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Massless ¢4 Theory in 4-& Dimensions

K. Symanzik



Abstract

The Green's functions of massless ¢4 theory in 4-¢ dimensions
are in perturbation theory infrared singular at certain
positive rational €. By amalyzing the small-mass behaviour
of the massive-theory functions and performing the limit to
zero mass with care, we obtain terms nonanalytic in the
coupling constant in addition to the usual perturbation
theoretical ones. In this new expansion, the infrared
singularities cancel out. This phenomenon is related to the
nonvanishing of the bare mass in the zero-physical-mass

theory.



Introduction

The role of the massless (¢u)4-e model for the théofy of criti-
cal phenomena has been discussed in detail at this Summer

* . s .
School. The construction of that model via ¢ expansion is

*
See the lectures of E. Brezin, G. Parisi, B. Schroer, and

K. Wilson.

1imited to infinitesimal e. For finite ¢, the use of conformal

*
invariance or of constructive renormalization group methods [1]

*
See e.g. the lectures of I. Todorov at this Summer School.

is still in its infaney. It is then worthwhile to examine the
perturbation expansion in the bare or a remormalised coupling
constant. The scale invariant theory [1] hereby corresponds
to infinite bare coupling constant, or to the renormalised
coupling constant taking the critical fixed point value. The
long-distance properties of the massless theory, however,
should be the same [2] also for finite bare coupling constant,
or for renormalised coupling constant in the range from

arbitrarily small till possibly beyond the fixed point.

However, perturbation theory for massless (<D)+)4_8 leads to
infrared (UR) divergemces: for any positive rational £,

there are (infinitely many) perturbation theoretical terms



that do not exist at that e, é.g. for € = 1 or € = 2, already
the lowest-order self-energy part (see (l.4) below) does not,
and these UR singularities do not cancel out. Also the con-
struction of the massless theory from the massive one by change

*
of the bare mass, which succeeds [3] for € = 0, has in perturba-

*
This was pointed out to the author by J. Zinn-Justin.

tion theory the UR-divergence problem.

On the other hand, there are arguments for massless (¢4)4-e
not being UR divergent. Mack pointed out to the author that
the conformal invariant (¢4)4-8 theory, although massless,
does apparently not [4] suffer from UR divergence. Parisi
presented an argument closely related to the ome of Sect. 3
and 4 below. Wilson stressed that in the construction of
massless (<I>4)4_E by his renormalisation group method [1] no

UR divergences arise at any stage of the calculation.

*
We show here that the UR divergences disappear in an improved

*
A summary of these results was given in [5].

quasi-perturbation expansion, which has besides the usual
terms additional ones nonanalytic in the coupling constant and

involving as factors singular functions of £ not fully



computable in perturbation theory. These new terms are obtained
by performing the transition, by change of the bare mass, from
massive (¢4)u-8 to the massless one with the necessary care, and
their UR singularities cancel the ones of the usual terms. All
the considerations in this lecture are immediately extendable

to the (¢3¢3)2 theory with N components and with little effort

to (¢6)3_E theory.

In Sect. 1 we briefly discuss massless (¢4)4-5 in usual pertur-
bation theory, which leads to the mentioned UR divergences.
Sect. 2 deals with the bare masses in massive (¢4)4“8. In
Sect. 3 we describe the small-mass behaviour of the unrenorm-
alized perturbation expansion and analyse the phenomena that
arise if the mass is made to vanish. Sect. 4 presents some
familiar estimates to argue that the mass-switch-off process

of Sect. 3 does lead to UR finite results. In Sect. 5 we
interpret, and discuss some aspects of, the new quasi~per-

turbation expansion.



1., Massless (¢4)4-e in Perturbation Theory

Integration in 4-s¢ dimensions has been described in the

%
literature [6]. We only cite the formula

*We use Minkowskian metric 1, (-1)3-8. Throughout this lecture
we will consider functions at Euclidean momenta (energy compon-
ents imaginary, space components real) except where renormali-
sation conditions, as in (1.3a) and (4.la-c), are imposed at
other momenta, but use Minkowskian notation for ease of com-

parison with the references.

j:lk[me -k% -i077°
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for later reference.

The amputated one-particle-irreducible parts of the Green's
functions (¢B is the unrenormalised field, m the physical

particle mass, and &g the bare coupling constant)
e ; m°,g,,c)
B(Xl...x2n,yl o-oyzs m ’ngE

= 27y (x) o By (i ()% - By D)

are called vertex functions (VFs) and denoted by
7E(X1 R SO AREES Y m%gB,e). Their Fourier transforms are

introduced by



hog 2
(2r) " Ts(5p+3q) [(Py - - Poypdy c- Q5 W 585 E)
77 ipx i 2
= f//dxe p dee qY 7;(}(1 ...X2n,yl ooan;m ,gB,E)a
with
. -
dim T;(pl eov Pppsly eee dpim ,gB,e)
=ld-2n-22+¢c(n-1) . (L.2)

N p(-p); m?,g ) is the negative inverse propagator. The
B 2
momenta set Py ... Py s 9y ...qz will be abbreviated as (2n),(£).

2 . .
For the massless theory, where m =0, we omit this argument.

The renormalisation conditions for the VFs are

2
E(p(-p),; m ,gB,e)J s o= 0 (1.3a)
pC=m
2.\~ 2 .
(%)™ T;(P('P);; m,8p,e) oy 7 (1.3b)
p oD
) 5 .
]—:é(pl "'P)_p; m ,gB’E)I = -1 gB (1,3(:)
P]_---Pu_ —> o
2
p1P2q19°°

where in (l.3c) and (1.3d) the momenta should go to infinity
in a nonexceptional way (to be explained later). The Feynman
rules read off from (1.3) are, due to £ >0, the ones of a merely
mass-renormalised, otherwise unrenormalised, theory. They yield
VFs meromorphic [7] in ¢ in every order of expansion with respect

* ‘
to Bp> with poles only at & = O and at certain negative rational



* ' :
For n=1, £=0, [B/Bpg] G(p(wp),; me,gB,s) should be considered.

e 1f m? > Q.

