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Abstract

The Regge-eikonal model in ¢3-theory is studied within the framework of the
impact-picture of Cheng and Wu or, equivalently, the reggeon calculus of
Gribov. The exchanged reggeons are Bethe~Salpeter amplitudes in the ladder
approximation and thus contain all orders of the coupling constant in the
vertex function and trajectory function. This gives a more detailed insight
into eikonalization than earlier studies, where the exchanged ladders were
taken only in the weak-coupling limit. We find - in contrast to earlier
studies - that not all permutations of the reggeon legs to the external
particles are equally important, but a certain subgroup of them dominates.
Furthermore, we see that the situation of eikonalization in the weak-coupling
limit of the ladders is quite different from the more general case, where

vertex- and trajectory—-functions contain all orders of the coupling-constant,



‘I, Intreduction

In recent years there have been several attempts to justify within
simple field-theoretic models the eikonal form for the elastic scattering
amplitude, For QED and ¢3 it is shown!) that in the high-energy limit certain
contributions of the generalized ladder diagrams give the eikonal form. 1In
these contributions the large momenta pass the diagram through the straight
lines of the ladder, and these paths are therefore called the eikonal paths.
In QED these contributions are the dominant ones for large s , while in

3 they are not.

But since the eikonal scattering amplitude is often used as a model for
Regge—cuts, phenomenologists are more %nterested in a study of Feynman diagrams,
in which more complicated objects such as reggeons are exchanged, e.g., ladders
in ¢3 and towers in QED. Usually one studies such Feynman diagrams in this
way: for each power of the coupling constant one finds the coefficient of the
highest power of 1lns and then sums over all orders of the coupling constant.

2) and 3): the authors used infinite-momentum

For QED such a study was made in
techniques, and they found that in fact for tower-exchange the eikonal form
emerges for high energies. In ¢3 only the two-reggon exchange, namely the
Mandelstam diagram has an eikonal high—energy limit, while for the exchange

of more than two ladders this does not hold. Only when one confines oneself

to the contributions of the eikonal paths in these diagrams, one gets the

eikonal form as well, similarly to the situation with generalized ladders
described above, But in ¢ this is not the true high-energy limit., These results
on ¢3 stem froma)_s), but there are different statements on the question

which structures of reggeon coupling to the external particle actually contribute

(cf. Ref.4) and 6)).

But there is no reason to assume that the sum of the coefficients of only
the leading powers of 1lns gives the true high-energy limit of the whole sum,
What one actually finds in this way is the high-energy form of the sum in the
limit of a very small coupling constant. Thus the results on eikonalization
proved with methods as those described above, are valid only for reggeons
which are taken in the weak coupling limit but not for physical reggeons.
Nevertheless, the weak coupling limit for the reggeon amplitude can be rather
different from the full amplitude: for instance, in the case of ¢3-ladders,

9)

the reggeon-vertex functions are simply constants”’ in tne weak coupling limit,

while tne full functions



are assumed to have cuts in the momentum~transfer and in the external masses.

So one might expect that the situation of eikonalization changes if one goes

beyond the weak coupling limit.

A possibility to overcome the limitation of the weak coupling limit is
to take for the exchanged reggeons a closed representation, which contains all
orders of the coupling constant and whose analytic properties in momentum transfer
and masses are known. This was done for ¢° by Cheng and Wulo). They
took the full Bethe—Salpeter amplitude for the exchanged reggeons and found
that in fact the eikonal high-energy limit of the Mandelstam diagram holds
only in the weak coupling limit, but breaks down if one goes beyond the weak

coupling limit,

The aim of our paper is to study the exchange of an arbitrary number of
ladders in ¢° , for which we take Bethe—~Salpeter amplitudes, similarly to
Ref.10, where only the Mandelstam diagram was considered in detail. We

!O), as the general form for the

start with the impact picture of Cheng and Wu
multi-Regge exchange in the high energy limit. In our case this is completely
equivalent to the reggeon calculus developed by Gribovl3). For the single
reggeon we make a spectral ansatz, which allows a detailed study of the impact
factors or the Gribov-vertices. Since we know that eikonalization cannot be
the high-energy form in ¢3 , we concentrate on the question of the mechanism
of eikonalization. Our neglect to ask for the exact high-energy behavior in
perturbation theory may be justified by regarding the ¢3-model only as a very
simple form of a field theory, which nevertheless shows already features of

more realistic theories. So the study of ¢3 in our case will be a step

towards a better understanding of the corresponding situation in QED,

Our results will be the following. Firstly, we shall show under what
conditions eikonalization occurs, i.e. under what conditions the impact factors,
which are in general multidimensional integrals over internal momenta, factorize
into a simple product of reggeon-vertex functions. The essential step is
the definition of the eikonal path through the vertices, and exactly in the
weak-coupling limit of the exchanged ladders such a path is marked out, This
is essentially a generalization of Ref.,10 to an arbitrary number of reggeons,
but we think that our spectral form is more suitable than the form used in 10).

The second result answers the question which structures in reggeon coupling

to the external particles are necessary for eikonalization. This is still an



open question, because the statements in the literature disagree: in Ref.4 all
permutations of the reggeon-legs to the external particles are taken into account,
while in Ref.6 only a subgroup of permutations is used. We will find that the last
result is valid only in the weak-coupling limit, while in the general case a

larger subgroup of permutations, but not all permutations are used.

