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Abstract

We introduce linear stochastic precesses on certain function spa-
ces pertinent to the measurement of the intensity correlations
that characterize quantized electromagnetic radiation, Next, we
construct the characteristic functional of the basic process by
considering second quantization as a functor. Finally, we calcu-
late and discuss the characteristic functionals for specific pho-
ton states which are: (1) coherent states, (2) quasi-free states,

and (3) n-particle states,
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I. Introduction

It is characteristic of electromagnetic radiation that states
yith a definite photon number n are not likely to occur in
nature, One frequently encounters a distribution of n and si-
milar quantities which may well be described by an incoherent
superposition of pure states with definite n, hence by a den-
sity matrix. Here, the most prominent example is provided by
Gaussian light. On the other hand, due to the absence of a su-
perselection rule with respect to the photon number, coherent
superpositions of photon states with different n also play a
significant rale. Phe extensively studied class of coherent pho-

ton states illuminate this fact.

It is for these reasons that correlation experiments of ever in-
creasing complexity are needed to gain sufficient knowledge of
the observed radiation and its source, Since the classical cor-
relation experiments for ordinary light intensities by Hanbury
Brown and Twissg the quanfum theory of cptical coherence has been
forcefully developed [ 1} and the present formulation owes much
to the work of Glauber [ 2 ], Finally, a guantum stochastic for-

mulation of the theory of arrival times of light gquanta has been

attempted by Davies [ 3 ].

This line of reasoﬁing suggests introducing local observables

for the prediction of the correlation between the output of se~
veral photon detectors, Unfortunately, given any state of the
radiation field, there is no appropriate definition for "“the num-
ber of photons {or the energy) in " ir & is a vounded open sub-
set of Minkowski space, One may, however, pass to the asymtotic
measurements and introduce global observables as 1s adequate for
an S-matrix theory of quantum electrodynamics, In the present pa-
per, we do this by ignoring largely the local nature of a rea-
listic experiment an, in particular, by ignoring its finite ex-
tension in time., Instead, we emphasize the rale played by the

four-momenta and the polarisations of single particle events,



We are thus led to include the aperture, as viewed from the
source, and the frequency range of the accepted photons into the
specification of a photon detector [ 4 J. We do this abstractly
by associating a number operator N(S) to every Borel subset S

of £ with compact closure, where I is the momentum-helicity space
of a single photon, The operators N{S) exist in infrared repre-
sentations although a total number operator doces not exist. Si-
milarly, an energy-momentum operator can be associated with the
Borel set 5. Since 8ll these observables commute, the predictions
fall within the scope of classical stochastic analysis, In parti-
cular, given a state of the radiation field and any arrangement
of several detectors, there is a Joint probability measure which
determines the distribution of measured values., As a result, co=-
herent photon states exhibit no correlation at all., Crudely spea=-
king, we find the opposite behavior of photon states in momentum

space as compared to the behavior in position space.

The infinite set of Jjoint probability distributions is seen to
be generated by a linear stochastic process on a certain function
space. For coherent states, this process is of the Poisson type
as would be anticipated. However, it is not of the Causs or Wie-

ner type if the state is quasi-free.

Since the formulation of the theory within the framework of clas-
sical measurement theory and stochastic processes 1is the easiest
way to present the underlying physical ideas without having to

go through all the details of the operator theory and ineguiva-
lent representations, we shall present this formulation first
{Section II and III), Then we shall pass to the relationship bet-
ween this scheme and field theory. llere, the ultimate objective
is the determination of the characteristic functional of the ba-
sic process for & given state of the radiation field {(Section IV

and V).