For m=0, (1.3a) is not implementable in any perturbation
theoretical order N > 28"1. However, all perturbation theoreti-
cal terms, defined originally for ¢ sufficiently small positive,
are meromorphic [7] in e with poles, as for m > 0, at € = 0 and
at certain negative rational € (these singularities will not be
considered in the following and no longer be mentioned), and at
certain positive rational €. E.g., one finds

2 . 2
'Té(p(-PL;m 18p,€) = 1p

+ Lg )™M Tee)T LePTE-2e) gy (-pP-10)"7°

+ 0(g)) (1.4)

which obeys (1.3a) with m = O to second order only if € < 1.

Defining the perturbation theoretical terms as meromorphic

functions of & by analytic continuation as explained is equiva-
.. 2 .1

lent to the use of the bare propagator i{p +10) = and of

*
analytic subtractions in the sense of 't Hooft [8]. The

% _
These amount to a) use of formulae such as (L.1), which imply
- - (sub)
for divergent“(self-energy)Agraphs, subtraction at zero

momentum, but no subtraction for convergent (even not if self



(sub)
energy)4graphs, b) omission of graphs containing <¢§S, by use

of the additional prescription (3.15) below, as in usual

perturbation theory.

perturbation series then takes the form

]._,I];ert.th-((gn)’(,g); gg¢)

2

= 1p 8 16,0 ~ 180000 * 010
o
K
+ 2] gy £.((20),(0)5e) (1.5)
=n+0o
nl

where according to (1.2) the fk are homogeneous in the momenta
of degree ¥ -2n -2#+e(n-k-1). Thus, the unrenormalised pertur-
bation series is an ordering of contributions with respect to
large-momenta behaviour. It follows that the singularities

of the fk cannot cancel, irrespective of whether the series
(1.5) converges or mnot, provided the remainder to any finite sum
of terms decfeases more rapidly at large momenta than the terms

of that sum itself.

We conclude with two remarks: First, the f im (1.5) have for
generic € singularities at exceptional momenta [2] [9], which

¥*
are momenta sets such that a nontrivial even partial sum of

* v
This means an even number of p and any number of q momenta.




*
momenta vanishes , and are non-regular (in the analytical sense)

*

In (1.3¢) and (1.3d), all even partial sums of momenta should
go to infinity at the same rate as the momenta in general,
which is simplest achieved by scaling non-exceptional momenta

up by a common factor.

at any vanishing partial sum of momenta [10]. The construction
of the fk directly at these momenta, using analytical sub-
tractions, yields new meromorphic functions ﬁk as discussed

in Sect. 3. Second, if one constructs the renormalised
massless theory, specified by renormalisation conditions at
€inite nonzero Euclidean momenta (except for (1.3a)) in

*
analogy to the procedure of Gell-Mann and Low [l1], the UR

*See, e.g., appendix B of [9], and [12].

divergence problem is mnot avoided: there are simple linear
relations between the unrenormalised and the Gell-Mann-Low
renormalised perturbation series terms, the latter having sub-
tractions that remove the UR divergences at the normalisation

points but not elsewhere.
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2. Bare Masses in Massive (¢4)4-5

The model (l.2) with n° > 0 allows us to study the effect of

change of the bare mass. The Schwinger action principle gives

ra/am1 T5((20), (£)5 0°585,¢)

= _igg(gBm-g,e)Tg((2n),(£)0; m?’ngE) (2.1)

*
where

*
All m2 derivatives are meant with &p fixed.

?ﬁB(gBmﬁs,e) = Bmgg/am? . (2.2)
Here m;g is the bare mass squared defined by using in the
Lagrangian density the interaction term - é%—gB ¢%u. The
bare mass squared méz in the sense of Lehmann [13] is defined
by using instead - é%'gB :¢§¥: where
:4%3 = ¢§}- 6¢§ <ﬁ§> +-6<¢§%>2 - <¢ﬁ>. Thus

*2 2 7 2
m," = my - gy /p(,05m,8p,¢) (2.3)
where (in the elementary sense, for € > 2)
2 1 2
T;(,O;m ,gB,E) = §'<¢; >

-1

= = % (2“”-)-)4--'-E [dkgk(-k),;me,gB,E) (2'4)

is the derivative of the vacuum energy density iZ;(,;mE,gB,E)
*
with respect to mBe. mB2 is also definable (in the elementary

sense, for £ > 1) by



and

11

o = [ig(p(-p),;mg,gB,E) + p2][ 5

P (2.5)

*
satisfies [13] m§2> m? in the case of mass gap below m.

*
This gap, and one above m, have been demonstrated for £ = 2

and - sufficiently small by Glimm, Jaffe, and Spencer [14].

For £ positive integer, from the second Griffiths inequality[]5j
one may derive” that.?% > 0. (2.3) implies that if £ =240,

*B. Simon (private communication).

*2

B

> -» for fixed g, and m° (or ms).

