of the simple SU(6) picture for the guark wavefunctions |20|

at this point,

;*I Dominance of the valence quarks for x + | is one of the weaker points of
this model, Following isotropy arguments one would expect the shell quarks
to dominate as x ~v 1/3. The present data analysis strongly supports this

suggestion, (Private remark by H. Joos).
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P too seriously =-— at last near w = 1.

1/2

One cannot then take GT’

(ii) As w > = one has from the model GF + o

' , which is inconsistent with

the Regge picture,

IIe, Resonance Models

In concluding our discussion ¢f models, we turn to one due to Domokos et al
|7|. The idea here is directly opposite to that behind the parton model, and
the results are also wholly different, Domokos et al assume that the nondiffrac-

4 . » [ I 4 i
tive part of the deep inelastic scattering is built up by resonances.

Fig.7

At low w one has bumps in the inelastic cross section, which grow progressively
smaller as q2 + -3 at higher w no noticeable bumps exist, The authors conjec-
ture that one is really producing resonances which become progressively smeared
out as their mass increases, and that above the familiar resonance region,

W 2 1.8 GeV, there are many such broad resonances which collectively build up

a smooth scaling function, This is vaguely analogous to the smooth average be-
havior of scattering amplitudes in nuclear physics problems, which can be built

out of many resonance levels (compound nucleus model).

In oxder to implement this idea one needs assumptions about the resonance
spectrum and the transition form factors., Rather than discuss these rather
speculative assumptions in detail, we refer the reader to the original papers.
To summarize briefly,

(i) the authors assume that the resonance spectrum is that of a harmonic oscil-
lator, Mﬁ = m§(1+n) with spins j = 1/2, 3/2,... n + 1/2 and normality T = +.
The levels with even n have isospin 1/2 and those with odd n have isospin 3/2.
(ii) the relative weight of the photon-nucleon decay channel is inversely pro-

portional to the resonance mass.
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(iii) The transition form factors for each isospin channel are universal func-

tions of qlei =y with the following dipole form for q2 > oo}

- S o _ 2 -2

[}
[}
=1
(]
L
—~
1
~
g
e
[\
1

1

_ - 2. -2 _ P .2 .72

where the parameters are taken from the nucleon and first resonances:

+pp proton target

N )

~

H1/2 {un H3/2 {-up neutron target

The precise definition of the functions Gi can be found in the original papers;

we only want to exhibit their functional form.'

We want to emphasize that introduction of the poorly understood scale vari-
able y into the form factors is c¢rucial in "deriving" scale invariance of the

deep inelastic structure functions in w.

The model gives R = 0; it provides good agreement with the functional form

of FZ' This agreement rests heavily on assumptions (ii) and (iii). The calcu-~
lation of the polarization structure functions lléf yields two surprises when
compared to the quark parton model and the light come algebra, First, G](w) is

nearly =zero,
P n T
G, (w) = G, (w) = 0 (25)

and second, GP*" takes the following values

2
3 2 2
c wlw-1) B [ (w=1) -
5wy T4 (B2 - 3/12: } for w4l and = (26)
(w=1+ ) 2 (1+ 5) w=l | |

there being no significant n-p difference as in the quark parton model. The
authors point out that these results are sensitively dependent on the transi-
tion form factors: Whereas vwz(v,qz) is built up ocut of the sum of the squared

form factors of the resonances,vzxz(v,qz) is related to the differences of
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squares., As specific example of the sens1t1v1ty of the model predlctlons to the
input, 107 changes in the I = 3/2 assumption G2 = G3 lead to drastic changes in

the asymmetries, as can be seen from the figures at the end of this report ll6!.

111, Summary

We conclude this report by collecting what we have done into some simple

and F2 are model dependent,

statements. The spin averaged structure functions Fi
but only weakly so. We can expect in the near future that several theories of
deep inelastic scattering will give satisfactory accounts of F, and F2 with pos-
sibly very different underlying physical ideas. These ideas will have different
consequences for more involved reactions like e + N + e' + # + anything. It's
likely, however, that in order to decisively test the theories of deep inela-
stic scattering one will have to measure the spin dependent structure functions

Gl and G2

asymmetries far under 20 7 - would have far - reaching consequences.