II, The Basic Stochastic Process

In most cases, it is & reasonable idealization to assume that a
.photon detector absorbes photons confined to a certain frequency
range and solid angle {(as seen from the source), In addition, the
detector may discriminate against a specified helicity. We thus
define the acceptance of an ideal detector to be a compact sub-

set 8 of the space I of single particle events (k , A ):
r o+ {(k)) ]| keR*-{o} ,2=11]} (1)

Here, ¥ denotes the three-momentum and A the helicity of a single
photon in the corpuscular picture, Obviously, |k] is the fre-
quency in the wave picture. To be specific, let us assume our
detector counting the number X(S) of photons with the property S.
As the points (0, * 1) are excluded from the space L, no infrared
problems arise, No doubt, X(S) is a random variable, its possible
values being the non-negative integers, The probability P{n) of
observing exactly n photons with the property S 1is then given

by the characteristic function:

E ( eifX(S) ) . Z P(”) e';{n ‘ (2)

nao
where [E(.) stands for the expectation value in the sense of pro=-
bability theory [5; §27]. We must not expect to be able to define
X(£), as the total photon number may be infinite. A suitable choi-
ce for the class of sets for which X(8) is assumed to be defined

is then the class C of Borel sets S with compact closure in

L.

Suppose now that several detectors are applied simultaneously and

let 8,,
joint probability distribution is given by:

vy Sr be the relevant sets from the class €. Then the

o

* i b ¥
E(exp i‘% t¢X(S¢)) = 2: Z Pn, .y ny) "’P‘E,J‘*’_"" (3)

=0 N0



This enumerable set of probability distributions is subject to
severe restrictions. On physical grounds, these conditions are

explicitly as follows:

@  X(SuS,) = X(S) +X(§) if &nS, <&
) X(S) »0

Therefore, the set function S » X(3) whose domain of definition

is the c¢lass C has most of the properties of an unbounded measure!).
In particular, X{#&) = C as follows from (a).

A very useful concept in measure theory is that of a simple fune-
tion. In the present context, a function w:Z+*R is called simple
if it takes on only a finite number of values different from zero,
each on a set from the class C, The simplest example of a simple
function is provided by the characteristic function 1S of a set

S € C, In fact, any simple function may, though not uniguely, be
written as a linear combination of characteristic functions of
this kind: |

.
s Z 4,

w=1

(L)

Given u , the random variable Xu defined by

X, - ZTT{,‘X(S*) (5)

=

is independent of the representation (4) of u and therefore

unambiguously defined., We shall find it convenient to employ the

following very suggestive notation:

X = J'u.dx (6)
W
Let us finally introduce the funciional
Ay
Fo = E(e™) (1)
A glance at (3} reveals that F already determines all probability

1) lMeasures taking values in a space of random variables were
termed "random measures" by Gelfand and Vilenkin [6; Ch.III.B.h]



distributions under consideration.

It will prove to be a reasonable assumption that Xu is defined
on a much larger class of functions: We shall assume that Xu is
defined even if w:L “?R is an arbitrary bounded Borel function

of compact support. The assumptions are explicitly as follows!

(&) Xu,a«uz y Xu, + Xy,
U') X*“ o= txu- , '{: e R

«) w, 2 U, = Xu, 2 Xu;

The map|4r+xuis thus said to be a linear stochastic process on U,
the real linear space of bounded Borel functions with compact
support. As the functional F completely determines this process,

it is called the characteristic functional of X, Evidently, F

is normalized and positive definite:

@ F(o =1

N
6 L Z. cw Flu,~-u,) 20

thl

for all “.;"-,uu e U and all complex numbers C1)“.)CN.



