DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

DESY 73/3 February 1973

 $\frac{\text{Information on the Dynamics of the Reaction KN} \to \text{K*N}}{\text{from } \text{K}_{\underline{I}} \, \text{N Interactions}}$

by

G. V. Dass

Deutsches Elektronen-Synchrotron DESY, Hamburg
and
CERN, Geneva

DESY-Bibliothek 17. JAN, 1974 Information on the Dynamics of the Reaction KN \rightarrow K $\stackrel{*}{\sim}$ N from K_LN Interactions

bу

G.V. Dass

Deutsches Elektronen-Synchrotron DESY, Hamburg⁺

and

CERN, Geneva

⁺ Present address

Abstract: If $K_{S,L}^*$ is a K^* resonance decaying into $K_{S,L}$ (the short-, long-lived kaon) and a neutral system S^o of pions, one can isolate the C-even and C-odd, crossed channel contributions to $KN \rightarrow K^*N$ by using the reactions $K_L N \rightarrow K_{S,L}^*N$ whether S^o is a C-eigenstate, or a mixture of C-even and C-odd states. Applications to the production of K_{890}^* and the Q-meson are discussed, and simple numerical predictions made for $Q_{S,L}$ production. Q-production data indicate approximate t-channel helicity conservation for the ω and P^* exchanges at vertices involving a spin change, in similarity to the belief for the Pomeron. $Q_{S,L}$ production data can give information also on Q-decays.

1. INTRODUCTION

Dynamical information on the reaction $^+$ KN \rightarrow K * N can be obtained $^{1,2)}$ in K_LN interactions by considering the modes (1) and (2) of this reaction

$$K_L^N \rightarrow [K^{+} (pions)^{+}] N$$
 (1)

$$\rightarrow \left[\begin{array}{c} k^{*+} & (pions)^{+} \end{array}\right] N \tag{2}$$

where the subsystem k decays as

$$k^{*} \xrightarrow{\pm} K^{+}(pions)^{0}, K_{S}(pions)^{\pm}, K_{L}(pions)^{\pm}.$$
 (2a,b,c)

From this, the difference of the differential cross-sections of

$$\sigma(K^{o}N \to K^{*o}N) - \sigma(\overline{K}^{o}N \to \overline{K}^{*o}N)$$
(3a)

isolates the interference between the crossed-channel C-even and C-odd contributions. The corresponding sum

$$\sigma(K^{0}N \to K^{*0}N) + \sigma(\overline{K}^{0}N \to \overline{K}^{*0}N)$$
(3b)

provides an incoherent sum of the two crossed-channel contributions.

Similar (complementary) information is obtained from

$$\sigma(K^+N \to K^{*+}N) \stackrel{+}{\to} \sigma(K^-N \to K^{*-}N). \tag{4}$$

This procedure still does not separate the C-even from the C-odd contribution. Our proposal $\overset{*}{}$ is to study the modes

$$K_L N \rightarrow K_S^* N , K_S^* \rightarrow K_S S^0$$
 (5a)

⁺ We discuss mainly the non-charge exchange modes.

^{*} We are thankful to Professor P.K. Kabir for suggesting to us that $K_{S,L}^*$ production is important for the dynamics of $KN \to K^*N$, and for encouragement.

and
$$K_L^N \to K_L^*N$$
, $K_L^* \to K_L^S^o$; (5b)

the channels (5a) and (5b) isolate, respectively, the C-odd (even) and C-even (odd) crossed-channel contributions when the neutral system S^0 of pions is a C-even (odd) eigenstate. The separation of these two crossed-channel contributions is possible, using the modes (5), also when S^0 is not a C-eigenstate. The modes (5), therefore, complement the information obtained from combinations like (3) and (4). Data on the modes (5) would be useful for a future amplitude analysis of the reaction $KN \rightarrow K^*N$.

After demonstrating the above C-odd, C-even separation, we consider applications to K_{890}^* and Q production, and make simple predictions for $Q_{S,L}$ production using $K_L p \rightarrow K_S \pi^+ \pi^- p$ data ². Available data are for the mode (1) for K_{890}^* production ¹, and the mode (2,2b) for Q-production ²; Q_S production requires the $K_S \pi^+ \pi^-$ system to have the characteristics of the Q, without forming the resonating subsystems $(K_S \pi^-)$; $Q_S \rightarrow K_S \rho^0$ is one suitable mode. For K_{890}^* , the decay modes involved are $\pi^0 K_S$ and $\pi^0 K_L$.

