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Abstract:

We study alternatives to the Veneziano amplitude from a mathematical point
of view within the framework of dual resonance models in the zero-width

approximation for scalar particles without internal quantum numbers.
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Introduction

We want to study dual resonance models in the zero-width approximation for
scalar particles without any internal guantum numberse. 4dua1 resonance mo-
del means an analytic expression for the scattering amplitude M{s,tyu)
which has the following three properties ([1])

a) all its singularities are due to resonance exchange

b) good asymptotic behaviour

c) exact crossing symmetry
Furthermore, we want to restrict ourselves to amplitudes without u-channel
poles or - more generally - to request planar duality which means a decom-—

position of M into three terms
(1) M(s,t,u) = V(s,t) + V(syu) + v(t,u)

each of which possesses besides the properties a), b), ¢) only singularities

in the variables written down explicitly.

The simplest model of this kind certainly is the Veneziano model (" 2}) which
describes the four-point fuction according to the beta function

A
(2) v(s,t) = v{t,s) = B(~ qs,-c\t) = g dx x °‘5‘1-(1-x)' 4yt

0
In the last years a lot of alternatives to (2) - won by modifications of the
integrand - have been proposed and discussed by several authors. There have
been several physical motivations for these modifications, such as taking
into account absorptive effects to explain the appearance of dips ir many
differential cross—sections ([31), or reducing the drastic violation of uni-
tarity. In this connection, the development of paMA ([ 4]) seems to be very
fruitful, where the resonance poles are shifted from the pOSitivé real axis
into the unphysical sheet, where a branch point corresponding to the elastic
threshold is introduced, and where the amplitudes satisfy a Mandelstam re-

presentation.

We want to look for alternatives from a mathematical point of view without
changing the physical {or unphysical) situation underlying the Veneziano

amplitudes:

In part I we look for all fuctions V(s,t) admitting a Mittag-Lleffler expan-—

sion with polymomial residues. ( In 5] this expansion was used to show
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that even in the case of non-identical channels the properties of the resi-
dues in s and t are related to each other. ) At the end of this examination
a theorem tells us that the general solution is a countably infinite super-
position of certain "base" functions - which we can choose, e+.G., tO be

B-functions - multiplied by polynomials of an appropriate degree.

In part II the operator approach to the Veneziano model ([6]) is studied
and modified to give an operator approach to a subclass of solutions we

found in part I.

Part T

V(s,t) certainly has to fulfil the following two assumptions:

(3) symmetry : V(s,t) = v(t,s)

pole spectrum:

V(s,t) is an analytic function the only singularities in s of which

( t being fixed) are simple poles lying at

(4) s=3s5,20 i.e. 0€s, <5, <855 <0

By changing the variable s into ds: = o (s) we can transfer the poles

to the non-negative integers:
V(s,t) has simple poles at

(5) A o= ] 3 =0,1,244,

An open question that remains, is the interpretation of the term "good"

asymptotic behaviour.

If one demands V(s,t) to reproduce the asymptotic behaviour originating
from a Sommerfeld-Watson formula of an amplitude with an infinite seriesg
of parallel Regge trajectories, V(s,t) has to be a series of Veneziano
type amplitudes ([7]). The same result can be won by assuming that V(s,t)
admits a dispersion relation with an infinite number of superconvergence

relations (81).

We assume polynomial boundedness:




There exists an integer K 2 0 such that

(6a) lim o X +V(s,t) =0

lelgl =2 OO

5

apart from the poles, with t being fixed with

(6b) Re o <0

If one has in mind analytic Regge behaviour

al
%

(7) v{s,t)

Isl = oo
t fixed

apart from the poles, (6) is fulfilled for K = O. This coincides with the
interpretation of "good" asymptotic behaviour by Veneziano himself (F1]).
Therefore, we shall study at first the case K = O and only then give our

modifications for K » 0.

1) K = 03 no subtractions

if V(s,t) vanishes asymptotically irn s, it admits an unsubtracted Mittag-

Leffler expansion

o0
P.( o)
(8) v(s,t) =E - Re %, <0  #g%0,1,2...
1= J - *s

converging absolutely and uniformly apart from the poles ([9]).

Symmetry of V then means

L= 00
P.(ey) F.{olg )
(9) v(s,t) = E - - E ~ Re o, < 0, Re o < O
, J = tg ; J= =%y
1= 1= 9

This identity is often used as a definition of duality.