II1. The Derived Process

In the preceding section we confined ourselves to discussing
the photon number and found it convenient to introduce the linear
process Xu' Yet the general scope of the theory and the diversity

of its results are not impaired by this restriction as we shall

now demonstrate,

If the momentum of a single photon is K=(KF)=0KLK), thenkKn 1is
the momentum of n photons of this kind, Similarly, the set
functionsraYWS)given by the indefinite integral

YFs) - fr*ax (1)
S

yields the momentum of photons within each compact subset S of

. Clearly, the integral (1} is defined, for

k¥ (KA)Y €S

(2)
(K,2) > f 0 otherwise

is a bounded Borel function of compact support, For fixed S,
‘Y*(S) is a random vector, i.,e., a vector whose components are
random variables. By construction,Y is an additive set function

and satisfies the spectrum condition, Explicitly:
(a) Y80S, ) = Y(8)+ YIS,) if SnS, - &
(v) x,.Y"(S) 20 i{‘) X = (x*) eV,
(c) Y/ (&) =0

Let §,..,5, be sets from the class C associated with + detectors,
If in a measurement, these detectors indicate the energy (or any
other component of the momentum) rather than the photon number,
wve should be able to predict the Jjoint probadbility P(B1, veey Bo)
that the output of the nth detector is in the Borel subset Bn of
the momentum space. In probability theoretic language, P is &

4
measure on the cartesian product quthm {+ factors) determined

" V, denotes the closed forward light cone in Minkowski space.



by
E(expi

This formula suggests constructing another linear process as
‘follows, Let'v be the linear space of bounded Borel functions
q):Z-qu with compact support. For each vev let Y” = xv* where
p*elU is defined by v¥(kA) = KP"LZ,,.(R,“ Then v i-"Yv is a linear

process on’v'with the characteristic funectional

E(G;Y”) = F(¥) (1)

+ ) "
Z xnYNs,)) = {Pldpyidin) e iZ X. P (3)

n=1

In particular, if ¥ is the simple function

.
v Z X g (5)

then F(v*) coincides with the left of equation {(3). Thus \% .
derived from the basic process Xu’ is closest to the measurement
of four-momenta,

If Ym(z)(the least upper bound of all‘(%S)with S compact)
exists, the total energy is said to be finite, We emphasize that
the total energy may be finite even if the total photon number

is infinite.
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IV, Characteristic Functionsals and Field Theory

The main purpose of this section will be the calculation of
characteristic functionals of the process Xu for a certain class
of states of the radiation field, The Fock space of photons is
traditionally described in terms of n-particle subspaces, Yet the
structure of this space which such a calculation depends upon is
that of a Hilbert exponential, It is for that reason that we shall
formulate the theory in terms of Hilbert exponentials fronm the
outset. For convenience of the reader, we expound the nécessary
material in the Appendix.

The classical solutions of Maxwell's equation are in 1-1 corres-
pondence with functions F=Z"C. The relativity principle provides

us with an invariant measure p on E:

(g = (duly « av (2% Z Jci ) ‘ )

and hence with a Hilbert space L0 of square integrable functions.
The Fock space of photons will then be identified with EL,, the
Hilbert exponential of Lo+ In order to attribute a physical
meaning to vectors in flL,, it suffieces to specify the represen-
tation of the radiation field [k and 7], preferrably in terms of
the bounded Weyl operator, We write

Y uz-(f,}
W, (§) qu = e,_f { [4+9] (2)

extend Wo to all ofELoby linearity, and thus obtain the familiar

Fock representation, which we shall now consider in detail,

Unitary operators V and LO give rise to unitary operators EV on
EL, . We focus our attention to the following c:a.se:i:lv--}Ee't is a

tFPEeH

one-parameter group of unitary operators on ELO. Since t + e
as a composition of continuous maps, is continuous, there exists
an unbounded selfadjoint operator N such that

N - ;
e% = Eef (3)



This reproduces the standard construction of the number operator

N from gauge transformations of the first kind,

For any uell, let e'" denote the unitary operator on Lo given by
pointwise multiplication and, for any Se€(C, let N(S) be the
selfadjoint operator defined by

NS ;
efN() i EeHS (h)

If 8t is the complement of S in I and if K = 15L, and

K'=1S, LO, then L0 = K@ K' and the Fock space ELO is canonically
isomorphic to the Hilbert tensor product [EK® [EK', the isomor-
phism carrying the operator Ee”'is into Eeil‘@I + This way it is
seen that N(S8) is the number operator associated with the sub-
system of photons whose degrees of freedom are confined to 8,