2. THE C-SEPARATION

Assume, temporarily, CP-invariance for K^{o} decays; then, the initial state (omitting the proton for simplicity) $|K_{\vec{l}}\rangle = |K^{o}\rangle - |\vec{k}^{o}\rangle$ results in

$$f \mid K^{*o} \rangle - \overline{f} \mid \overline{K}^{*o} \rangle = \frac{f + \overline{f}}{2} \mid K^{*o} - \overline{K}^{*o} \rangle + \frac{f - \overline{f}}{2} \mid K^{*o} + \overline{K}^{*o} \rangle$$

$$(6)$$

where f and \overline{f} are, respectively, the $K^0p \to K^{*0}p$ and $\overline{K}^0p \to \overline{K}^{*0}p$ amplitudes, suppressing spin indices. For $K^* \to K\pi$ decay, the $K^+\pi^-$ decays (from K^{*0}) can be physically distinguished from $K^-\pi^+$ decays (from \overline{K}^{*0}) and determine |f| and $|\overline{f}|$ respectively; however, interference effects arise in the $K^0\pi^0$ and $\overline{K}^0\pi^0$ modes. If $C|K^{*0}\rangle = |\overline{K}^{*0}\rangle$, the π^0K_S and π^0K_L modes are produced by the amplitudes $\frac{1}{2}(f-\overline{f})$ and $\frac{1}{2}(f+\overline{f})$ respectively. The argument of this paragraph is essentially from ref. 3).

While |f| and $|\bar{f}|$ can be determined by the channels (1) and (2) or (assuming charge-symmetry) by $K^{-}n \rightarrow K^{*-}n$, the relative phases (see Eq. (16) for example) of the corresponding f and \bar{f} amplitudes (implied by a knowledge of $f+\bar{f}$) cannot be so determined; hence the usefulness of the channels (5). The combinations $(f+\bar{f})$ have definite charge-conjugation. Polarisation and K^{*} decay density-matrix data help to separate the various helicity amplitudes.

As for ordinary regeneration $K_L p \rightarrow K_S p$ ⁴, the above C-separation does not ⁵)_{require} CP-invariance for neutral kaon decays; this is because with only CPT-invariance, the C-eigenstates $K\bar{K}+\bar{K}K$ and $K\bar{K}-\bar{K}K$ correspond to $K_LK_L-K_SK_S$ and $K_LK_S-K_SK_L$ respectively, apart from overall factors. With only CPT-invariance, (6) gets replaced by (retaining K^* decays involving neutral kaons only)

$$f^{+\sum_{i}} \left[\alpha_{i} | K_{L} P_{i}^{o} \rangle + \beta_{i} | K_{S} M_{i}^{o} \rangle \right] + f^{-\sum_{i}} \left[\alpha_{i} | K_{S} P_{i}^{o} \rangle + \beta_{i} | K_{L} M_{i}^{o} \rangle \right]$$
 (7)

where $f^{\pm} = \frac{1}{2}(f \pm \eta \, \bar{f})$ are the C-even and C-odd amplitudes; $C|K^{*o}\rangle = \eta |\bar{K}^{*o}\rangle$; the amplitude f (and similarly, \bar{f}) now refers to K^{*o} production where $K^{*o} \rightarrow K^{o}S^{o}$, $S^{o} = \sum_{i} \left[\alpha_{i}P_{i}^{o} + \beta_{i}M_{i}^{o}\right]$, the system S^{o} is a mixture (with coefficients α_{i} and β_{i}) of the C-even (P_{i}^{o}) and C-odd (M_{i}^{o}) pionic components.

The C-separation follows from (7) which holds for both $\gamma=+1$ and -1. When S^o is a C-eigenstate, the statement immediately following (5) results from (7). For K_{890}^* , S^o is just π^o . If P^o and M^o are physically distinguishable (e.g., $Q^o \rightarrow K^o \omega$, $K^o \pi^o \pi^o$), the production rates f for $K_L P^o$ and $K_S M^o$ components in (7) give $|f^+|^2$, while those for $K_L M^o$ and $K_S P^o$ give $|f^-|^2$, assuming α and β to be known (from $K^{*\pm}$ decays, for example). The third case is when P^o and M^o are not different; for $Q \rightarrow K^o \pi^+ \pi^-$, the $\pi^+ \pi^-$ may be isovector (M^o) or isoscalar (P^o) . To illustrate the C-separation in such cases, we consider $K_L P \rightarrow Q p$, $Q \rightarrow K(\pi \pi)$; taking α and β to be known. \uparrow

^{*} One can easily get $|\alpha/\beta|^2$ also therefrom.