The plan of our paper is: at first we shall explain our framework of
investigation, infinite-momentum techniques and the spectral ansatz for the
reggeon. Then we look at two-reggeon exchange, in order to demonstrate the
mechanism of eikonalization, The results for an arbitrary number of exchanged
reggeons are given in Section III, details in Appendix A. In the fourth part
we pass on to the weak coupling limit in order to get contact to the results
of Ref.4-8 and see in which way the weak coupling limit changes the situation
of eikonalization as compared to the general case, The last section is devoted
to the question which structures of impact factors dominate for high energies,

Sunmarizing remarks will conclude the paper.

IT. Two—-Reggecn—Exchange

As a starting point of our study of the high-energy behavior of diagrams

2)

with reggeon~exchange we use the results of Cheng und WUI » Who found that
in QED and ¢3 the high-energy behavior for the elastic scattering by exchange

of n objects has the form (Fig,1):
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where Jl and J2 are the impact factors of particles | and 2 and the Py
are the propagators of the exchanged objects, depending only on two-dimensional
transverse momenta. In writing down the expressions for the impact factors
which are determined by the structure of the upper and lower vertices, one takes
the infinite-momentum variables (po,g) > (p+=p0+p3,p_=p0"p3,§l). Thus cone may
neglect, within the upper vertex where the incoming particle has a large "+"
component, all the "+" components of the exchanged particles momenta relative

to the other "+" components occurring in the upper vertex. The same holds for the
H-" components in the lower vertex. This results in a decoupling of the impact
factors with respect to the "+" and "-'" components of the q;-momenta. Essentially

the same was suggested by Gribov 3) and Winbow 14), although formulated in terms
of Sudakov-variables. They justify this by means of damping properties of the

amplitude of the exchanged objects for large values of the




momentum transfer and the external masses.

For the exchanged objects we take reggeon amplitudes, which could be
simple ladders. But in order to be more general, we assume only factorization
properties of the vertex function and make for each vertex part a spectral
ansatz, which contains dependence on momentum transfer and external masses:

\ . . 2 2
2 2 ,2 2,2 & (t) P2y
r(p],p;% 05,05 50, 0) = v(p7ipy7s0) SUEE) p(epyie) gy

§(t)=1+87%(E)

(2] -
2 2\ [ g5 2.3
b(p ,D’*;‘b) = dZ/df 77
LA itz 2 1=z ,2 1-z", ..
-1 L SRRy v

;2 2 2y 2 2y=1
b(p?,p1 ;t)‘(p‘]_mr) '(pi Hm]‘.‘)

+1 ? 9(3”2)

xfdzfd 3

- 2
14z 2 1-2_ ,2 1-z :
-1 Jo (-ey- ey Te bede) (2.4

[ o e

2 1=z _,2 1-z°_ .
e A

We found this form more convenient than that of Ref.10). This spectral ansatz

15)16)

is justified at least for the ladder case » and we assume it to be a more

general one,

First we take the amplitude for the exchange of two reggeons (Fig.2a),

which for ladder exchange would be the Mandelstam diagram:
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Evaluating the impact factors we start with the upper vertex, introducing the
infinite-momentum variables for the g-momentum and approximating the reggeon-

energies:
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Now we introduce the notations:
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From the y-integration one has the condition that there must always be singularities
in both the upper and the lower half planes., This limits the xi—integration to

the intervals 0<xi<l, i=1,2, 0<xt+x2<l. Now we neglect everywhere q, and

use for the reggeon-denominators the representation:
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Performing the y-integration gives:
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The same result would emerge if we would have started with the lower vertex,
Now we look at the contribution of the eikonal path, which in our language means
that part of the x—integrations where x;<<l. In this domain we approximate

the integrand to:
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In the same manner we calculate the impact factor due to Fig,2b:
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For small Xy this takes the same form as (2.9), except for the 8-functions,

So we see the general scheme: when we limit ourselves to very small X: the
expressions for the different structures of Fig.2a-d become equal up to 6-functions,
which in an evident manner reflect the ordering of the reggeon's legs on the
straight line. Summation of all these different oxderings will then give the

factorized form:
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The same structures contribute to the lower vertex, but then we must take into
account the factor [/2!, because of double counting. Our amplitude for the
exchange of two reggeons containing all structures of Fig.2 at the upper and

the lower vertex thus assumes the eikonal form:

(2.13)
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The other possible orderings of the reggeons to the straight line such as Fig.3
are zero in our approximation. Thig reflects the well~known17) fact that graphs
with planar coupling between reggeons and external particles have no Regge cut
and are of lower order in s than those with non—-planar couplings. Therefore

we have taken into account all dominant orderings.

III. Generalization to Multi-Regge-Exchange

The generalization to the exchange of n reggeons is now quite straight-
forward, and we shall give only the results and refer to Appendix A for details
of the calculations. At first the question arises which vertex structures one
has to take into account. In our approximation we find that only those struc-
tures are different from zero, in which - following the straight line from the
incoming particle to the outgoing - all reggeons must be emitted first before
any reggeon is again absorbed+%one counterexample is given in Fig., 4). That the
other structures are zero in our formalism means that they are of lower order
in energy, in analogy to the AFS-diagram for the two-reggeon—case. This result
of ours is different from the results of Ref. 4, where all permutations of the
reggeon's legs on the straight line are needed to get eikonalization, including
the AFS-structure. Thus our formalism gives a more realistic insight into this

problem than earlier studies.