For Re ¢ & O we can transform {8) into an integral by means of the iden-

tity
A4

(10) {j -c>!.5)‘"1 = g dx.x3™ %! Re o < 0
o)

For interchanging summation and integration we have to make sure of the

convergence of the power series

o

(11) F(X, “,{._) s = E Pj(ut)-xj

-
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In appendix A it is shown that F converges uniformly in general only for
0 ¢ x <1 and may diverge for x = 1, but only in such a way that it still
remains integrable. Since the integrand in {10} behaves nicely for x ~»1,
we are thus allowed to interchange summation and integration which leads
to

A4
— o, .
(12) v(s,t) = ( ax xS TR(x, %)
0
Symmetry of V now demands
A A
Re o € O
- -, -1 3
3 (e ety = §oy %, «)
5 o Re o&:< 0

At first, we want to restrict ourselves to the case where there exists

a substitution v = y(x) x e&(0,1], v €(0,1], which transfers one inte-

grand into the other:

(14) TR, ) = (07T L R(r(x), &g ) - |y ()]

Since the integrand is an analytic furction in % and :it {apart from
the poles), the real function of substitution y(x) cannot depend on Ag
and %, . '

(14) yields

Px, &y ) y0) " < F(y(x), o ) x M8 |3 () | = £(x)

Combining these equations finally gives

(15) Fix, &) = Z Pj(&t).xj = £(x). y(x)” HeT
=9

with

(16) v(y(x)) = x i.e. y=y

and

(17) £(y(x)) - |y (x}] = £(x)

Since the identity y(x) = x would destroy the assumed pole spectrum,

. . . -1
y(x) can be any monotonically decreasing function with v = y ', y(0) = 1,



y(1) = 0.
The simplest candidate y(x) = 1-x is realized by the Veneziano amplitude,

and additional satellite terms are the result of choosing £(x) = xl-(‘l-x)l.

Before constructing other examples, we deduce general properties of our

solution

A
(18) V(Syt) = S dax X- Q“S-'l.y(}vc)- d":-1._{*‘()()

o]
According to (15}, the residues Pj(ut) are

1 '33 %y =1

1 . = — - . s
(19) Pi(%) = Fi o] {eart™ T g

polynomials in & of degree & J starting with

(20) Pj(“i) = %75(0) ly'(O)l j.utj +
1¢ £(0) = £'(0) =...=f(1"1)(0) = 0, f(l)(O) # 0, then the degree of this

polynomial is reduced to je1t

_ P c...=P. . = 2
(21) P= Py =ese=P) 4 = 0 Pl(e(t) =0 f (o) &+ 0
so that the pole spectrum only starts with 1.

The degree of the following polynomials P.(a{t) j 7 1 can be reduced
further if y'{0) = y'*1(0) =eee= y(k-1)(0) = 0, y(k)(o) # 0 without
affecting the pole spectrum.

gince the main contribution asymptotically is due to the neighbourhood
of x = 1, (18) gives for is! — o0 Reo >-0the following Regge behaviour
(T10]):
o, £{0) %0
(22)  V(s,t) = £(0) - [T(= &) T(w+1) v (0)]
y'(0)# O

Hy%®=y“w)au=¢“”m)=my“%w+o;ﬂw=f%m=~s

= 5(1"1)(0) = 0, f(l)( 0) + 0, the trajectory is shifted by 1 and modified
by a factor 1/k:
£~ o, -2

DIRR P (), nq B
(28) V(srt) ~» T Do)y B O TION(ge) )(0)]




which means

L
(24) led 7" - V(s,t) ~> O Re o, < O

For Re Ag 2 0, Re %k < O we can use the same method of contour integration
to get an analytic contimuation for V(s,t) as it is well known for the

B-function ([11]), since F(x, «,) is a regular function for |x| < 1.
This yields

Re 0, < O
- +
(25) V(s,t) = _;,ﬂ_iq gdx x o "-F(x,a,‘_)
o= S : ds * j=0,1’2oao
LV
< >
14
<
/ Lv

For Re % g —><¢ oo apart from tre real axis, integration along the circle
results for all 0 < € &« 1 ( F(x,d,) being bounded ) in an exponentially
decreasing expression. Thus, if we choose ® very close to 1, the main

contribution is again due to the neighbourhood of x = 1 of the integral

4
T . ‘ .
_S dx x 3 T-F‘(x, d-t} vhich gives us the same Regge behaviour as ex~

pressed by the formulas (22) and (23) for Re % — +e0, too.