⁺ Possible determination of α and β is discussed later.

The amplitudes for the modes $K_S \pi^{+} \pi^{+}$ and $K_L \pi^{-} \pi^{+}$ are, from (7),

$$A(K_S \pi^{-} \pi^{+}) = \alpha f^{-} + \beta f^{+} , \qquad (8a)$$

$$A(K_L \pi^{+} \pi^{+}) = \alpha f^{+} + \beta f^{-}$$
(8b)

which gives, symbolically, the production cross-sections σ as

$$\sigma(Q_{S}) \equiv \sigma(K_{S}\pi^{+}\pi^{-}) + \sigma(K_{S}\pi^{-}\pi^{+}) = 2\left[|\alpha f^{-}|^{2} + |\beta f^{+}|^{2}\right], \qquad (9a)$$

$$\sigma(Q_{L}) \equiv \sigma(K_{L}\pi^{+}\pi^{-}) + \sigma(K_{L}\pi^{-}\pi^{+}) = 2\left[\left|\alpha f^{+}\right|^{2} + \left|\beta f^{-}\right|^{2}\right], \qquad (9b)$$

$$R = \frac{\sigma(Q_S) + \sigma(Q_L)}{\sigma(Q_S) - \sigma(Q_L)} = \frac{(|\alpha|^2 + |\beta|^2)(|f^-|^2 + |f^+|^2)}{(|\alpha|^2 - |\beta|^2)(|f^-|^2 - |f^+|^2)} . \tag{9c}$$

Given $|\alpha|$ and $|\beta|$, R gives $|f^-/f^+|^2$; using $\sigma(Q_S)$ or $\sigma(Q_L)$ gives $|f^-|^2$ and $|f^+|^2$ separately, Q.E.D. One may determine $|f^+|^2 + |f^-|^2$ needed in R also from the separate data on Q^0 and \bar{Q}^0 channels, and combine it with $\sigma(Q_S)$ or $\sigma(Q_L)$ to get the needed C-separation.

3. K*(890) PRODUCTION

Since pion is the dominant unnatural parity Regge pole in $KN \to K_{890}^*N$, the present analyses (see, for example, 6) cannot uniquely determine the other unnatural parity exchanges (isovectors of odd-C, and isoscalars) which are usually neglected. The C-separation from $K_{S,L}^*$ production would be obviously useful here. For natural parity exchanges also, the C-separation would be useful. The question of the fast energy dependence 7 of the $K_{S}^{\dagger} \to K_{S}^{\dagger}$ cross-sections would be usefully illumined by knowing the energy-dependence of separately the C-odd (even) contributions from $K_{S}^{\ast}(K_{L}^{\ast})$ production.

Unlike $K_L p \to K_S p$ ⁴⁾, model-independent predictions for the phases of $K_{S,L}^*$ production are difficult because now, the optical theorem is not applicable and, in general, more helicity amplitudes contribute. We

illustrate the qualitative expectation for forward K_{890}^* production. For K_S^* production, ρ -exchange \Longrightarrow ω -exchange \Longrightarrow , in contrast to $K_L p \Longrightarrow K_S p$ where the ω dominates \Longrightarrow . The reason now is that the relevant s-channel amplitude (o $\frac{1}{2}$, -1 - $\frac{1}{2}$) involves nucleon helicity flip, and is stronger \Longrightarrow for the ρ ; at the meson vertex, the ω/ρ coupling ratio is 1 for an ideal vector nonet. Similarly, K_2 exchange should dominate over K_1 . In fact, the K_2 and K_3 and K_4 exchange should dominate over K_4 . In fact, the K_5 to conserve s-channel helicity at the nucleon vertex.

4. Q-PRODUCTION

The main decay mode of interest here is $Q^0 \to K^0(\pi\pi)$. It is believed $Q^0 \to K^0(\pi\pi)$. The that there is no evidence for $Q^0 \to K^0 \to K^0 \to K^0$ and $K^0 \to K^0 \to K^0$

Our simple predictions for $Q_{S,L}$ production are an average over the laboratory momentum interval $4 \rightarrow 12$ GeV/c because they are based on similarly averaged $K_L p \rightarrow K_S \pi^+ \pi^- p$ data 2 .