Looking now at the "nested" graphs of Fig. 5, we find the same character
as in the two-reggeon—case of Section IT. The eikonal path is defined by X, = 0,
and when we take only the contributions of this path (xi << 1), the only depend-
ence on the permutations is contained in 8-functions, and the sum over all per-

mutations makes then vanish. So in generalization of (2.13):

. n
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Since Xy << | means that the large momenta are confined to the straight lines,

1)

the situation is very similar to the case of the generalized ladders .

Of course there is no justification in ¢3 to assume that only the regions
X; << I should contribute for large s. In fact one has to take into account the

whole interval O ¢ X < l. In order to suppress other x-values then xi<<k,

+) These structures we shall call "nested".
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one would have to introduce a cutoff at the reggeon's coupling to the

external particle, e.g.,

6 (ew - p.) (3.2)

for the upper vertex, where p 1is the momentum of the reggeon—leg and e 1is a
small positive constant. Of course, one would have to justify or to explain

such form factors.

1V, Eikonalization in the weak-coupling limit

4-8)

As we mentioned in the introduction there are several papers in which
eikonalization of regge-exchange is studied in another way: the regge-ladders
are expanded in powers of the coupling constant g, then the highest power of
lns is found and these leading terms are summed up. In this approximation it was
found that for two-reggeon exchange the Mandelstam diagram has the eikonal form
in the high-energy limit, while for multi-Regge exchange one has to take the
high-energy limit not of the full diagrams, but only of the eikonal-path contri-
butions. On the other hand we found in our formalism that indeed the eikonal
path gives the desired form of the amplitude, but there is no reason to divide
the amplitude into distinct paths. We therefore want to show in this section
what happens when we go to the approximation of Refs. 4-8. For getting this
approximation we have to simply take explicitly ladders for the exchanged

reggeons and make the limit g =+ O.

At first we need some properties of the spectral representation (2.4) and
the trajectory function, which are derived by means of the Bethe-Salpeter

Equation {(details are found in Appendix B}.
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With these functions we go back into (2.8) and perform the w-integrations:

2 2
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Since with g? + O the trajectory-function goes to -1(4.1), there arise some
divergences of the x-integrations at ®; =0 and also at X, = 1. At first we look
at the point Xy =%, = 0., We introduce other variables:

2 2
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Using the asymptotic behavior of the spectral functions (4.3), we see that the

integrand remains different from zero at TR, S 0:
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Therefore both the r]-integration and the Tz—integration diverge for g2 = 0, and
the coefficient of these divergencies, which is proportional to 1/g", is found

by partial integration of the t-variables:

;
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The remaining limits can be calculated with (4.1) - (4.3) and (B.15}):
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So the limit of the impact factor's contribution at X, 5 = 0 is:

uo(—(r1+Qi?)

2
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We could study the other divergent point, X; = 1, x, = 0, in a similar manner,

but it is more convenient to utilize the fact that the vertices of Figs., Za and
2c for ladders as reggeons are identical in their topology. Instead of investi-
gation the path k]=l, Xy = O of Fig. 2a we can look at the eikonal path

X =x, = 0 of Fig. 2¢, which differs from Fig. 2a only by the interchanged

reggeons, So the result is (4.9) with =q; instead of qays and the sum of both is

(9

simply (1g)2. As is well known , this is the square of the reggeon vertex

function in the weak-coupling limit.

So we see that in the weak-coupling limit the momenta are forced to pass
the diagram along definite paths, while in general the whole interval 0 < X, < 1
contributes. Furthermore, since Figs. 2a and 2c are equivalent to the vertex of

the Mandelstam diagram, we have found that for this diagram there are two such
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paths, and for large energies the sum of these gives the eikonal approximation.

This is, within our framework, the result of Refs. 4-8 and Ref. 10,

The study of Figs. 2b and 2d is postponed to the next section. Taking only
the contributions of 2a and 2c¢c we obtain for the two-reggeon exchange in the

weak coupling limit:

. (2n) Loy (= ra) D) e (=(ry=a)])
T, = (2(2n) S) fd a(ig) (4.10)
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In generalizing to multi~-Regge—exchange we confine ourselves for the moment
to the structures of Fig. 7, which we call "maximal nested" in accordance with
Ref. 6. Here we have the same mechanism as for the two-reggeon case (for details
of these calculations see Appendix C). In the limit g% = O there are divergen-
cies in the x-integrations, and those points of the x-integration at which the
divergencies occur, define paths through the diagram. One of these paths is the
eikonal path: X = e =X < 0 (for notations see Fig. 7, Piy = 2Xi)' When we
take only these contributions and sum over all permutations of the reggeons, we

get for the weak-coupling limit of the impact factors (ig)n, which is precisely

the n~th power of the reggeon-vertex function in the weak-coupling limit.