From (2.5) and (2.1) follows

2 2 , - o) :
o /om” = Pp(gym 8,8)7;(p(-p),0;m ,gB,e)IPQ_>_00 . (2.6)
Thus, from (2.1-3) we obtain |
2 | | . 2
[5(p(-p),0:m ’ngE)lpe’é-w_'_: 1 - igg[5(,005m" ,8,,8) (2.7)

which has an obvious interpretation in terms of graphs and

for

which we will later indicate a different derivation, Note

that the r.h.s. is unequal one in contrast to (1.3d), and that

it does not exist for m = O in perturbation theory (see, how-

ever, (4.11) below). From (2.6-7) and the relation (in the

elementary sense, for £ > 1)

[m]32 - m2],m2_>m 0 (2.8)
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due the form of the square bracket

2 2-2 2-
1( )gB © CE(E)g%m 3¢ S

we have

-SE

2 .
+l/;(b§ 1 - f%(ng ,a)[l'-lgBTT 003;x gB,e)]}
i (2.9)
while from (2.2) and the relation analogous to (2.8) for ng

(in the elementary sense, for & > 2) follows

ng = +dex[l —?B(g x )] . (2.10)

me

(2.9) and (2.10) are, for € > 1 and £ > 2, respectively, con-
vergent in perturbation theory. Note that from (2.3-4) and

(2.1) follows
S -nl) /o’ = 5 e,G(egm he)-
(o) fa (k) 30 g 2) T (1), 05 )
= ing%(gB e)]ﬂ 00; n° »8p5 € )
in conformity with (2.9-10).
Meromorphy, and regularity for & > O, of f% at least in per-

turbation theory follow, e.g. from the consequence of (2.1)

and (l.3a)

SOB(gBm*E’E)

= -i{?_;(p(-p),O;me,gB,E)—l[a/ape] g(p(*p)’ ;me,gB’E)}ég__.m

no
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These analytic properties hold, from (2.9) and (2.10), also
*
for mg and mBe, apart from simple poles of these latter for

certain £ >0 as discussed in Sect. 4.3 below.
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3. Small-mass Behaviour in (¢§)4-

3,1 A small-mass expansion

N

The perturbation series of (@ )4_¢ VFs allows the m? dependence

of its terms to be expanded as

- t.th. 2
JEEEE T ((2n), (£)3m” g, 0)

o
Z m2r— E:Sf
s=0

Here a = N-2 if p, ... P,_s4, ... d allow a partition into at
1 2n’ 1

™M

((Qn),(f);gB,E) . (3.1)

rs:®

r=-a

most N nontrivial even momenta sets of sum zero each (a = 0
if N = 0), Each frs is a power series in gg with terms mero-
morphic in e. If the set (2n),(£) is nonexceptional, then
a = 0 and in addition fos = 0 for s » 0, with f00 being the

series (1.5).

While the perturbation series terms on the l.h.,s. of (3.1) are
meromorphic in & with poles only at zero and at negative
rationals, the terms on the r.h.s. have poles also at positive
rationals. This is due to the fact that in the decomposition
on the r.h.s., at any & such that 2r - es = 2r' -es', a common
single pole in frs and fr.s, at that e may cancel out, a

double pole may do so if three terms obtain the same m-dependence

*x
etc., and this in each &p order (within the frs) separately.
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*In actual computations, it is convenient to perform a Méliin
transform on m, with transform variable t. The transformed |
function is meromorphic in t, with only simple poles for
generic €. The residua of these poles are meromorphic in e.

- Letting e go to the pole in the residuum of a t-pole makes the
t-pole coalesce with one or more other t-poles to form a higher
order pole, with finite residuum, giving rise to logérithms
of m. A simple model for this behaviour is discussed in

Sect. 5.

This is an explanation of the UR singularities in the fk in (1.5).
Note that for s too large also the r >0 terms in (3.1) do not

vanish in the m~> limit,

We will now analyse for nonexceptional momenta the r=1 terms

in (3.1) and extract from them an altogether nonvanishing con-

tribution in the m -> O limit Hereby we shall encounter cases of
find

exceptional momenta with a=0 and,that the fos’ all s, factorise

in a simple way, leading to such factorisations of the fls’ all

s, for nonexceptional momenta, All this could be pursued to

higher r but we do not do that here.

3,2 Integral representation of massless (¢F)4_€ VF's

The properties (1.3b-d) are preserved if we change the bare mass

in the Lagrangian demsity, since this does mot affect the
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asymptotic behaviour (which is here the same as saying that it

leaves the operators canonical). Thus (2.1) yields

2
Tg((2n),(2)s85.2) = T ((2n), (£)5m" ,85,¢)
me
_-é—e
+ 1 fax gylegx © Le) L((2n), (4)05%,g5,¢) (3.2)

0
to be valid for nonexceptional momenta, and in Sect. 4 we shall
argue for the convergence of the integral then., Since the inte-
grand is expected to be holomorphic in the & plane cut along
the negative real axis and the integral is over a finite range,
the massless theory VF will be holomorphic at least whenever
the integral converges uniformly at x=0: the momenta of the
VF in the integrand are exceptional and also ffB is not

expected to exist in general at x=0,

If we insert (3.1) in the integrand in (3.2) and expand also Fr s

we encounter integrals

-1 242r-€s
) m

(3.3)

o r-<=cs

-5 1
J[dxx = (l+r—§ £8
0

convergent for 2r - s > -2. Thus, (3.3) will converge also for large
s 1f only & is sufficiently small, 1In view of the discussion in
Sect. 1, it is obvious that (1.5) is obtained by modifying (3.2)

to
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JRETE R ((on), (£)38y,¢) = T((20),(4); m »gp:e)

-—£&

o2
+ i 'fdx" €y (8p% 2 ,e)[5((2n), (£)05%,85,8) (3.4)
0

where the "flip-flop" integral is understood as follows: expand
the integraﬁd in powers of x, which yields terms xr."_es; inte-
grate from O to m? if r - %-esj>-l and from « to m? if
r-%53<:-1,.the singularity at € = 2(r+1)/§‘being obtained by
analytic continuapion. The prescription (3.4) isblates the

r=0 terms (with fos = 0 for s >0 due to nonexceptionality)

in (3.1).