Now we select a Family V(l)(s,t) 1 =0,1,2... of our solutions (18)

obeying
1 (1)
(26} letgl™ v/ (s,t) 15 (o 0 Reo & O
(1) _ o (1) _ . (1) _ (1)
( P, = P, = =P, =0 P, (“t) = const # O
(27)
Pj(l)(d\t) = polynomial of degree £ j-1 iv1l

. . 1 . .
The simplest choice of these "base" functions V( )(s,t) is certainly that
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of the B-functions

(28) y(x)a1 - x f(l)(x) = xl-(1-x)1

This basic system of Veneziano amplitudes including satellite terms was
used by several authors for the construction of physical amplitudes { cf.
[71, [8], [12]). In all those cases where one is obliged to take into
account a few satellite terms in order to fit the data ([12]), another
possibility would be to look for ancother "base" better suited to the
special problem. Therefore a competitive family of "hase" functions is

studied in appendix B.

Every solution V(s,t), the residues Pj( %,) of which are polynomials of
degree j, can be expressed as a convergent linear combination of these

"base™ functions V(l)(s,t with polynomials R (@;+of,) of degree 1
. 1Y s +

s P.(%,) =

(25)  W(st) =y == : - E R (sgr o) v (s,0)
. J - 5
=0 =0

This can been shown in the following successive way:
The pole o ¢= 0 only occurs in the first term of the right-hand side.
Its residue can be made to be Po(‘*h) by choosing

(30) R (wgroty) = P(sy) /2,0 (xy)

The identity of the residues of the next pole at ¢ = 1 ~ where the
first two terms of the right-hand side contribute - can be achieved by

choosing R1(o(s+ot£) such that
SO AUT RS CXCWEE NI REACIFRY VEALICH

and so on. The rearrangement of the series on the right-hand side is

allowed because V(s,t) converges absolutely.
i

If we assume linear trajectories, the requirement for Pj to be a polyno-

mial of degree j guarantees physically the absence of ancestors.
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In order to understand the meaning of this additional restriction a little

bit better from the mathematical point of view, we want to relate this
property to the asymptotic behaviour of the amplitude. We shall find out:
Regge behaviour e.g. gives rise to polynomial residues.

From (9) we get for n = 1,2,34..

> =P (o)
(32) ~ V(S,t) - n! ! "_l_s“‘“‘—- u‘k# j=0,1,2...

n+1
'aag__ +

J= O (j- D(-E.)

valid at least for Re %< O plus the additional region of convergence
of the sum in the right-hand % -plane, which is growing larger and

larger when n increases.

In any case, this sum converges uniformely in s for Re kg < O which

vields comvergence for Re e = 0, too. Thus, 3;“ V(syt) 1n=1,2,30..

ol
£
has no longer a pole at te = 0.

(9) gives in the neighbourhood of o= O, Re o({ﬁ- 0

5
P (wy)
s

(33) V(s,t) = -

+ regular (us y %)

which then leads together with the above result to

L — _
(34) P, («t) =0 Sy Po(ott) = const
Unfortunately, the further steps ( P,'" =0 etc.) do not follow automa-
tically.

We can only state
Lemma 1 3

18 (p+1) E ( e still converges for ¢ = n, i.e.
J=oty)

ha's 4

A&
if fé————‘ V(s,t) admits an unsubtracted Mittag-leffler ex-
N

%y ,B.'rw"-
pansion for o = n which holds if i v{s,t) ‘ —_— 0
'bolt I {—=> oo
aLsz n , then Pp is a polvnomial of degree n.

~

Now this assumption is fulfilled, if the amplitude possesses analytic

Regge behaviour which means
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ok

s
(35) V(s,t) ™~ & o fixed
laf | =~ o0
*
and thus
,bwmQA
ohy ~11=1
(36) —oa Vis,t) T 8
d\‘h lu(_tl —_—> 0o t

On the other hand, polynomial residues do not assure Regge behaviour

(I8], reference 5).

The resuts of this part I 1)_can be collected in the feollowing theorem:

Theorem:

Every symmetric meromorphic function V(s,t) vanishing asymptoti-
cally in s for Re o4 « 0 with simple poles at s = Ss 127,240

0 €5

1€ 5, < ey respectively % =o (s) = j = 0,1,2...