Finally we demenstrate in our formalism, why the eikonal approximation is
not the true high-energy behavior in $3 for the exchange of more than two
reggeons., To do this we have to look for other paths than the eikonal path. We
take, for example, the maximal-nested graph for three reggeons (Fig. 7) and

write down the analog of (2.10):
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Here we take the shortest path through the diagram via the legs of the first

reggeon, This corresponds to the x-values x,=1, x, = x, = 0. To study the diver-

1 2
gencies at this point we introduce polar coordinates:

3

x =1-x,, §1=rsinacosq, x2=rsinasin?, sz?cosﬁ'

o, o, & K+, +2 ", +1 o, &
1% %3 2% % (sin?) ?  (cos?) >(cosy) 2

x,” = drdVd¢r
(1—rsinacos?)

and find for the behavior of the integrand at r = 0:

2 \Z Az
J a2 7,0n,008, 2o 5,05 608y ) 1y 220525

27 3%7 91 a5
. ( 1 ] ; (4.12)
m . m m
D inVsingM, . D m ctgy, m
T ] rs sing 21 1+D rcosaM32M21D1 sln?M32 2 D3

2
o~ r0((-(r1+q1)1_)+2

Therefore the integrand as a whole goes with r ~ O as:

*(=(r,+q,) )+~ (a,-a,) 2) s(=(r =a,)])

~ T (4.13)

So we see that the integral diverges as soon as the sum of the trajectories is
-1. To understand this divergency we have to go back to the paragraph in Sec.II
where we found the integration limit for the x-integrations (after 2.6), There

we found that the integration of the "~'"components in the upper vertex (which
are then transformed to the y) gives zero if the x are outside the interval

of O < X, < 1. More exactly the limits are not zero and one but const/w and
I-const/w. Up to now we could néglect these small corrections, but for the under-
standing of the divergency (4.13) it is important., The corrected integration

limits have the effect that the s-behavior is not

(= (v )2 (= (ayma)P) s~ (v -ay) ) -2 (4.14)
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but sd3. The behavior (4.14) holds only if one disregards the contributions of
the shorter paths such as that due to X, = 1, Xy = Xy 7 0. These paths dominate
over the eikonal contribution in the high-energy limit; therefore the eikonal

approximation cannot give the exact high-energy behavior in ¢3.

V. High-Energy Behavior of 'Nested" Graphs

In this section we shall concentrate on the high energy behavior of differ-
ent structures of the impact factors. As we found already in Section III inde-
pendent upon the weak-coupling limit of the exchanged reggeons, only nested

graphs as in Fig. 5 are dominant over the non-nested ones such as in Fig. 3 or 4.

At a first glance all nested graphs seem to be of the same order in s. But
we found already in the last section that only a subset of the nested graphs,
namely the "maximal nested" structures of Fig. 7, gave already the eikonal form
in the weak-coupling limit, and it turns out that these maximal nested graphs
are indeed the leading ones in the weak-coupling limit, and that there is a

hierarchy of the other "nested" structures in their s-behavior.

At first we show this situation for the two-reggeon case. For the two maxi-
mal-nested structures in Figs. 2a and 2c we found that in the limit g2 = 0 two
integrations diverge proportional to 1/g". We take now the expressions Fig, 2b,

(2.10), and perform the integrations:

“( (ri+a)] 2) d( (r,-a)] 2y

const [d Py d p2lf fdx 2(1-x 1) (1=x, )(1-3‘ -X

2) (5.1)
x2(1+z2-1-z2)e(1+22_1—22) '
1 32 92 X 1+z1 1—21 1+z1 1~z]
j/dz1dzz9(f1'z1)3(f2'zz St 2 T2 . )
AP af 2. b by, 2'7%2 p b
1 —T D) )( ____J) +D.)
+z1 1 1 z1 1 2

There is only one point at which divergencies occur with g2 = 0 and o > -1,

namely the point X| =X, = 0. We introduce polar coordinates
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o (= (x +a)2) cx(-(r1-q)f)=drd,‘,ru('—(r1+q)f)+o<(-(r1-q)i)
2

dxjdx (5.2)

2 ,(Cos¢)“('(r1+q)i)(sin?)u(_(r1-Q)i)

and see that only the r-integration diverges when o + -1, while the ¢-integra-
tion does not diverge at ¢ = 0 or %. So we have only one divergence proportional
to 1/g?, which is the weak-coupling limit of the eikonal path. A similar situa-

tion holds for the structure of Fig. 2d.

The fact that cases 2b and 2d have less divergencies in éz- and therefore
as a whole higher power of g2 than those of Figs. 2a and 2c is connected with
the leading-lns behavior of graphs with structures of Fig. 2 at the upper and
lower vertex. To see this, we take the trajectory-function in the approximation
(4.1) and use that the impact factors are proportional to g2 for Fig. 2a, 2c
and g" in Fig. 2b, 2d. Then a two-Regge exchange diagram with structures 2a at

the lower and the upper vertex has the power serie (from 2.5) ):

3 W (8% (=(r,+a) D) +ex (= (r,-a)F))"ins" (5.3)
5 oy —

m

while for a graph with structure 2a at the lower and 2b at the upper vertex we

have:

6(g20t0(-(r1+Q)f)+g2°<0(-(r1-Q)f_))mlnsm (5.4)

m*!

s™3 3 g
m
Comparing terms with equal powers of g we find that graphs of the second type

are lower than those of the first type by lns, This was already found in Ref.6,7.

This situation can be generalized to multi-Regge exchange. When we look at
the numbers of divergent integrations proportional to 1/g?, we find a hierarchy.
The most divergent and therefore leading, graphs are the maximal-nested graphs
of Fig. 7. These are those graphs where the ordering of emission and absorption
of the reggeons is the same, i.e, the reggeon emitted first is absorbed as the
last and so on. To be more precise, we classify the ordering of the reggeon-

legs to the straight line in the following way:
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When the numbering of the exchanged reggeons is fixed (Fig.5), each-diagram
is characterized by the two permutations (il, veeay in), (jl’ ey jn) of the
numbers (!, ..., n). They define the ordering of emission and absorption. We
classify these permutations according to Fig. 6: draw a ladder and denote the
n points on the left~hand side by ii’ cees in, on the right—hand side by
ji""’ jn' Then connect the points for which i = j by rungs, In general there
will be horizontal rungs, not crossed by any other, and some groups G], vers G
of ll,...,lr rungs, respectively., These groups are defined such that they contain
no horizontal, uncrossed rungs and that the i's on the one side are permutations
of the j's on the other side (this means that no rung is leaving or entering the

group). So the maximal-nested graphs have only horizontal, uncrossed rungs.