From (3.2) and (3.4) we have

J((2n), (£)s8g,¢) = T57 5 ((2n), (1) g5.2)

1

—

m -
2
- 3 M "
i jrdx f%(ng
0

where the integral may be defined as follows: expand the inte-

o
,e) [3((2n), (£)05x,85,8)  (3-5)

1
r--€S
grand in powers X as before; integrate from O to & if

r - % es ¢ -1 and discard that term if r - % es > -1. This
allows to redefine the integral as follows: from the unex-
panded integrand, subtract all terms that, in its expansion in
powers of x, are not integrable at «; this difference is

integrated from O to « without proviso. Since the subtraction
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terms are integrable at O, the new integrand is integrable

there if the one in (3.2) was.

3.3 Exceptional momenta and Wilson expansions*

*
Most of this section follows closely the analogous €=0

analysis of [9].

We have been led to analyse the x dependence of the integrand in
(3.2). The momenta are exceptional, but still a=0 in (3.1).
We will only construct the now nontrivial fOS terms. They are

obtained as follows: 1In
[a/am?J];Y(en),(z)o;m?,gB,s)
= -if,(ggn =) [7((2n), (£)00; n”,gg,2) (3.6)

the VF on the r.h.s. is subjected to a Wilson short-distance

expansion, which takes the form (we omit the m?,gB,E arguments)
[2((2n), (£)00)
-1
= T%((2n)00, (£)) 5 (,000) /(00,0)

+ [ypen((20),(£)00) (3.7)

where

J73((2n)00, (£)) = [3((2n)00, (2))
o Y R0, ey (2D )

partitions

NG A C A FOVA{CPPR- NP (3.8)
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Here the sum is over all different partitions of the momenta into
nonempty even sets such that the two zero-momenta are in the
first and the last set; the sets are the arguments of VFs

ordered in a chain, with connecting propagators transferring
momenta as obvious, in a graphical picture, from momentum con-

. servation,

In (3.7), the remainder term has in its m expansion powers

2r- . .
=T ES, r > 0, while the first term on the r.h.s. encompasses

-2-¢ . : .
all m ® terms (besides others), in view of

+ d2(e)gBm-2—EES + ... . The stated

*
property of the remainder can be proven by techniques

| o
[5(,000) = d;(e)m™=""°

*
See Zimmermann [16]. A demonstration covering the case at

hand can be given aldng the lines of [9] App. A.

familiar in renormalisation theory.

(3.7) leads us to consider
13/3n° 1T ((2n)00, (£))
= -1 @[ /5((2n)00,(£)0) + ...] (3.9)
where we shall not need the terms indicated by dots, which stem
from the partitioned terms in (3.8). Again we use a Wilson

expansion
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[ ((2n)00,(£)0)
= I"3((2n)00, (£)) [7(00,00) J7(00,0) ™"
+ fg;em((zn)oo,(ﬁ)o) (3.10)
for which what was said about (3.7) again holds, whereby
T;(O0,00) = e]_(sz)f._r,Bm-e—E + ee(s)ggm-g-eg + e

(3.9-10) with (2.1) yield
[a/amallfrg((en)oo,(z))‘rg(oo,orl}

= -i9,[]7 _ ((2n)00,(£)0) + ...18(00,0)™" (3.11)

rem

e s . -£8
where the r.h.s. has in its mass expansion only terms m R

m?_gs, etc. Thus the curly bracket on the l.h.s. has, like a

. o _2-es _lb-es
non-exceptional-momenta VF, only terms m , m , m

, etec.
This suggests that outside of perturbation theory, the curly
bracket should have an m -» O limit obtained e.g. in analogy

to (3.2), and we write

! e £ e g
{7—’3((211)00,(2)3 ’gB, )];(00,03 :gB: )}/meo

= T'a((2n)00,(2)585,¢), (3.12)
to be somewhat qualified later. = In perturbation theory, 7’5

is defined as the sum of the m-independent terms of the curly

bracket,

Use of (3.11) and (3.7) with (2.1) in (3.6) yields
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13/3°1f T3((20), (£)0)

- T30 ((20)00, (£)) F5(00,0)™

(3.13)
= 1%/ Fren((20), (£)00)

-1
- ];(,oo)[f;rem((zn)oo,(z)o)+...]7;(00,0) ]
What was said about (3.11) applies also to (3.13) and leads us
to write
zrlg((zn),(z)o;m?,gB,s)

- Tg(,oo;m?,gB,E)ré((gn)oo,(g);m?,gB,e)TE(OO,O;m?,gB,e);J%n“>o

= [2((2n), (#0385, €) (3.14)
understood as (3.12) was and to be qualified below. Clearly,
inside the curly bracket, (3.12) can already be used at least in

perturbation theory.

(3.12) and (3.1%) show that at exceptional momenta, and the two
cases considered have still a = 0, in (3.1) the r=0 sum has
terms also with s > O in contrast to nonexceptional momenta,

but that these terms have simple féctorisation properties as
claimed before. As the estimates in Sect. &4 will show, the r=0
sum does in general not have a m = 0 limit (since 7;(00,0) and
7;(,00) do not), and there is no reason why the r> 0 sums should

remedy this.

Definitions (3.12) and (3.14) are analogous to definitions

(ITI.12a) and (III.1%a) in [12], or equivalently to (III.8) and
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(II1.21) in [9]. However, while these latter definitions are
proven to lead to finite functioms, in (3.12) and (3.14) the r>0

sums of (3.1) will require additional terms, which are expected

to yield on the r.h.s. terms having explicit factors gBB/e,

Y/e

gy = » etc. by similar computations as in Sect. 3.4 below.

ram

*
In perturbation theory, the l:B functions are obtained from the

*
This was pointed out to the author by G. 't Hooft,

Feynman integrals for the f; functions by using the rule

/:ﬂk[-k2 - iO]-a = 0, any @ (3.15)
which contrasts with the m >0 limit of (1.1) if 4 -2a-¢ < O.
It is the evaluation (1.1) tha£ leads to the m = terms at
exceptiond momenta; use of (3.15) instead (and of similar ones
for several-loop integrals [8]) amounts to omitting the terms

*
with s >0 and thus yields the ;[; directly.