It is worth noticing that number operators associated with differ-

ent subsets 5 commute,

NHext, we take u to be simple and recall that [E is a functor:

. T + : o
Ee.u , Eﬂell“‘ls“ - l:" Eelh‘l& . Heu‘hN(S“)

If @ is a normal state on the von Neumann algeﬁra :ﬁ(ELO) of
bounded operators on [EL_ and if P(n1, iewy nr) is the probabi-

lity of the joint event (n1, e nr) in the state

&) = wo(Wip)) (5)

of the radiation field triggering r <counters associated with

the Borel sets S

o g Y
w(TT NG 7 ...ZOP(n”..,,nr) op i L N (6)
n=o n=

Lo

10 tres Sr , then

r

according to the rules of gquantum mechanics, This shows that

~

F(u) = w (Ee*) | (1)
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is the characteristic functional of the process xu wvhich corresg-

ponds to the state (5),

From this correspondence between states and characteristic func-
tionals it becomes evident that the incoherent mixture of states
corresponds to the convex combination of their characteristic
functionals.

We emphasize that, in all functionals so far considered, u may

be taken a constant function and thus X{I)<~ which signalizes

that the state belongs to the Fock sector, We may pass to infrared

1)

that converge to some 7 Elq. Then

representations

L e« L
0

by considering sequences of functions fn in

i

o Wy 1 W, (g () = W et Y LWy ge Lo

and .
i W1 B Wy = € W ES W (E) = Ugle)  well

in the strong operator topology, where we used the abbreviations:

gu. ' (1-2:"“))'1 e L, , tw= Im (q,(em-i)’l)

We therefore conclude that F is the characteristic functional for

the state & , if

Flu) = w(u.‘(u))

Eq) W (w-[q))

and c as above,

Ko such answer is known in the general case, where rhbwais an
arbitrary Weyl system., However, from the rd8le played by the uni-
tary representation uh)u.(u) of the groupu y We must demand:

) For these representations and the significance of the spaces

L+, the reader is referred to [T7].
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WG Wipy - We'™) Ul (8)

This equation thus provides the essential link between the

stochastic process X, and the radiation field,
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V. Examples

1. Coherent radiation

In the study of external current models, one is naturally led
to introduce coherent states 5,1, vhere E'l s (EOJJWT(;}IOJ)with 7
from L, and where n is linearly dependent on the current, In

this case
2
E (0. = ep {2+ 2i3mi)} (1)

Fy (wy = exp (€% 1)) (2)

as feollows from the general result in the preceding section,

We immediately realize that Xu is a Poissonian process, Con-
sequently for each SEC , the random variable X(S) has a
Poisson distribution with mean photon number u1sq"{ This par-
ticularly shows that X(&) is undefined unless QGL,. Further,
any two variables X‘S1) and X(SQ) are statistically independent
for disjoint 5, and 5,, Generally, a process X is said to be

decomposable, if the latter property holds.

2. Incohereht mixture of coherent radiation

In the preceding example, the vector n may be randomly dis-
tributed, Motivated by the theory of black body radiation, we
shall study the following special case, Introducing the Gaussian
measure on Q" (see Appendix), we may consider its image m

under a linear map A: € -9L1 + By construction, m is a probabi-

lity measure on L, and a routine calculation yields:

Ealp) = [m(dn &y(f) opl-(h,(E+ARIDT pela

n

. ; o1
Fy (w) := jm(dq) Ry (w) ded (1 - A*(™-1NA) well (u).
where the adjoint A* is reggrded as a map fron L_1 (the dual

*M_1 takes L, into L As we see,

of Li) into ¢", Note that e \ iy
the process Xu is no longer decomposable and correlsations be-
come significant., The distribution of a single variable is

obtained from the identity
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V. Summery and Discussion