Now the statement, derived in Appendix C, is the following: the number of

diverging x-integrations is

n-(1,-1)-(1,-1)-v.0=(1=1)
and the leading power of g2 in the limit g2 = 0:

: -1
gn+2(11-1+12-1+...+1r. ) (5.5)

This result on powers of g is now transformed into a statement about powers

of lns, such as in (5.3), (5.4): we showed that the minimal power of g for the
impact factor is equivalent to the highest power 1ns for a term of the expansion
on powers of the coupling constant. Sc we find that diagrams with maximal-nested
structures and the upper and lower vertex will have the highest s~behavior, This
was already suggested in Ref. 6, and we confirm it within our framework. More-
over, we have found that structures can be ordered in a hierarchy, according to

their leading-lns behavior,
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VI, Summary and Conclusions

What we have found is the following: starting from the general impact
picture of Cheng and Wu - or, equivalently, from the form of the reggeon ex-
change amplitude that was used by Gribov and Winbow -, and taking a rather ge-
neral ansatz for the reggeon amplitude, we have studied under what conditions
we get the eikonal form for Regge exchange. In general the impact factors of
the form of Fig, 5 are complicated expressions, namely multidimensional inte-
grals over internal momenta, and they are far away from factorizing into a simple
product of the reggeon vertexfunctions, as it would be necessary for eikonali-
zation. In order to get the eikonal form one has to take from the full graphs
of the form of Fig. | with impact factors of Fig, 5 at the upper and lower end
only the contributions of the eikonal paths, i.e. those parts of the amplitudes
where the large momenta pass the diagram along the straight lines at the upper
and the lower end. Then one must sum over all permutations of the nested graphs
(they are defined in III)} and gets thus the eikonal form with slightly modified
reggeon vertex functions. Thus the essential step in eikonalization of Regge
exchange is the emission and absorption of very soft reggeons, while the momenta
of the external particles remain essentially unchanged during the scattering
process. This picture is quite analogous to the case of the exchange of virtual
particles in the generalized ladder diagrams. But without the introduction of
form factors it is not justified to take only the eikonal parts of the impact

factors and to neglect the other parts.

This situation changes if one takes the weak coupling limit for the tra-
jectory- and vertex functions of the exchanged reggeons., Tn this limit the im-
pact factors decay into a sumoftermseach of which corresponds to adefinitepath
of the large momentum through the diagram. One of these is the eikonal path,

In ¢3 » nevertheless, the eikonal parts are not the dominant ones for large s,
There are always '"shorter" paths with a higher s—power than the eikonal path.
Only when one neglects all these shorter paths, then the eikonal form emerges.

But this concerns only the weak coupling limit of the exchanged reggeons.

in order to achieve eikonalization independently on the weak coupling Ilimir
of the exchanged reggeons, one has to modify the coupling of the reggeons to the
external particles by the introduction of form factors. So it could be a furure

task to study within our framework the effect of such form factors.



21

Apart from this detailed study of the mechanism of eikonalization we have
looked which structures of the reggeon couplings to the external particles do
contribute. We found that certain structures of multi-Regge exchange, such as
the AFS—structpre for double Reggé exchange, are not at all important at high
enefgiés. Only those structures which we called "nested" do contribute. More-
over, in the weak coupling limit these "nested" graphs are not all of the same
order, They paﬁ be put into a hierarchy according to their high-energy behavior,

and the‘leading ones are the "maximal-nested". This was already supposed in Ref.6.

In conclusion we would like to make a remark about the limitations of our
technique., Our steps of approximation in writing down the expressions for the
impact factors can be justified either by the experience of Cheng and Wu or
by appropriate damping properties of the reggeon—amplitudes for large values of
the external masses and momentum transfer. More rigorous methods, such as an
investigation of Feynman-parameter representations, are not applicable for our
aim, because they do not allow to take into account more than leading orders of
lns in the expressions for the reggeons, nor are they simple enough to study
more than double-Regge exchange. On the other hand our results fit very well

into those of more rigorous investigations.

Of course we have been able to study only the leading—s—coefficient for
the individual impact factors, and when we sum over all numbers of exchanged
reggeons, we actually sum again only over leading s-terms, which must not be

the high-energy limit of the sum. But in this respect the situation is very

Lr )]

similar to that in potential scattering. There it is known that in the Born
expansion of the scattering amplitude each term for large s has the form of

the corresponding part of the eikonal expansion. Thus the eikonal approxima-
tion is also the sum of leading terms of the Born expansion. In our case the
reggeon represents the "potential', and the Born expansion in potential scat-
tering corresponds to the expansion in numbers of exchanged reggeons in our
case., Since we have taken the reggeons not in a weak-coupling limit but their
full amplitude we have found the leading s—term for each number of exchanged

reggeons, and so we have reached a level of rigorousness similar to that in

potential scattering.