(A) Density Matrix - Because t-channel states of nonzero Q-helicity are weakly produced 2 , we retain only the dominant t-channel amplitudes $(K^0p \to Q^0p)$ and $\overline{Q}_{00,\frac{1}{2}\pm\frac{1}{2}}$ $(\overline{K}^0p \to \overline{Q}^0p)$. Amplitudes of a definite charge-conjugation other than Q^{\pm} are then small. This is interesting

⁺ An s-channel helicity conserving absorption would not alter this statement made for pure Regge-poles.

information, for C-even and C-odd exchanges separately, on the helicity structure at the meson vertex in this diffractive process. Since, in general, the amplitudes for $Q_{S,L}$ production are combinations like $(\alpha g^{\mp} + \beta g^{\pm})$, see (7), the results 2

$$\rho_{00}^{t} \simeq 1$$
, $\operatorname{Re} \rho_{10}^{t} \simeq 0$
, $\rho_{1-1}^{t} \simeq 0$
(10)

for \textbf{Q}^{0} and $\overline{\textbf{Q}}^{0}$ production should hold also for $\textbf{Q}_{S,L}$ production over the same (s,t) range.

Only natural parity effective t-channel contributions are henceforth needed because unnatural parity exchanges populate states of only $^+$ nonzero Q-helicity. In the forward direction * , the only contributions $G_{co,\frac{1}{2},\frac{1}{2}}^{\pm}$ are dominated 8 by the isoscalars (P'+Pomeron) and ω ; the above evidence for t-channel helicity conservation is then mainly for isoscalars. Because of the absence 2 of a turnover in the near-forward differential cross-sections for Q^0 and Q^0 production, the amplitudes $G_{co,\frac{1}{2},\frac{1}{2}}^{\pm}$ may $^{+*}$ be rather small. To that extent, since the isovectors (ρ and G_{co}) are not negligible 8 as compared to the isoscalars in these (t-channel nucleon-flip) amplitudes, the above indication for approximate t-channel helicity conservation for isoscalar exchanges holds for the whole t-range over which the amplitudes for nonzero Q-helicity are found 2) small.

The statement for ω and P' exchanges is interesting. At vertices involving no spin change, they are believed to conserve s-channel helicity, ⁸⁾ like the Pomeron. The indication now is that also at vertices involving a spin change, they behave like the Pomeron ¹⁰⁾ - i.e., conserve t-channel helicity. More accurate and complete data are, however, needed to establish this firmly; the argument is especially weak for the ω because of its comparatively small contribution, Eqs. (14,15b).

In general, it holds for pure Regge-poles; but in the forward direction where we shall mainly use it, it holds also in the presence of s-channel helicity conserving absorption.

^{*} There, t- and s-channel helicity conservation are equivalent.

^{+*} This can be checked by baryon polarisation data.

(B) The C-Separation and Relative Phase of the Forward (t'=0) Amplitudes for $(K^0p \to Q^0p)$ and $(\overline{K}^0p \to \overline{Q}^0p)$ - The only independent amplitudes for forward production are $F \equiv \frac{t}{2}$ and $\overline{F} \equiv \overline{Q} \frac{t}{co, \frac{1}{2} \frac{1}{2}}$. Using particle symbols for isospin and charge-conjugation, and keeping all decay modes,

$$F(K^{0}_{p} \rightarrow Q^{0}_{p}) = f^{0} + \omega + \rho + A_{2} , \qquad (11a)$$

$$\bar{\mathbf{F}}(\bar{\mathbf{K}}^{\mathbf{o}}\mathbf{p} \rightarrow \bar{\mathbf{Q}}^{\mathbf{o}}\mathbf{p}) = \eta_{\mathbf{Q}}(\mathbf{f}^{\mathbf{o}} - \omega - \rho + \mathbf{A}_{\mathbf{Q}}) , \qquad (11b)$$

$$\mathbf{F}^{-} = \frac{1}{2} \left(\mathbf{F} - \boldsymbol{\eta}_{\mathbf{Q}} \overline{\mathbf{F}} \right) = \omega + \rho , \qquad (11c)$$

$$F^{+} = \frac{1}{2} (F + \eta_{Q} \overline{F}) = f^{0} + A_{2}$$
, (11d)