*A definition in perturbation theory which involves a limit
process, however, was given by H. Trute (private communication}.
Tn our notationm, it is: choose in (3.1) =<0 but sufficiently
small (depending cn the order) and let m =0 provided a=0,

The result is foo’ whose analytic continuation in & is

- 77pert.th.

ljgert.th.’ or /7% , of the massless theory.
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The relation to the "elementary recipe" of [9], proven to be
applicable also to the present exceptional-momenta cases, is
obvious.— Note, incidentally, that forming JT; and _Zﬂé does
not amount to omitting the graphs that are two-particle
reducible between the (2n),(#) and the 0,0 and 00, momenta,
respectively. It is only parts extracted subtractively from

them and strictly proportional to (3.15) that are discarded.

3.4 Evaluation of an integral

Use of (3.14) and (3.12) in (3.5) yields

T((2n), (£)58g,2) - TRETE 1 ((2n), (£)385.¢)

= 1" fax" G (eyx 2, e)1/a((2n), (8)0585,2)
0 - 1
-=&
i fax g (ggx © e) [, 005%,8,6)]
0

- J4((20)00, (£)385,2) + --- (3.16)

[+ 4]
where the dots stand for "dex" integrals of the r.h.s. of (3.13)
0

and (3.11) integrated over m? from O to x and not repeated here to
save space. The terms written out on the r.h.s. of (3.16) are

the m—>0 limit of the r=1 part of (3.1), and the terms repre-
sented by the dots are the m->0 limit of the r=2,5, etc. parts
and could be analysed by using Wilson expansions to higher
accuracy than in (3.7) and (3.10), for which Zimmermann [16]

has given the requisite formulae. Actually, the discussed
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qualifications of (3.12) and (3.1%) imply that the r=1, r=2
sums, etc. need not necessarily have m—=>0 limits separately, but
only all of them together. This, however, does not affect the

qualitative conclusions in Sect. 5.
n (3.15),
o0

1 oo
11 1 --2-.8 — ' B . *
de SOB(gBX ’E) - ]dx[ffB(gBX :E) - 1] - -mBO
° © (3.17a)
if € > 2, and

"dex” T%(ng ,E)Z;(,OO;X,gB,8)==the ordinary integral

= -igB (mBO m_B = =i ]_, 04 gB, (3-17b)

if ¢ > 2, in view of

7;(,00;m?,g3,e) = el(z-:)m_8 + eg(e)gBm“QE + ..., where mé% and
mgog are the bare masses of the massless theory, obtained by let-
ting m->0 in (2.9) and (2.10). At least as far as the r=1 part
is concerned, the convergence of the integral in (3.2) at 0 will
have been shown (and the consequences, about removal of & singu-

larities, mentioned earlier verified) if the integrals in (3.17),

or equivalently the integrals

1
5¢e

mho 2/8fd x[1-F(x 2 ,e)1 = g w¥(e) (3.18a)

1
2

“-s E/Efdx{l-ﬂs(x 1 - g, /5(,00; ng ,gB)]}

2’€u< ) (3.18b)

g
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converge at 0 for £>2 and &> 1, respectively, the integrand
in (3.18b), since dimensionless, being independent of gﬁ.
These integrals, which obviously do not comverge in perturba-

tion theory, are discussed in the next sectiomn.
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4, Conjectured true small-mass behaviour

4.1 Renormalised (¢4)4-s

The estimation of the small-x behaviour of the integrands in

(3.18), on the basis of Wilson's ideas, is by now familiar® and

* ’ . *
See the lectures of E. Brézin, G. Parisi, and B. Schroer at this

Summer School, where further references are given.

will be sketched only briefly. The (mass shell) renormalised

VFs TT(En),(B);m?,g,e) are defined by imposing the renormalisa-

tion conditions

F(p(-P)ﬁ;mE:gae)/ 0 2 =0 (4.13.)
p =m
[Bfapglr(p(-p),;me,g,e)[ s o =1 (4.1b)
p =m
[py venp e, g,¢) = -in'g (4.1c)
1 § !pipj%(uéij-l)mg
TW(OO,O;m?,g,E) =1 (%.1d)
T(,005m",g,¢) = 0 . (4.1e)

*
They satisfy

*The easiest proof of t4.2) is by observing that renormalisa-
tion theory implies a relation of the form (4.3). 1Inserting
(4.3) in (2.1) yields (4.2), the coefficients being B, v, T,

, and @ from (4.4-5). That for the /[ “the limit ¢ = O can

®

be performed in (renormalised) perturbation theory by analytic
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continuation implies that it can for (%.2) also. This derivation
of the £=0 form of (4.2) is more elegant, and for
gauge field theories much simpler, than the one by Pauli-Villars

applicable only in perturbation
regularisation [17], but directly y theory since gW(O)==O.

2 . B
OPQH’ET((En),(l);m ,g,g) + 1‘5n05£21¢.(g,€)m

- -inlg(g,e)T((2n), (1)0sm" 8,E) (4.2a)
where
2 2
= m [3/3m"] + B(8,=)[3/3g]

- 2ny(g,=) + £(2v(8,e) + n(g,c)) - (4.2b)

0p2n,£

The expressions for B(g,c), v(g,€), n(g,e),ff(g,a), and x(g,€)
obtained from consistency of (4.2) with (4.la-e) suggest these
functions to be holomorphic in the ¢ plane cut along the negative

real axis.