The author wants to thank Prof, G. Kramer for helpful discussions .,
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Appendix A

This Appendix contains calculations of Section III, i.e, the generali-

zation of the eikonalization procedure to the multi-Reggeon—dase. Our nota-

tion of the momenta is given in Fig. 5: when the reggeons are numbered 1, ...n,
then each individual diagram is characterized by the two permutations i], vees
in, jl’ ""jn’ which define the orvdering of emission and absorption of the

reggeons by the line of the external particle, Equivalently we use permutations
ul, veey un and vl,... vn, where pk is the number of the vertex where the
reggeon k is emitted, and Vi the number of the vertex where it is absorbed
(for the emission we have counted from the left, for absorption from the right).

Now we introduce some new variables:

(pk)+=2ka' 2“’(pk)_=yk ) 2”(qij)-=yiﬁ (A.])
YetRae-17%c Y ¥ kks1 =R

and have for the denominators along the straight line from the left to the

right:

2
(1-xi1)(M -¢1)-F1+ie
(1—xi1-x12)(M2-qé)-Fz+ie

LI

2 s
(1-xi1—. . o"xin 1)(M -?n-i)_Fn-1+1e

(1-x1—...xn)(M2—2)—K+is

2
(1"xd1-oo.“xjn—1)(M _q’n_‘l)'—Ln_.l"l'iﬁ (A.Z)

(1-'xj1)(uz-?1)-1,1+ie

2 2

F,=(r +p; +a FeeodD, +QAy g ) M
k 1 i1 i1i1-4 ik 51&?3_2 L

L, =( +p, +q + +p, +q )2+m2
=~ . " en . 1

2 2 ' 2 2
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n n
—_ = MY =
I\ok=0(i1+...+0(ik ’ l{Jk—-pj1+ooo+ﬁjki A ? k 12'%,( (A.2)

Nk=$wk-%pk-1' Bk=ka"4Vk-1 (?n=Wn=k' @0=45=?)

Similarly the denominators of the spectral forms for the reggeons:

1+2 ‘ 1-2
k 2 k 2
D=3 (x4 = Py + e 4 q )Jé )-—3 (xkﬂk_ (Py+pp 1)1 )
: ) ‘I-—zk 2
~ T (g1 =Ipaeq ) 1718 (A.3)
1+z 1 Zy 2 1_zk

=fer(Ptayge 1) 1= T (Ptayge ) - 4 (qkk-—1"qkk+1)j
1+2 1-2 '

"Ry e )T, -y, )i

/U’k ,uk—1 2 k vk Vk-1

We use now the expression (2.7) for the reggeon denominators, perform the inte-

gration of the.x,fzvfand have in analogy to (2.8):

g2 " T 2 u(-(qkk1—qkk-1)i) az. (%, ,2, )
G e anal e s
n =
0o
i [ o2 e'i"’ka)
=5 [ 99 (A.4)
[+
ggn(X sen(X, ) sgn(X ) sgn(X_) sen(X, ) sen(X, )
en 11) ( 1o - n Jn-1 Jq
X X e X, X X et X.
1 1o Th-1 n n-1 J4
+ + + + -
w, x, =W, x, w, X, =W x w X -, X
i, 71 i, 4 1,71 i, i i i 71
2 7R 2 72 n-1 n-1 n n
9 ( —— ) 6( 23 2.0 )
xi1 1o in-—1
W, xX. =W, X W, x, =W, x, W x -W, x
5 IR DR P s d, dg 3 dnot dpoy In dn
o( LT 22y e 22 2.6 g )
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with the abbreviations:

X =f=X ~ese=X
e 4 ik

X ==1--xJ

Jk —oooij

1 k

X =1—x1-.-r-xn

n

A detailed study of the O6-functions shows that the W-integrations are different
from zero only, when all X, > 0 and Xk > 0. So one can neglect all the denomi-
nators of the arguments of the 8-functions because they are positive, and because
the sgn-functions are all +1. Now we confine ourselves to the eikonal path

(xi nearly zero) and set X, = 0 everywhere in the integral with the exception

of the 6-functions and the x =factors., The dependence on the individual permu-

tations we get the eikonal form (see (2.11) ):

: <«4
2 n n 2 :
& (fd p,, | dx, x “(-(qkkﬂ_qkkﬂ)J.)fdzkg(:rk'zk)
oty I ] e |
‘-3 fd(o 02 o Kk )
k“k
°
2 2 A.3) [y
(=t i) 1 =L+, 1 )10 = (G0 =%y )1

n 2
g 2
1131( (2(2 )3)fd Pil %)

2 z
((py+ayy 1) +m%) ((pptay, ;) +m

<< 2
o (= (941 =i ) 1)
o) dxy X )

o

ol

n
=TT B(-(agge_1=4cs1)3)
kk-1 “kk+1/.4
k=1

Up to now we have considered only the '"nested" graphs, those in which at
first all reggeons are emitted in an arbitrary order and then again absorbed,
If we now take a non-nested graph as in Fig. 4, then by proceeding in the same
way as in (A.4) we get again a series of §-functions. But these f§-functions are
incompatible, and there are no x-intervals for which the yintegrations are
different from zero. So in our approximation these graphs do not contribute,

which means that they are of lower s—dependence.
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Appendix B

We shall derive some properties of the spectral representations (2.3),
(2.4) for the case that the reggeons are ¢°-1adders. We follow the procedure of
Ref, 10 and use again infinite-momentum techniques, as we have already done in
the calculations for the impact factors. We expect our results to be valid only
in the weak coupling limit, but that is all we are interested in for the moment.
We write down the Bethe-Salpeter—Equation for the ladder approximation (Fig.8),
use the spectral ansatz (2.3) and decompose the denominators according to
Ref, 15 in the following form:

1 1
)2

2
(rz-p)z-ﬁz 3'-1;zt(p-r1 )
1 1

2 2 2 2
(p-r)2-m2  (per,) -m?

lez ', 2 1—2'2
-5 (pery) "+ —(2ry

(B.1)
- 1 1
(x,mp) 2-p? x--lgﬂf(p-r1)2-155i(p+r1)2+l§5i3(2r1)2
1 1 152! '
((p-r1)2-m§ (per )2l ((p—r1)2-m§ ' (p+r,)2-m§)
‘ )

2
14z 2 12! 2 1-z1 2
f"‘ 23 (p"r1) -T2 (p+r1) +""Zr'z"_"-(2r1)

Now we use the same approximations as in the derivation of the impact factors,
perform the p_ and p -integrations by taking the residues and by symmetrical

integration, respectively, and get for the spectral-function the integral equa-

tion:
& e | $1,20)5(8 =)
e(t,z) = g dz')/d vt K($,2; 8 ,27) g (%!, 2]
3(3,2) 8(27')_! \ -

3.

where we have used the following abbreviations:

19 M(;)z_#:i)_g( ﬁ(:)z_T{i) (B.3)

K($,2: §1,2 )E/dxxu((‘?'rﬂz)—i
’ ProM(zr)?
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2 14z 2 leg 2 1.42
M = — 2
(z) My o+ Zm 72 (2r,) 5.4)
r S- 1=zt 2 1—z'2(2r )2 2
1+z -2 I 1 1=z 2 _ 1-z 2 <z?
2 o + —m, - ——(2r,) z
M(z)2= 2 (.5)
142! 2 127" 2
L m + - (2r )
1+zm2 + 1=% \ 2 r 4 1 _ 1£z (2r1)2 Z5%!
2 .r 2 1ozt
2
(B.6)

At first we look at the large-p-behavior: after performing the x-integra-
tion by means of the &6-functions we find the form:

K(K,z;j',z')n, f"“(t)‘1 (M(Z)zfx(t)—gﬁkz)zfm(t) (B.7)
€ 00 S'-M(z')
- 2) ~o -x(t)-1- ” ' 5.8
S’(fs )S-’wj gw( )
o (Z)— —ﬁz——j:lz‘ wd ' KM(.Z)z)“(t)—(;i’(z)z)«(t) -(‘S',Z') (B.9)
Sw B 8(211)?;4 J} S'"M(Z')Q' 8
,

Now we take the limit g2 2> 0. In order to have the same power of gZon both
sides of (B.9), there must be one divergent integration in the limit g? = 0 which

cancels the factor g in front of the integral. Such a divergence arises for

2
u(tﬂ-:o~1+1in2«5(t) (B.10)
g

where ao(t) has to be determined by the equation. For ov -1 we may neglect the

second term in (B.9) because of the p'-dependence in f}\f(z)2 and get in the
limit o1
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+1

2
g 1 1670

8(2m)° M(z)? g‘20(0(t)

§oo(z)=

dz 'goo(z ") (B.11)
-1

Integrating both sides with respect to z, we have!
1

= | ax 1
% (t) _fd (=x(1-x)t+m>) 12

(o]

. . . ; 20 ; .
in accordance with perturbational calculations ). But there is still one
unknown constant, an overall factor of f—)°°, which cannot be determined by means

of our homogeneous integral equation. This constant can be found, since we

know the limit of the vertex function for small g2: it must be ig 20): This
gives: 44 wo
ig= 1im fdz/dj S\Y,z) 5
g0, r S 142 2 1=z 2 1=z " (B.13)
J, 0 =72 Mp 7T Mpts
+4
2
16m =
= - fdz' lim gw(z')
3 ; (B.14)
- - ¥ -5
gé-a 09u 8(2n)° M(z)
Next we are interested in the represenation (2.4):
+{ W
2z dzfdr e5e) z
ki=m k. -m - 14z . 2 1-2 k2 1~z & (B.15)
Vr TR T % G) §-5 Ki-5~ K+

We combine the denominators by means of the Feynman identity and introduce new

variables with 8-functions:
+4 o0

= ldazla g(3,2) - (B.16)
- ( 1+zk2 1-zk2 1--z2t)3
I AN e

2
fo(z)= M(z)%= mi -1_&& t (B.17)

where the new spectral function is connected with the other one by:
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- 6(

fumi+lﬁg“t 2 2
_____;————+M(z') -(M(Z')tﬁ) )

Finally the following properties are important:

985,27 37 lgp(2)

9(z) —3 6
g0

{B.19)
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Appendix C

In the following we give some more details of the weak-coupling 1imit for
n reggeon exchange. At first we shall consider the maximal-nested diagrams of
Fig. 7, then we show how the maximal-nested graphs dominate over the other

structures,

We take (A.,4) for the case that (il,...,in) = (jl""’jn)’ and perform the

w-integrations!