{t being fixed), the residues Pj(dt) of which are polynomials

of degree j, admits the following expansion
o0

1
Vst = > R lagra) v (s,
S solynon (1)
where Rl(us+ «,) are polynomials of degree 1 and {V (s,t)
is a family of special solutions with steadily improving asymp-

totic behaviour

lulel-V(l)'(s,t) > 0 Res, < 0

13{—D do
accompanied by a reduced pole spectrum and lowered degree of the

residue polynomials

Po(l) Zeee = Pl_.l(l) =0 Pl(l)(o(t) = const = O
P.(l)(

i polynomial of degree <£ j-1 jJg»1

o)
. . " " . (1)
The simplest choice of the “base" functions V' /(s,t) are the

Veneziano amplitudes including satellite terms:

v(M(s,t) = B (1~ %y 1-ot,)
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2) X > 0; K subtractions

Now our starting point is a K-times subtracted Mittag~Leffler expansion

V(s,t) =
k-4 s )X (k P, (“e)
=D L g ) b (hmw )] _S_
’f:" (a—uJ H{3- o)
. J- el
=8

converging absolutely for Re ol &0 épart from the poles, where P.(d + &
+ J +*s

is a polynomial of degree X in the second argument.

As in part 1) we get

4
- o =1
(38) v(s,t) = S ax X 9T L F(x, o, o) Re o < 0, Re &, & O
(o]
with
oo
(39) F(x, o, o) = E Pj(m*,oks)ox‘]
=8

a polynomial of order K in the last argument.
Symmetry can be achieved by a substitution y{x) with

(40) X ISTLR(x, wy, otg) = v(x)T % TR (3(x), g, ) - [yt ()

This ecuation can only be fulfilled when

{41) P(x, =K ds) = Q(x, ™, ds).y(x)_ oy~
and
(42) v(y(x)) =

C,which replaces the function £ in 1), is a polynomial of degree K in

both variables th, and el obeying

(43) vy (1 - o(y(x), « 70( ) = alx, ﬂ(_tf QC_s)
1f we put

K
(44) Q(xt N_E’ 0'(5) = E bkl(x) 'Q(_kk- u(sl

Re:S
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the coefficients are subjected to the condition
(45) ly* (x0)1 - By (7(x)) = by (%)

One possible choice is

(46) by (%) = by bl-f(x).(y(x))k. st
with
(47) byt ()b -£(y(x)) = £(x)
ieading to
(48) o(xy s otg) = £00)- Ol oy y(3))- Qe o5 %)
with
K
(49) QK(X) = E bl.xl
. O

Another one would be
(50) b () = b 8() by = by
leading .to

K
(51) Q(xs %y o) = £(%)- I e

. =0
This choice covers the satellite terms V(l)(s,t) examined in I 1), if

f(x) has the appropriate improved asymptotic behaviour.

Altogether, we have in general
4

o ®s™ T (3(x))” %7 ol oty s )
o

(52) V(Svt)
or specilally
A
- oA

(53)  W(syt) = § ax s %77 M7 0 ot () ol st )
o
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Of course, the number of subtractions affects the general properties
of the solution.

Thus, the Regge behaviour as expected from (22) is

K
o
54 Vis,t) —» b, (0). 4 K vlnyl & K
(5¢) <’151_,MZ& k(O T g T agen) ()] 5 wg
=
«ox 7(0) 0
D 1Ql$|
ka:p 0 at least for one %
Because of
(55) P og) = ")i{()”“e‘“o( Ay ks §
. = T3 i A4 - QL x ’
TS It g | TTRTTSIS L

the "generalized" residues Pj(!i£, o ) turn out to be polynomials of
degree <€ j+K in S

In [ 3] the polynomials Qg in (53) are replaced by entire functioms, so
that this alternative neither admits a Mittag-Leffler expansion with a
finite number of subtractions nor does it exhibit analytic Regge behaviour

(only for s = - oo ),

The further proceeding of looking for "base" functions and forming linear
combinations with symmetric polynomials is exactly the same as in part I1)

and can be omitted.

Part IT :

In this section we want to study an operator approach to dual resonance
models. Therefore, we start with a reproduction of the operator approach

to the Veneziano amplitude ({6]), but in a slightly generalized form.