It is easy to prove that
To((2n),(2)5m s 8g5e)
- a(g,e) ™ h(g,e) T((2n), (2)5m°,85¢)
+ iénoézek(gﬁ)m'sg'lexp[% eP(gsr€)] (%.3)
and
_e -1 -1
¢ (ggm ,¢) = a(s,e) h(g,e) gle.e) > (4.%)
with

&
5 (g.e) = [dg'[As",2) "+ 2T (4.52)
0
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g
a(g,e) = éxp[2[dg'ﬁ(g',8)”17(5;',6)] (4.5b)
g .
h(g,e) = exp[fdg'ﬁ(g',e)' n(g',e)] (4.5¢)
g 0
k(s,e) = [dg'B(s",2) ale o) n(g" )"
0
. x(g',e)8" expl-2 (g2 (4.5d)
and
s = meg expl - %é(g,e)] . (4.6)

From (4.6) and (4.5a) and in view of

1 2 2,.-1
B(g,e) = -5¢8 + bo(e)g + ..., bo(O) = 3(327r )
it follows that
1 -1 -1
o in gB/B Ing = -EsgB(g,a) = 1-2¢ bo(e)g +..20(%.7)
for 0 { g8 < gw(s), with g (e) the first positive zero of B(g,e),

such that gp and g are there related” monotonically. Outside of

¥*
Transcribing (3.1) using (%.3) and (4.6) into a small-mass
expansion for the renormalised VFs yields the b-¢ analog of

the expansion (0.2) (with ri=O) of [9].

this range, which corresponds to 0 K &p £ o, neither side of

(4.3 ) makes sense directly.

4,2 Assumptions and their consequences

¥*
Following Wilson [1] one assumes that B(g,e), v(g,e), n(g,€),

*
Wilson's assumptions are analogous to the present ones, but for
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. Al A ~ A .
functions B, v, 1, and k of the zero-mass theory described at

the end of Sect. 1. There are no analogs of (3.18) in zero-
-mass-theory quantities, which is the reasom for the difficulty
of removing the UR singularities in perturbation-theoretically

considered zero-mass theory.

x(g,z), and g(g,e) are left-continuous, and‘at least P(g,e) even
left-differentiable, at g = gw(e). The rationale hereto is that
these properties very likely hold for e small and that there

is apparently no known reason why they should cease to hold if €
increases, and that deductions from this hypothesis appear to be
in accord [1] with experiment as well as with computer calcula-
tions. Then for m = 0 at fixed Bp> OF equivalently g égw(s) -0

at fixed m, (4.6) yields easily

gB = mafl(gsg)'l 1
-55{[5/8g]5(8,5) }Igw(e)-o

- lgy(e) - 8] (4.8a)
with fl(gw(s)—o,a) finite, and then {4.5b-d) give
-1
a(g,e) = Eo(8,8)[Egm 1T v(gwle),) (4.8b)
-1
h(g,e) = f3(g,€)[gl-g,m'€]'Qf5 ey (e),) (4.8c)
and
k(g,e) = [ £y(8:€) i£0> 2
ce 1-2e-1
f5(g.¢)[ggm RGP T I (4.8d)
fs(8,¢) fn[gBm'E] if & = %8
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where

0 = hy(gy(e),c) + 2n(gy(e)se).
Then from (4.4)

1

P (egn 5.e) = £ (8,2)ggm 17 O, (4.9)
from (4.1d) and (4.3)

f;(OO,O;m?,gB,e) = h(g,s) = (4.8¢) (4.10)

and from (4.le) and (4.3)
2 . -1 . -1
T2(,005m7 ,gp,8) = 1 gy Kk(g,e) =1 gy (h.84).  (A.11)
In these formulae, the fi(g,s), i =2...7 do not have power
behaviour in gw(e) -g, and e.g. have limits for g ->gw(a) -0
if the functions v(g,e), n(8,e); P(8:€)5 x(g,e) are left-

~differentiable at gw(e).

1,3 On existence and properties of u*(a) and p(e)

Tt is now seen that (3.18a) converges at x=0 provided

6 < 2 (4.12a)
and that (3.18b) converges there provided in addition

8 > -2+¢ (4.12b)

holds. (4.12) appears likely to be satisfied*, from the e-

*Insertion of (3.14) with (3.12) into (3.2) yields an estimate
to the small-mass behaviour of the massive-theory VFs, replac-
ing the formal expansion (3.1): the x-integrals converge at
0 if (4.9) and (4.11) hold and (4.12) is satisfied, and lead

to power laws in m, cp. [19].
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expansion of 9, for not too large e.

In view of (4.19) which implies

(2-g+e if6’<%e
dim :®2

(3.13)

noj—=
m

)
2 - 5 € if 6 >

(4.12) is equivalent to the condition that the long-distance

. . 2 . ee % .
dimension of the massless-theory :¢°: satisfies (assuming € <h)

The conditions (4.12) are analogous to the comsistency condi-
tions derived in [9] Sect. IV, in fact in both cases assumptions
of a certain behaviour at a fixed point in Wilson's [18] sense

are being tested.

0 < dim 02 < 2 - % £ . (4.14)
Also dim :¢2: > 1 - L ¢ must hold for positivity reasons.

2

*
Furthermore, from the second Griffiths inequality [157 follows

¥*
B. Simon (private communication).

(for positive integer ¢)

[2(00,05m",g5,2) > 0 (4.15a)

*
and from the Lebowitz inequality (for positive integer )

*See, e.g., [147 .