 $C|Q^{0}\rangle = \eta_{Q}|Q^{0}\rangle$, $\eta_{Q} = +1$ or -1. From ref. ², normalising $|F|^{2} = \sigma(Q)$, one gets

$$\left| I_{m} (\omega + \rho) \right| \simeq \frac{\left| \overline{F} \right|^{2} - \left| F \right|^{2}}{4 \left| F \right|} = \frac{\sigma(\overline{Q}) - \sigma(Q)}{4 \sqrt{\sigma}(Q)} \Big|_{t'=0}$$
 (12a)

$$= 0.17 \sqrt{(3.9 \pm 0.8 \text{ mb,GeV}^{-2})}$$
 (12b)

where $\sigma(Q) \equiv \frac{d\sigma}{dt'} (K^0 p \to Q^0 p)$ and $\sigma(\overline{Q}) \equiv \frac{d\sigma}{dt'} (\overline{K}^0 p \to \overline{Q}^0 p)$. This gives

$$|I_{m}(\omega+\rho)|^{2} = (0.11 + 0.02) \text{ mb./ GeV}^{2}$$
 (12c)

With an intercept $\frac{1}{2}$ for the ρ and w trajectories *,

$$Re (\omega+\rho) = Im (\omega+\rho)$$
. (13)

This gives

$$|F^{-}|^{2} = |\omega + \rho|^{2} = (0.23 \pm 0.05) \text{ mb. GeV}^{-2}$$
, (14)

$$|\mathbf{F}^{+}|^{2} = |\mathbf{f}^{0} + \mathbf{A}_{2}|^{2} = \frac{1}{2} (|\mathbf{F}|^{2} + |\mathbf{\bar{F}}|^{2}) - |\mathbf{F}^{-}|^{2}$$
 (15a)

Since the ω dominates $^{8)}$ the ρ for the relevant (nucleon nonflip) amplitude, the ρ/ω coupling ratio being 1 at the meson vertex for an ideal vector nonet, Eq. (13) uses mainly $\alpha_{\omega}(0) = 1/2$. This, and (13), are very analogous $^{4)}$ to $K_{L}p \rightarrow K_{S}p$.

$$\cong (5.0 \pm 1.1) \text{ mb. GeV}^{-2}$$
 (15b)

where $\sigma(Q)$ and $\sigma(\overline{Q})$ from ² have been used.

So, the C-separation is available in Eqs. (14) and (15b). This, in fact, implies that the dominant amplitudes F and \overline{F} are consistent with being relatively real; their relative phase φ is given by

$$\cos \phi = \frac{1}{4} \eta_{Q} (|F + \eta_{Q}^{\bar{F}}|^{2} - |F - \eta_{Q}^{\bar{F}}|^{2}) / |F\bar{F}|$$
 (16a)

$$\cong \eta_{Q} \ (0.94 \pm 0.29)$$
 (16b)

using $\sigma(Q)$ and $\sigma(\overline{Q})$ from ², and Eqs. (14,15b).

(C) Forward $K_L p \rightarrow Q_{S,L} p$: Phases of the Amplitudes; the differential cross-

section do/dt'; Energy-Dependence - For definiteness, we consider $Q^0 \to K^0(\pi^+\pi^-)$ with amplitudes α and β for the $\pi^+\pi^-$ system to be isoscalar (P^0) and isovector (M^0) respectively. Denoting F^+ by f^+ and detecting (as assumed hereafter throughout) charges symmetrically, Eqs. (9a,b) give $\frac{d\sigma}{dt'}$ ($K_L p \to Q_{S,L} p$). In general, the unknown parameters α and β may be comparable; it is the case if the supposedly $\frac{g}{2}$ 0 dominant mode $\frac{g}{2}$ 1 is the only one. Since $\frac{g}{2}$ 25 $\frac{g}{2}$ 1 from Eqs. (14,15b), both $\frac{g}{2}$ 3 and $\frac{g}{2}$ 4 productively.