We deal with the scattering of scalar. particles
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P.. Pa

PS Po

. . - )
with Euclidean momenta p. = ( Piqr Pyprese Py Y, J = 04142,3 after

having performed a Wick rotation

o 2 - ~3 2
(56) s=- (7P, +P) t=- (P +P,)
We define the operators a v(r)’ a f“(S)+ A ,r- = 1,2400sNj}
rys = 1325000 @ according to

(r) (s)+
(57) Lay, ™ 2 ] = Srs- gr“’
and
0 N
- Z : - E (r}+ _ (=)

(58) B = r-Hr with Hr = a, a

= A Vi A4

We define the vector |07 by

a(r) oy =0 for allr,
A%

and a l-particle state by

ol 1 () , ()
(59) ({117 = = ll(11(1')!...1}1(’")!)'1/2(a1(r)+) 1 ...(::LI\T(F)"*),N 1o

with
oo N
(60) 1 =Zr'1(r) {0) =Zlv(r)
and o VA
(61) a3y = 111>

1f we define the "physical" states by

== oo
(62) 15D = exp { S5 g e }-eXpazb:-?? (r)g 05

A

with br & C, we can construct a four-point fuction by
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(63) M(s,t) = <3, | p(ug,m) | B
with
4 oo
(64)  p(ag,H) § ) H+1 -y T dexmmsmd'(zcl
o 20?'0 ©

where a linear trajectory
(65) A, = + .1 s
s - 2

has been assumed. Because of this definition of the propagator the ampli-
tude has the desired pole spectrum in ¢ o If we choose a distribution

of the different oscillators in | P ? according to

(66) b= —
S F3

and form the average of the propagators with
l - a
(67) ¢, =1° a=-%&, ~Pyp
i l0 + 1F2

then M(s,t) can be identified as Veneziano amplitude ([6]).

In the following we would like to examine the influence of the choice

of br and c, upon the amalytic behaviour of the amplitude, and we will
o

especially study the question which oscillator model of the vertex (des—

cribed by br) leads to a dual amplitude.

Inserting a complete system of eigenstates of H into (63) gives

(4 o]
(68) M(s,t) = Ea 5 F 5‘1'5‘2 ) D( og,1) =
- 1 bc
_ gdx < % '1(2 x ) (2 P ( By Bp)exd)
f-"'o O 2=0
with
(69) F, (P, B,) JWN )<5‘21{1}><{1}rﬁ1>

{r
r.l\’ = 1
T2 A V34
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or

(70) M(s,t) = Z T 2 e n(ReR)

L+Q .= )

where the residues turn out ( ¢f. (77))to be polynomials of degree j in

-
P1" Py respe d{.

. As (68) shows, averaging with ¢ only gives a power series in x whose
radius of convergence has to be 02,1. Tn the Veneziano case this series
is needed to guarantee full symmetry in s and t.

The complete t-dependence comes via the functions Fl building up the re-
sidues from the oscillator excitation of the vertices, We therefore look

for a closed expression for

> P (PpF, )%
L=
We have
=N L=
) <qpiF > = <ol TT TTa 072 7 eXP{-ZbS.;:; (S)+}lo>
Tz 4 V=4 Su 4

Developing the exponential function into a series and realizing that all
matrix elements vanish which do not posseéss exactly the same creation and
annihilation operators leads to
() 3 (7 ()
(72) <{1}17 = TrTrw oy
=24

and therefore

(r) -4 (2
(73) (B lnt><fatizy > = TT _l—i—()‘r“ (o Pay ) )
=4 V=4
If we put
(74) () =2 [T (55
ZT-Q.“.)= Q.
it follows =

N , ()
e OG0 - T ol Y-
1(:‘) PPy = 1 (), l r\ Poy'Piv -
N ey ) V= v
sz =2
V=4
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(75) ()

-1

()

r)
21 -
| (P40

11"‘! r

This gives

7— () () (x)
(76)  F (P1 7,) = ) TT L?()j—-lbrlzl - (3 ;2)1
TR ey !

Because of this welghted summation F‘1 becomes a polynomial of degree 1

. - a
in Py p, ¢

L
1
(77) o=t Ry =) 2GR e,
2 A4
with
(r

it
=1
~
-
—
1
'5
'1
\.J

(_-r)
(78) ,-,4
S5tz
m =4
-1 2 2 2
™Y > bvl'lbvl""‘b\,l
: 1 2 m
VadVor ey, 2 R oo

In getting equ. (7’8) we have used the fact that because of E l(r)= m

we can write =4
® (r)
r 2 2 2
-l_l'[b 121 _——lbvl‘lbvl LI ‘bvl vi=1’2’.ol
2 m
oo
where 1(1‘) is the number of V s equal to r. The condition Z r-l ) =1
24
leads to v,] + v2 + --'+Vm = .E’.. At last, doing the summation, we have to
realize that the contributing r-values can be distributed on V.‘, Vg,--. Vm
in different ways.