. Because of the Bjorken asymmetry sum rule, even a negative result -

An experimental program to measure asymmetries must concentrate, if at all

possible, on separating G1 and G2. At low energies, the measurement of asymme-

near" deep inelastic region (1.8 GeV W 3.0 GeV; 0.3 GeV2 <

tries in the
]qzl R 5 GeV ) is obviously connected to the question of how the asymmetries
allow to understand the transition to the assumed scaling behavior. This region
is particularly appropriate to tests of resonance models for the scaling func- 7
TRPY G] and G,. At high energies, in the "far" deep inelastic region,
one can test how well scaling for G| and G2

tions F
is fulfilled. If scaling holds, one

should then attempt-to obtain the functional forms of G] and G2 So as tao give

accurate tests of the sum rules., In particular, one would like to know whether

p,n

the neutron shows any asymmetry effects, and whether G2 = 0 or not,

We close with a table showing the predictions of the different models,

Light cone algebra] Quark-Parton Model | Resonance Model
ady) f
Proton rpb_any_ A p /2,0 =1 3] p .
G (@) jeutron J wz[G' G 1= g— G (w) g (1=e )7] G{(w) =0
|
Gl (w) =0 ¢T(w) =0
i 2 2
Proton { (@ (w-1)
dw opsn s Prw) = p,n Mp,n _ May2
%2 Neutron j 7 Gy (W =0 6w =0 Gy (W)VF ()| —— - - }
W 2 1+ w1
Go(w) = 0 ww-1)° 2
2 F(w)qr——**—wajg
(w=1+ 3)
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Figs, 8a — 81:

In this first series of figures, we show the supper limits to the parallel and
perpendicular asymmetries for energies E = 5 GeV (DESY), 15 GeV (SLAC), 50 GeV,
100 GeV(CERN II and Batavia) at lepton scattering angles 0 = 10°, 20° and 30°.
The parallel asymmetry ﬁ!, refers to the case where the nucleon spin and the
lepton spin (necessarily along the lepton flight direction) are parallel. The
perpendicular asymmetry refers to the case where the nucleon spin is in the scat-
tering plane and perpendicular to the lepton spin direction. The bounds on Al
and A“ come from the positivity constraints on the deep inelastic structure
functions. The partial suppression of IAL' relative to |A||] arises from the kir
nematical factor ~ sin 8 in front of|AII| and the choice of small 8§ (necessary
for reasonable counting rates). We have chosen in the first figures

R = oL/oT = +18; decreasing R toward zero has little effect on [Alli, but it
can decrease iﬂil drastically. This dependence is shown in the last figure at

each energy.
Figs., 9a - 9h:

In this second series, we present the detailed predictions of the Kuti-Weisskopf
quark-parton model for the parallel and perpendicular asymmetries for a proton
target at the same lepton energies and scattering angles as above, The neutron
asymmetries vanish in this model. The model presumably involves uncertainties

of at least = 30 %, and.cannot be taken literally for w = 1. The suppression

of AL is partially kinematical in origin. The parallelrasymmetry AII does not
vary too much as a function of E, having a mean value ~ 20 Z. The perpendicular

asymmetry is ~ 1 % for all energies. Note that the model has R set equal to zero.
Fig, 10:

Here we show, for comparison, the parallel asymmetry predicted by the resonance
model of Domokos, Domokos-KBvesi and Schonberg., The curves are independent of
lepton energy an scattering angle. The full curve corresponds to the symmetric

quark model and the dashed curve to a 10 7 symmetry breaking.
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Appendix

The purpose of this Appendix is to present the relations between our X, and the
corresponding invariants due to other authors |*|; to give the s— and t-channel
helicity amplitudes; and to give a brief discuséiqn of the Regge hehavior of

the Xi. Our metric is 8oo = ¥ 1, g;; = -1, 1 =1,2,3. We also use Bjorken and

Drells' conventions (e.q. €5123 = + 1) in their field theory textbooks.