[7,(00,0;m" ,g5,6) < 1 . (¥.15b)
(4.15) with (4.10) gives (for positive integer )

n(gy(=),e) 20 (4.16a)
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while from (4.18) for positivity reasons follows

v(gy(e),e) 20 . (4.16b)

The integrals (3.18) are written, as stated there, for €>2
and € > 1, respectively. Otherwise, further subtractions in

-g -£
/2, x , etc. have to

the integrands of terms proportional x
be made. Obviously, an analytic continuation [20] of u*(s) and
w(e) beyond simple poles, with computable residua, at e=2,1,
%-... and e =1, %3 %-..., respectively, is thereby made. 1In

view of the presumed analyticity in € of the integrand and

the uniform convergence (to the extent that (4.12) is satisfied
and the £, (g,e) in (4.8-9) obey a mild condition) of the integrals
at 0, we are led to conjecture that u*(s) and p(e) are mero-
morphic in the ¢ plame cut along the negative real axis, with
only the mentioned poles at positive €. m-em];':" and m-eml?’*2 in

(2.9-10) should afortiori have these analytic properties, and

the same poles and residua,

I1f one writes [5] the integrals (3.18) in terms of functions
B{g,c), ete, using the formulae of this section, one may derive
from the perturbation expansions of these functions, and suit-
able additional assumptions, expansions for p¥(e) and w(e).

However, an illuminating one has not been found yet.
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4.4 Small-momenta behaviour of massless-theory VFs

For the massless-theory VFs, (4.3) becomes

[5((20) (2)585,¢)

= a(g,e) (g, o)! [ ((2n), (#)5n" 8, 2)

+ iénoéggk(g,s)m-eg‘lexp[% ep(g,e)] (%.17)
where the 7;; are the asymptotic forms of the 77, defined in
analogy to the £=0 case of [1][9][12]. Since the 7;; satisfy
(4.2b) with the r.h.s. replaced by zero, the r.h.s. of (4.17)
is annihilated by OPO,O’ which means, in view of (%.7), that it
is independent of m for fixed gg> as the 1.h.s. requires. The
relations replacing (4#.17) in the case of exceptional momenta,
for thelﬁé and _ZE in (3.12) and (3.1%), respectively, are
formed in precise amalogy to (III.25) and (III.27) of [12],

which is the reason for the '"renormalisation group invariance"

of these constructions proven there.

The small-momenta behaviour of the massless-theory 7; (or_Z;)

is obtained from the one of the 7:; (or 7;8) via (4.17) (or
the relations replacing it for exceptional momenta). The one

of the latter functions one obtains, following Wilson [18], from
their transformation formulae and the assumption that these
latter functions exist for g = gw(e). Testing the consistency

of these assumptions in parallel to [9] Sect. IV leads (at least

in the r =0 approximation) again to the conditions (4.12). Ome
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so obtains, e.g.,

—g(p(—P):;gB:S)_l = prop. (”Pz)"1+27(gw(€),8) (4.18)
for p2 -> 0, and
const. 1 if9—l5>0
2
2 93¢ 1
];(,CI(-Q);E:B,E) o~ prop. (-9°) if6-5e<0 (%.19)
prop. m(-q)2 if@-%e=0

for q2 - 0, under appropriate assumptions on vy(g,=), n(g,e),
and x(g,c) as before. The role of the behaviour (%.18), not
obtainable in perturbation theory, in the present context

is briefly commented upon in the next section.

From (4.18-19) and other formulae arrived at similarly, one

*
extracts the critical exponents. Since B(g,c), v(g,e), etc.

*
See the references given at the beginning of Sect. *.1, and [19].

used hereby are expected to be holomorphic in the cut e-plane

as mentioned in Sect. 4.1, one infers holomorphy of the critical

exponents at least inside a strip around the positive real e-

axis. This is the basis of the c-expansion of these exponents,
. - . 2r/e

with no apparent source of nonanalytic terms such as ¢ .

Concerning the VFs of the critical theory, however, we have not

been able to arrive at a definite conclusion as to such terms.
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5. Discussion

That the terms on the r.h.s, of (3.16) have coefficients
expressible, due to (3.17), directly in terms of the bare masses
of the massless theory suggests the following interpretation:
Consider constructing the massless-theory VFs, rather than using
the bare propagators i(p24-io)_l and analytic subtractions as
explained before (1.5), using, instead, the bare propagator
i(pe--mBO2 + iO)_l = i(p2+-iO)‘l4-imBog(p2~FiO)”2-+...
(5.1)
in its expanded form, and analytic subtractions only to the extent
as they are implied by (1.1), with graphs containing <¢§%> parts
set zero as required by the use of m302 rather than m;oz. With
these rules, the first term on the r.h.s. of (5.1) gives
fgert'th'((2n),(£);gB,e). In the Appendix we show that the
second term gives rise to the written terms on the r.h.s. of
(3.16) apart from terms proportiomal to (mBOQ)r, r > 2. These
last terms, together with the ones from higher terms in (5.1),

2r/e

have factors g and correspond to the terms in (3.16)
represented by dots, stemming from the remaining sums in (3.1)

(modulo qualifications, see Sects. 2.3-4).

Indeed, write the r-part of (3.1) as

oo -1
gBQr/E ;ég [gBm-s]s—Qe rgB Sfrs((En),(g);gB,e) . (5.2a)

If this expression has a limit as m =0, that limit will
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necessarily* be of the form

*
Similar reasoning has been applied often; see, e.g. [21].