We have constructed a completely relativistic model which in=-
corporates the coupling of the p-meson to 4 channels, namely mu,
KK, nw and@ NN and which produces, with reasonable assumptions
"on g2 =/hm, a width T 3 200 MeV. Since we have included self-
energy corrections into the meson and nucleon propagators, we
expect that Xe now can perform rather realistic calculations for
electromagnetic form factors., Especially the vertex renormaliza-

!

tion constant 7., can be taken esqual zero, so that form factors
decreasing as sé@e power for k2 + -« are likely to emerge, This

is not possible éhthin the bare propagator ladder approximation,
if the "potentiali\is smooth, since then the integral in (16) is

well convergent,

The Yrelation of this approach to previous work

on mn~scattering i1s not simple, In the bootstrap method the large

(2)

p-width obtained usuall\ seems to be a consequence of two

facts: First of all with\cut-off masses in the GeV-range there
are in the nm channel no ﬁsally short range forces present, and
secondly the p coupling in ‘the crossed channel has to be large

in order to provide enough attraction., These facts are no special

features of N/D-calculations}\?ut persist also in the relativistic

Schrodinger equation (9). The inclusion of the rnw-channel does

(9,10)

not change the situation drastivally as long as the Tpw-

coupling is kept at its physicallvalue, since the admixture of
the nmw=-state is not very large and one still needs the strong

attraction of p-exchange with a lange coupling constant g In

prrw’
our model the effective attraction s strongly enhanced by the

propagator corrections, as indicated\in egq. (26), and we can allow
for a corresponding weakening of the oq;shell nr-potential by
idth can be obtained in

(1)

the relativistic Schrddinger equation , if the necessary cut-

lowering the cut-off mass A. A small p

off {p-exchange provides a singular potenﬁial) is chosen around
10 M, Although we are far from understanding our parameter A,

such high cut-off masses seem difficult to ihterprete as vertex

corrections alone within the BSE,

N
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Eqp) = tr oW, (f) (11)

It is customary to call any state of the form (3) a guasifree
state of the padiation field, Yet the class of quasifree states

obtained from integrals over &€ is a little too narrow in that,
so far, we did not allow N to be infinite. As a consequence,

%

AN is an operator of finite rank.

n=-Photon-States

We now decompose the Fock space EL, according to the photon

number:

EL, S o ¥, 0% 6...

Each d)e[EL is now represented by a sequence £d>01¢":d)zy°" }
of wave functions d)(k). JKﬂln)such that [;] corresponds

to {1 ; %Foz w_here
,een(kil“,.,Jknln') 1= ﬂ' g(k.‘:ld)

‘W .
From [Ee' [;] = Ee‘u‘] and the fact that vectors of the
form i@ﬂ are total in 'an , We obtain

[Ee™D] (K2, Kada) = B (KA, k0 ),) p i % wk,a,)

ozl

for any (b € ELO and thus

Flw) =
=3n oy d""Z TN kl)]l i (kA (12)
(2x) IZIK,I"IMI ,1:“% Ky, Ka 40 )1 xp 1 u KA '

for the characteristic functional of the normalized wm-photon

state 4% . Choosing simple functions, we get

n .
E(etO) . T R (5) & 0¢p(8) et (13)

y=0
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.gnd for disjoint Sy

E(X(5) -+ X(S,))

0 m > >n (1q)

‘Both relations express in statistical language that there can

be at most n particles in the state ¢%. The strong correla-

tion present in (14) becomes even more striking if expressed

E(Y/ )Y (8.)) =0 mo>n (15)

since {(15) demonstrates that the particle number can be ob-
tained from a correlation experiment, even though the detec-

tors do not count particles at all, but measure, say, the

energy.
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Appendix

For any complex linear space L, let UL denote its underlying set
of vectors. Clearly, U sends the direct sum of two vector spaces
L and M to the cartesian product of their underlying sets:

U (L& M) = UL x UM,

Conversely, for any set A, let VA denote the free vector space
over A, i.e. the linear space of all formal finite sums Z:“n[an]
with cx,,ed', and @,€R . By linearity,[ﬁ,b]»[@]ﬁﬂﬂ ¢an eextended to an
isomorphism between V(AxB) and the algebraic tensor product VA®VE,

As is well known [9] , U and V form an adjoint functor pair be-
tween the category of sets and the category of linear spaces, V
being left adjoint to U, The functor E = VU sends eyery linear
space L to some linear space EL with a selected base point

[0]e EL . As E(L@M) & ELOEM for any two linear spaces L and M,
EL will be called the ‘exponential of L and E the exponential

functor, Being a covariant functor, E associates a linear map-
ping Ef : EL —» EM,ZNnEQn]HZﬂn[FQnLith every linear mapping 1) fiL+M
such that identities and compositions are respected:E(lL)=1EL,E“03)=
EFeEgi{fLﬂhnd !:"—%N. Our construction of E also provides two
universal mappings

1
Ll &— EL

given by n: x+>[x] and €: 2,8, 2w, 0Q,, We stress the fact

that & is linesar, whereas there is no L for which n becomes a

linear mapping.

If . is a prehilbert space, so is EL with respect to the inner

product

(§ % [a,] , % d,:. [aLj)EL = gﬁ'.,'(,:, exp (Q”,am)l__ (1)

") Notice that Vf : EL»EM is linear even if f : UL-»UM is a set
function., This suggests admitting nonlinear transformations
of L in the context of second quantizsation where one deals with
a classical space L and its quantum mechanical analogue EL,



Indeed, Anm = exp (QH,QH)L are components of a positive semide-
finite matrix A and o =0 if Z oy Q*P(*.an)g =0

for distinct@,€L and all xeL [10; Lemma 8.21. As an immediate
consequence of (1), the mappings v and & are continucus., However,

n fails to be uniformly continuous in general,

For the following disucssion we needda preparatory result,

Lemma 1. Let L, M, N be prehilbert spaces and let f:L -»M and

g : L »§ be linear maps such that ||f x" & HQXHN
for all x€L. Then ”E{Q ”EH $ ﬂEad)ﬂEN .For oll ¢ € EL
Proof. By assumption, s 1Z%nl?+ K "P’" & lzu,‘IZJ. k! ngll

for x =£CP, any integer k and d) 2w, [2,] .+ This inequality may
be written as fTollows: O0%s %t , where s and t are finite
matrices with components §,,= 1 + k-'(fan , f@ ) and
tym = K (ga, , g@,,) respectively., It follows that

@k | 1 particular,z‘:n.ﬂ an“(m (Snm) % ZHMO("O( C'l:',,,..)
and X, p X % exp (£0,,,800) & 5, . W, 0 oxp (80, ,905)
in the limit k —=> oo , which establishes IE{CP h = llEale.

As a simple application we prove:

Proposition 1. In order that Ef : EL »EM be continuous with

f : L »M, it is necessary and sufficient that ﬂ£x|“1 < X,

for all xel, i.e, that f 1is contractive,

Proof. Suppose Ef is continuous. Then l}Ef E+x]" ¢ HCEx] !
for all t€R, xe¢eL, and some C >0, Thus exp t (fo” - NIx ") &cC
for all t implying NI f x H - lIx 50. Conversely, suppose

| £ x Jdxh . Then |Ef P& NP} by Lemma 1.