We have defihed the tensor Xuv as

v
uv Hvpo

X

2 . Hvpa : 2
9, X,(v,q ) + (arq)e 4P, Xz(v,q ) (A1)

P

as has Wray |13].

Bjorken |10| defined

UV _ r V_UPOT - ol VPOT — fmeayMVPO 2
XKoo= lpiepaga —pie pang = (pradel Top o] H (v,a7)
(A.2)
V_ppoT _ _H_vpoTt _ 2 _uvwpo 2
*lae™ poeia, - e T p agq, et R a b Hy(v,97)
and Gourdin [14] has
Ve MVPT L0y (v 2)
9,% Yy(vsq
: (A.3)

+ (nqu - nVP“) Y2 (v,qz)

where
i HpoT
n £ ppa0 qT
PU - pu _ g_% qu )
q

The relations between these other functions and ours are

[¥] The reader should check for extra overall factors in these definitions. We
have defined all invariants with respect to our normalization convention,
not those of the original authors.
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]
H‘ = ;5 (x1 + v x2)
: (A.z')
H2 = X2
22
- _M7q
Yl-X]-i-(i vz)vxz
1
q2 (A.3")
="y %

The independent s-channel helicity amplitudes for off-shell forward Compton

scattering are

8 2 .92
Elatjz; 1a1/2 =T 2 B0 Ty r OFMa) T,

S 9 v2 ) .
£ 1/2;0 172 © 7 Ty C _'gi) T, (A.4)
S L. 2.2.1/2

£l 1/2;0-172 = * (C2aM y 1y

with photon helicity wave functions

K

) =T 7 (0,1, + i, 0)

1
— (lal, 0,0, 4%

V-q

" (0)

the first of which is a spacelike, the second a timelike vector. The Wi and Xi

are the absorptive parts of the full Comtpon amplitudes defined above,

(A.5)

with the Im £ similarly defined.

{1}

We obtained the t-channel helicity amplitudes from those in the s-channel by
using the s—t crossing matrix. The elements of the matrix are simply numbers

at t = 0, and we find
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t _1 .3 S . 1.8 1 .S
Bz s T3 e a2t Eei2s-172) F 7 for/o0172” 73 B 1/250-1/2
1 2 v2 2 2
=5 M - =) T, + / -Mq" T,
q
t _ 1 .8 s _ 1
f1/2 1/231-t 4 (£ 17251 172% f1~1/2;1—1/2) 2 f01/2;o}/2
2
- S PN
=Ty -y M7 - )T,
q
t _ 1 .8 8
f1/2 1/2300 ~ 2 (fl 1251 172 F f1—3/2;1—1/2) (A.6)
=T

t _ 1 8 _ o8 _ 1 s
f!/2—1/2;03 - 2v2 (fl 1/2;51 1/2 fl—l/2;1—1/2) 2 fl 1/250-1/2

= LV% [ (v~ ¥ —M2q2 ) TB + (vz“quz) T4P

We are interested in T, and T,; the asymptotic behavior, ignoring here T1 and

3 4
T2, is
ft + const T
1/72 172311 = 3
ft + const (v T +v2T ) (A7)
1/2-1/2,01 3 4 e

at fixed qz, for v + ®», We thus have definite Regge behavior for T3 and a speei~
al linear combination of T3 and Té' The former is even under crossing (Vv & —-v)
and recieves contributions from even signaturesingularities, The latter is odd

under (v + ~v) and corresponds to odd signature. We call these oy and o,
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o
1+e v e
T, =) B (=)
3 ae e 8in ﬁ% vo
(A.8)
ima
o
2 l-e v o
v T3 Ty T4 z Bo sinmo ( ZT') )
¢4 [s} o

Additional log v factors from cuts are not indicated.

The NN system in the t-channel has two kinds of states which can annihilate

into two photons: Those with parity = ( - )J, where J is the total angular mo-

: . . +
mentum in the t-channel, and those states with parity = ( - )J 1. Only the lat-

» 1] [ 1] » G
ter can couple to the fully antisymmetric Levi-Civita tensor EHVD .
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