2r/e
g f.((2n),(2);gp,¢) (5.2b)
which, for r=1, is the form the written terms on the r.h.s.
of (3.16) (apart from the nonanalytic terms in__z_r andj?é, see
Sect. 3.3) do have. The complete form of (3.16) will be
ert.th,
[L((2n),(2)s85,8) -8 ((2n),(£);585,¢)
® T(r)

_ 2r/e
= X g

b AR O M(CIROIENDR (5.3)
Here Vrt(e) (r>2) are meromorphic functions of e similar to
i(e) and p*(e), with poles at € = 2/s, s> 1, with computable
residua., The frt are Laurent series in &a with computable
coefficients and only a finite number of negative-power terms,
and for r=1 without a negative-power term if n>1l. T(r)
increases with r, with T(l1l)=2. In view of the discussion of
(3.1) at the beginning of Sect. 3.1,the persisting cancellation
of & singularities in the m = 0 limit would mean that the ¢

singulaxrities are not changed in the transition from (5.2a) to

(5.2b) if the sums to different r had m = 0 limits independently.

The explanation of cancellation of UR singularities on the basis
of (5.1) is: The propagator (5.1) cannot lead to UR divergences

unless all orders of perturbation theory are summed up because
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rnBo2 is so chosen that only the complete propagator becomes
massless. That propagator, however, has small-p dependence
(4.18) and leads, just as in the conformal invariant theory [4]
whose consideration for this purpose i1s sufficient, not to UR

divergences.

It is amusing to consider a simple mathematical model of cancel-
lation of UR divergences. 1In a field-theoretical model calcula-

tion, Parisi [22] obtained a series which we write

fpert.th.(x’a) - Z (-l)nr(l-%sn)xn . (5-11')
n=0

The nth

term has "UR" singularities at e = 2k/n, k > 1. (We
may think of x as gB(-pz)-E/2 as appears in rgert'th'(p(-p),;%ma).)

Now sum (5.4) formally to

f(x,e) = fdy e-y[ny-e/z]-l
0 ctie
= (23'_)-1 fds[sin Trs]—l ]7(1+%'€S)X-S (5.5)
c-iw

with 0 < ¢ < 1. f£(x,e) is holomorphic in the e plane cut along
the negative real axis, with singularities at all negative
rational e, and f{eo,c) = 0. £(x,e) is not analytic in x at O.
Its correct expansion there is obtained by shifting in (5.5)

the s-integration path to the left, with the result

f(X,E) _ fpert. th- (X,E)

1

-1x2k€ . (5.6)

= i% (-l)k2we_1 TYk)-l[sin(EWke-l)]
k=1
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Fach term on the r.h.s. again has poles at positive rational g,

at which, however, the pole in the term in fpert.th.(

x,€) obtain-
ing at that pole the same x-dependence is just cancelled. (5.6)
is a mimikry of (5.3). That in the presemt example e-singularity

compensating terms were obtained from fpert.th.(

x,e) alone
suggests, in the light of our discussion of (5.2), that there
is a close relation between the r=0 and the r >0 sums in (3.1),
as there obviously is. It is here the step from (5.4%) to (5.5)
that is analogous to the step of reinterpreting the integral

in (3.5), as described after that formula, and which produces

a result transcending perturbation theory.

The cancellation in (5.3) of poles at positive rational e leads
at those ¢ themselves to logarithms of 8 E.g., we find from
(1.4) and (3.16-18)

E(p(-p),;gB,Fl)

. 2 . 2.-1 2 2 . -2
= ip - i(l927 ) &g gnf (-p -1O)gB ]

+1const g2 -1 [3/3<][(e-1)u(e)] 1g}f+ o(a7) (5.7)
E=

where the constant is computable but the last g§ term apparently
not exactly. (5.7) is consistent with, but that term not
obtainable from, dispersion theoretical calculation. We have not
examined whether the fact of cancellation of & singularities in
(5.3) leads to information on the finite parts of n(e), u*(e),

and the Vrt(e), r > 2, of which we have not checked whether
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they are expressible by u(e) and u¥(e).

The expansion (5.7) is, however, usable only at large momenta.
The small-momenta limit, which is to yield (4.18), is equivalent
(upon extraction of a divergent factor from (5.7), as seen

from (4.17) and (4.8b)) to g; > .
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Appendix

We here discuss the effect of the second term on the r.h.s. of

(5.1). It yields for the r.h.s. of (3.16) the term
. 2 . 2
-1omg, 7;((2n),(£)0;gB,e) wherefrom its terms of <¢%:> type

must be subtracted, leaving

., 2 R -1 .
~1mBO[1-1gBZ;(,OO;gB,€)] 7;((2n),(£)0;g3,8). Both VFs herein

are (at least in perturbation theory) meaningless and we define

them by a limit, e.g., by

_imBé XE;g-{[l-igBTE(,OO;X,gB,s)]'ljg((gn),(l)O;X,gB,a)} .

For the last VF herein we use (3.1%) and obtain
f— #E
-1, T2 ((2n), (£)0;85,¢)

+ gy (myg - fpg - g ((2n)00, (£)385,¢) (A.1)

where
- xe . -1 2
mBO = [1-1gBT'B(sOO;gB:E)] mBO . (A.Q)

(A.1) agrees with the written terms in (3.16), by virtue of
3,17), apart from m *2 # *2 since
T30 7 ™Bo
- 2 ] by 2
By * w2 = igpmy o [H(,00585,¢e) # ~gg /3 (50:85,¢)

violating (2.3). However,

77 (,05850¢) = ~i8y Ta(,00585,€ my + O(mge )

= ~igpll - igBE(,OO;gB,E)-l] I3 ,OO;gB,E)mB02+ O(mBg)
(A.3)
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from use of (5.1) and of its mB8+2 analog, such that the error in
- %D *2 . R . 2

(A.1) due to my, # meo . is of higher order in my,”, or of the

gBQr/g, r > 2 type.- The use of (A.3) is not entirely unambiguous,

however, and the argument in Sect. 5 based on (5.1) ultimately

is only of intuitive value; the calculations performed in

Sect. 3 are, however, precise.
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