As we have ssen, the functor E maps contractions into contrac-
tions and noncontractive functions into unbounded operators, HNow,
for any prehilbert space L, let CL denote its Hausdorff com-
pletion, As € is a covariant functor, so is [ = CE, To be spe-
cific, [E is a covariant functor from the category of prehilbert
spaces (with morphisms all linear contractions) to the category

of Hilbert spaces with a selected base point.
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'If L and M are Hilbert spaces, let L@M denote their Hilbert

sum. By construction,

]

exp((agh + e.0),)
(o1,001)g, (L4, 06T )5y
(mleft] , I@L6]) ) o pm

QT AR CAR )

1

It

for all ap'e L and &G%Iﬁ, so that the correspondence [a,8] >
Cal® LCbl uniquely extends to an isomorphism between

E(L®M) and the Hilbert tensor product [L ® [EM. This property
of IE suggests calling [EL the Hilbert exponential of L, The

functor I[E has been constructed in a different way by I.E,
segal [ 11], by H. Araki and E.J. Woods [ 10; Chapter 5 ], and
has subsequently been considered by J.R. Klauder [121, A, Gui-
chardet [13] and others. Here we wish to emphasize its catego-
rical significance.

Since [E respects conjugation, E(f*) = (I f)*, it also pre-
serves selfadjointness, positivity, unitarity, and polar‘decom-
positions of operators, If [Ef : EL +»EM has a bounded inverse,
then f: L»M, hence Ef, is an isomorphism. E maps projections
into projections and, in particular, if O : L »L is the zero
operator, PO = [E0 is the projection onto the one-dimensional sub-
space QCOC. [EL generated by the base vector [0]. Then POA = APO'—:PO
if A = [Ef and £: L*L is contractive., It should be also clear
that |[E maps involutions into involutions, square roots into

square roots and so on, but fails to be linear,

In the physical context, the vectors [x] were termed "coherent
states" although the coherent states of optics constitute a much
wider class. The function 1, mapping L onto the coherent states
in [EL, has the remarkable property of being entire analytice,
that is, for arbitrary Ry ooy ane L, the function Fi€" SEL
defined by F(ai,...,un) =[ZNKQ“] is entipe analytic as follows
from (1), Moreover, n as & mapping between Banach spaces is in-

finitely often differentiable, The first derivative n'(o): L+EL



establishes an isomorphism between L and a subspace ;H1 of EL,
In cases, where one interpretes [EL as the Fock space of a Bose
particle,:lf1 is called ‘the one-particle space. One is often led
to identify L and 3{1. The various subspaces 3% assceciated with
+the nth derivation of n are most clearly visualized if one uses
the isomorphism between [EL and the symmetric tensor algebra over
L, uniquely determined by the coorespondence
: n
[e] +> { t,6,-.. )-ﬁ%tl@ BERL }

Phis shows: If L 1is separable, so is [EL. In the seqguel we

shall restrict the diséussion to separable Hilbert spaces L, M, ...
The continuous linear mappings f: L3M form a Banach space ZL(L,M)
with respect to their norm [Ifli = sup {ufxu : XxX€L, lixh = 1} .
Then the set of contractions f : L=»M 1is precisely the unit

ball .'2,’1(1,, M) in that space,

Proposition 2. [E ,71(L,M)-P.\Z'1( EL, E¥) is continuous with respect

to the strong operator topology.

Proof. As :Zi(EL, EM) is an equi - continuous set of operators,
its strong operator topology coincides with the topology of simple
convergence on the total set {B]:GEL} in [EL, The continuity of
(£ is thus the continuity of f+» fa +[{e] wvhich, as a composition
of continuous maps, is indeed continuous. We now assert that the

functor [ preserves the partial ordering between positive ope-

rators.

Lemma 2. Let S, T&<Z (L, L), then 0% 8 £ T implies 0 ¢ kS ¢ ET.
Proof. Setting f = 81/ and g = T1/2, we obtain | {EFd’” & ”Egd’”
for(be I, from Lemma 1 and the continuity of Ef and I[Eg. KXow

( Brd, ®BfP) = (b, ESQP) and ( megd, EgP) = (§, BT ¢) and the

assertion follows,.