tion should be determined mainly by $|f^+|^2$ for comparable values of α and β . Because of the known $|f^+|^2$ energy-dependence of the integrated cross-sections for Q^0 and \overline{Q}^0 production, the Pomeron seems dominant over P^+ and A_2 exchanges in $|f^+|^2$; the phase of f^+ is predominantly imaginary. The energy dependence of f^- is $\sim S^{-\frac{1}{2}}$ and its phase given by Eq. (13). Thus, for $|\alpha| \approx |\beta|$, the energy-dependence of both Q_S and Q_L production would be rather flat; and the phase predominantly imaginary. For illustration, take $|\alpha| = |\beta|$; Eqs. (9a,b) give

$$\frac{d\sigma}{dt'} (K_{L}p \to Q_{S,L}p) = 2|\alpha|^{2} (|F^{+}|^{2} + |F^{-}|^{2})$$
(17a)

$$\simeq (10.5 \pm 2.3) |\alpha|^2 \text{ mb. GeV}^{-2}$$
 (17b)

⁺ This implies, of course, the $K^{o}(\pi^{o}\pi^{o})$ mode also.

using Eqs. (14,15b); for $|\alpha|^2 = \frac{1}{4}$, (17b) is comparable to the measured $\sigma(Q) = (3.9 \pm 0.8)$ mb. GeV⁻².

On the other hand, if the $\pi^+\pi^-$ system in $Q^0 \to K^0(\pi^+\pi^-)$ is overwhelmingly C-even ($|\alpha| \gg 5 |\beta|$) or C-odd ($5|\alpha| < |\beta|$), one can get the $|F^-|^2$ contribution from Q_S or Q_L production respectively: With $\frac{d\sigma}{dt'} = A \ e^{Bt'}$, the value (14) gives an integrated cross-section of $|\alpha|^2$ or $|\beta|^2$ times (46±10) μb for $B=10 \ \text{GeV}^{-2}$, using the B value $^{(4)}$ for the similar reaction $K_L p \to K_S p$. This value for the "charge-conjugation exchange" cross-section is similar to that ($\sim 30 \ \mu b$) expected $^{(2)}$ for charge or hypercharge exchange Q_- production reactions in the momentum range 5-10 GeV/c.

(D) Relative Strength α/β of the C-even and C-odd $\pi\pi$ Components in $Q^0 \rightarrow K^0(\pi\pi)$ and Possible Determination of the Branching Ratio $Q \rightarrow (\pi K_{890}^*/K\rho)$ -

Together with $K^0p \to Q^0p$ and $\overline{K}^0p \to \overline{Q}^0p$ data, Eqs. (8) can be used to get information on α and β in various ways. We only mention the determination of $|\alpha/\beta|$ from Eq. (9c) in the easier experiment of detecting $\pi\pi$ charges symmetrically: Since for forward $Q_{S,L}$ production, the amplitudes $|f^{\pm}|^2$ of Eq. (9c) are given by Eqs. (14,15b), knowing R gives $|\alpha/\beta|$.

Because nonzero α arises from only the πK^* decay mode and because a given α from this mode implies a definite contribution to β from this mode, the above determination of α/β would help to determine (two possible values for) the branching ratio $(Q \to \pi K^*/Q \to K\rho)$, assuming πK^* and $K\rho$ to be the only $\frac{9}{2}$ decay modes, for α/β real.

I am thankful to A.D. Brody, J. Froyland, M. Jacob, P.K. Kabir, G. Kramer, H. Pilkuhn, C. Michael and S.M. Roy for useful comments; and to H. Joos and E. Lohrmann for the hospitality shown to me at DESY. I am indebted to G. Kramer for a very useful suggestion.

References

- 1. A.D. Brody et al., SLAC-PUB-823 (Nov. 1970) $\rm K_L^0 p$ Interactions from 1-8 GeV/c.
- 2. G.W. Brandenburg et al., Nucl. Phys. <u>B45</u> (1972) 397.
- 3. P.K. Kabir, private communication.
- 4. A.D. Brody et al., Phys. Rev. Letters 26 (1971) 1050.
- 5. M.L. Good, Phys. Rev. 106 (1957) 591.
- 6. G.V. Dass and C.D. Froggatt, Nucl. Phys. <u>B19</u> (1970) 611.
- 7. D.W.G.S. Leith, SLAC-PUB-1141 (Oct. 1972) Diffraction Dissociation.
- 8. C. Michael and R. Odorico, Phys. Letters 34B (1971) 422.
- 9. Particle Data Group, Phys. Letters 39B (1972) 1.
- 10. L. Stodolsky, Phys. Rev. Letters 18 (1967) 973.