\ 2 n n x(-(qg L1-C )ﬁ)
(2(511)3) 1]:[ (/d pk_L/dx X, kk+1" Tkk~1 /deg Sk,z ) I )

e(xi1) e(xiz) e(x,) (c.1)
2 TR x
’ i, n
\ 1 1 1
x. .'.X.
12 *n
D. -"""—M. - D +D. ‘-—‘—"bi. 5 'ooo}i. . D- +000+D-
T %a Tah 1ot %5 tatneg ot M *n
To study the eikonal path (x‘= ‘e =xn=0) we find it convenient to intwoduce
other variables:
xiz i
T1=%y 0 Tt e Tatx
o, &
i, in n-1+u‘i +"'+Ni
dxi g.odxi xi .-.xi =d'€1...d'b' t1 1 n .l.t
1 n 1 n n n

Using the asymptotic-p-behavior of the spectral function (B.19), we see that

in the limit T = eer =T 0 the integrand has the form:

1
(1’11)5-"(”1 )2

(€.3)

This has the consequence that in the limit g? = 0 all t-integrations diverge
proportional to l/gzn. The coefficient of this leading divergent term is found

by partial integration of the T's and contains a factor of the form:



30

1 1 1 (
. C.4)
4 + s o+ 4% + +0¢ e
oi LY « “
1 oin 012 oi Oin

The rest is independent of the individual permutation. Thus the sum over all

. . .\ I
permutations gives {(ig) .

Now we take an arbitrary non-maximal-nested graph., If we would try to per-
form the w-integrations in (A.4), we would get a very complicated expression. So
we make a simplification of the spectral form (II.4) which facilates our caleu-~
lations. In the foregoing study of the weak-coupling limit we saw that we needed
the asymptotic—p-behavior (B.19) together with its coefficient in the limit
g? = 0. In particular the z-dependence of the asymptotic form dropped out. There-

fore we are allowed to use the simplified form:

+1 ©o

fdz a3 — f“) vy I ¢ (4) ~ 1g3™¥(t)=" ©.5)
- - .

-1 Y@ $-Fi-Tr e t) e

This‘can be cast into the form:
j"; (§($-n2)+ ) @ ($)
AR TS T

m

-2 (C.6)
=fdf ) e ()~ 165 P2 punction(s)
A (S"‘P1 ) (S‘P; ) f-aoa

With this ansatz we write down once more the expression for the general nested

diagram, The denominators along the straight line are the same as in (A.2), while

those of the reggeon legs are:

xk(xk.-—rk and xkﬁkhsk
: _ 2
with rk_(pk+qkk—1)1+fk

_ 2
Sk‘(pk+qkk+1)1+yk

After performing the o,B-integrations we have the following denominators:
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1—1{1-'...—3( 1 1
2 r LI BN r r
(X,00ex_) i i i
! 7 (1—xi )(}IZh-t-l)—Fﬁl (1—x = e s e=X )(}12_“_1_0 . '__...._..E)_K
1 i 1 n i i
1 n
; , (C.7)
* Sj LA A Sj S
2 1
(1-xj )(M ";('—-"')_L1 (1-XJ _""'XJ- )(MZ"’X_1"ooo—}'{""‘r‘}')—K
! 31 ! n 34 In

Since we are interested in the limit for very small x, we may already make some

simplifications:

1 1 1
xiz Xin Xin
r —T. +T, =T, 4=, +,,.4T (C.8)
i1 xi1 i1 i, X, i1 X4 12 in
1 2
1 1 1
x L B B BN xl
J Jg xJn
5 —— +S.‘ ——t 5 F=——5. Htess+8S,
i %5, 92 %3, 91 %5, Ja In

Now the dominance of the maximal-nested graphs over the other structures is due
to the following reasons. In the limit g? = 0 the trajectory-function goes to
-1, and all x-integrations would diverge at O, if the other integrand would not

vanish. Then we would get a factor l/gzn as in the case of the maximal-nested

graphs.

For that case we introduced the T-variables and found the limit (C.3). This
situation now becomes clearer in (C.8). For the maximal nested case i] = jt""’
io= jn’ and after the introduction of the -variables, only occur the denomi-
nator continues only products of t's but no quotients, but there are no quotients
of t's. Therefore the limit 7 - O can be taken for all 1 independently, and
the denominators remain all different from zero, This situation changes if there
are some i's unequal to some j's: e.g, i’ =y 12 = jl and ik = jk(k=3,...,n).
Then there are both

Xy /xi and sz/xj1=xi1/xi

2 1 2

in the denominators and if X, or x; go to zero in such a way that one of the
] 2
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ratios + O too, then we have an infinity in the denominator, and the whole

expression is zero. So only X, voxg 0 with fixed ratio are possible:

1 2
x, =TI cosp, x; =r sinty
1 2
and only the limit r + O gives a divergence for g2 = 0, while ¢ = 0 or ¢= %—do

not give divergences. For the other x we again introduce tT-variables as (C.2)
and get n-2-divergent integrations, So we have a total of n-l-divergent inte-

grations, and n for the maximal-nested graphs.

This can be generalized. According to the prescription of Section V we draw
the ladder of Fig. 6 and devide the graphs into groups: the horizontal, uncrossed
ones and the groups of the other type described. Then we find that for the

groups G we should introduce polar coordinates for the X with radii r, and

k
these . give one divergent integration, respectively., The corresponding angles
have no effect in the limit g2 = 0, The x-variables of the free, uncrossed rungs
can be treated as in the maximal-nested case, i.e. the can be transformed into

T's, Each such Tt gives an additional divergence. So on the whole we have

n-(1,-1)=(1,-1)=c.0~(1_-1) (€.9

divergent integrations, and the resulting powers of g 1in the weak-coupling

limit for one impact factor are

gn+2(l1—1+12-1+...+1r—1) (C.10)
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