Before we continue the study of positive operators, it is useful
to consider the simplest example, the space [EC, There 1is a unique

isomorphism between the spaces EL and 22 such that [c] corresponds
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{ -’/2' n . . .
to {1, €, ve, (n}) 6,-} . Any positive linear operator on €
is of the form ¢ ® ac with o - 0, If o - 1, the operator [Ea

exists and [Ea 2 o. Clearly,
-« n -1
tr Ba = 2. o™ = (1-o) € [100]
nz=o

Proposition 3., Let TER"(L,' L) be completely continuous and po-
<
be the eigenvalues of T, Then O z a« - 1

sitive and let (an)neN

and
-1
tr [ET=(TTU"°‘n}) (2)
n .

(allowing + « as a possible value); tr ET < « if and only if

tr T < @ and ||T )] < 1.

Proof, There exists a basis (eh)neN in L such that

Tx =Zan(en, :n:')en and 0 € a € 1 for all x€L, Define

T X = Z:,': an(en’ x)en. Then L may be represented as "o L'
such that T takes {01, vees Co a} into {a1 Cys seey O cm,O}.

Thus

m m -1
trTm=tr® Eo{n=(n (1-0(n)) ’

nat n:’

If m =~ n, then 0 = T_ z T and thus O s BT z ET by Lemma 2,

- .
since W(T-T)xl = 12 «,(€,,x)e, ]l ¢ lIxn anp Xy

n=m+t n>m

for all xel, Tm tends to T strongly. By Proposition 2, ETm+'ET
strongly and tr BT = tr sup ETm = sup tr 'ETm = (Tkl—an))"1 as
the trace is a normal positive functional [1h; Chapter I,%6,
Théor&me 5], Then [T(1-a ) >0 if « < 1 and Za <= [15; IV.7.5],
Thus tr I[ET < « iff ITH <1 and tr T < e,

The physical significance of (2) is that, for & particular choice

of L and T, tr {ET is the grand partition function of an idesl



Bose gas, whereas €== (tr IE:T)"1 [ET is the density matrix des-

cribing the grand canonical ensemble.

For any integer n, let.in(L,M) denote the set of all elements
ted(L,M) such that | f |, < = where

T

Since Haf+fall, ¢ d)NQN, + 181081 M?Lﬂis a linear space; 11(L,M)
Q n n %n_, )

is known as the space of nuclear mappings,

Proposition 4, For Ef: EL~»EM +to be defined and to belong to

JP(IEL, fEM) for some n, it is necessary and sufficient that

fe LM (L,M) and | fllet.

Proof, If T =(f*f)n/2, then TN = i and ( Ef* Ef)nlz = [ET,
Hence the assertion almost follows from Proposition 3, We only ha-
ve to demonstrate that the complete continuity of T is implied

by tr [ET <=, This, however, is obvious as there is an isomorphism

U : L +3{1¢: [EL that carries T into [ET restricted to ?{’.1.

Finally, we wish to employ a functional representation of Egh
which is due to Bargmann [t6]. For any(be[ECnlet t$: ¢” + ¢ bve de-
fined by $(a.) = ([a._],¢). Similarly, for any operator @ acting
on mc“, we put a {(a,b) = ( [a], Q [b]). If y 1is the normalized
Gaussien measure on €°, i.e. du{a) = 1" exp {-nah* }Yda, then
(%) = faula) B(a) F(a) and @(a) = fau(v) §(a,n) F(b) so that
mcn may be viewed as Hilbert space of functions with reproducing
kernel

= ola,p)

( [al, T []) .
If Q@ is of trace class, then tr Q = jdu(a) ﬁ(a,a). Now, Propo=
sition 4 asserts that [EA is of trace class if [Al] < 1. We finad
o ) -

EA{a,b) = exp {a,Ab) and tr EA = = n Eda exp (a,(A-I)a) = det
(I-A)'1. We have thus proved:
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-Proposition 5,

For any complex (n, n) - Matrix A (considered as a linear map
¢"+¢" where ¢" is given the natural Hilbert space structure) such

that |[A||<1 , we have the identity: tr BA = det (I - A)~',
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