T

Thus we get

o o0 2
m
1 1 -1
79) > mE -1 2y gy
g0 =4 m= 4
2 2 2
. } o, 15[y |5 by |
1 2 m

\J,“I'VL+--.+\)_'“: X.

or, by interchanging the order of summation

[=
E PR 1
Fl(p1‘p2)'x =
L=0
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o

o
.l 2 2 f
DM COINC R, S b2 - Io P -

=4 t=v Vagv A 1 m

R IIIVR D -

i

o

o oy

2 1 - e 2 ¢

E (P-l P2 ( E lbll X )m = aXp (-p“-pz__s_ lbel'x
£=A4 £=4

1

(80)

Thus the final structure of the amplitude is
A

)
{81) M(s,t) = S dx x-u ol (Z 1 10) exp{(o{{pa)Zlbl[z.xl} .
£=0 =4

which reveals to us immediately the analytic behaviour in A%, or t,
respectively:

If only a finite number of oscillators is excited in the vertex, 1.e.
only a finite number of Ibll is different from zero, we always have an

exponential behaviour in Ay - @ drastic violation of duality.

This result becomes interesting in connection with the attempt to desribe
mesons as strongly bound quark-antiquark systems whose interaction is
approximated by a single harmonic oscillator potential (f13]).
Singularities in t can only appear if an infinite number of oscillators

is excited and if the power series

2, 1
Zlbl
£=4
possesses a radius of convergence equal to 1 and diverges at x = 1.

(The operator approach to "DAMA" {[4]) needs infinitely many oscillators,
too. )

A comparison with part I 1) gives us more accurate conditions for duality
to hold:
From (18) and {81) we conclude

oo
(82) :E:: lbllz-xl
=4 1

(83) ch'xo

£= o o

Certainly not all allowed y(x) can be written as a power series (32)

~ 1n y(x)

{lo=

y(x)* " £(x)

T

with equal signs. Thus we have constructed an operator approach only to
those Veneziano alternatives for which equ. (82) holds.
{ (83) can always be fulfilled. )

By looking carefully at the signs of each term in the derivatives of
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In y(x) we find:

Lemma 2 @

All solutions (18)

V{s,t) = S dx i_d5-1.y(xf'ut_1-f(x)
o
with
y(k)(o) S_ 0 k = 1,2,-.-

admitting an cperator approach of the above sort.

I want to thank Prof. H., Joos for a long and fruitful discussion.
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APPENDIX A :

The absolute cornvergence of

S
. T . Re %, <0 0(5-#0,1,2,...

1= O
tells us that
P. (o) J = %s

J+1
13 > q(at,) &1
P.(ely ) Joe1 -y _-‘__7,,‘1( x)

(a1)  qy( ke y) ¢ =

if we assume the identity of 1lim and lim in the quotient criterion.

Defining
P. (o)

1 t

(a2) p.{a,) t = —]f——-—
it Te de._h)
we get
1 1
(a3) q;=p: (1==2+0(-) ) ———> q<1
J J J ] ] - =0

and thus

0 x <1 q &1
(a4) Do X ——3 q.%X < if or

\] l__."m

Therefore, absolute convergence of

o
[ W
~
2
ey
"
L]
(=]
I~
b
n
-

If we write in the case of q = 1

- (o) 1
(85) aj(sgrny) = 1= 235 v 0(22)
the criterion of Gauss demands
(a6) g > 1
as otherwise
= P ()
P.{
Pt
- - o
jew O 5

would diverge. Because of (A3), this leads to



21

(a7) p(wy) =1 - Sﬁi%—‘i +0( 22 )

and we can conclude, again by the criterion of Gauss:

In the case of § ¥ 2 the convergence of the original series has to be

strong enough to guarantee absolute convergence of
o0

Z Pyl ) =

. J=0
at x = 1 too, but for 1 < e < 2 this mechanism fails to work,
‘ oo
od
E Pj(ut) x
=0

Since a Gaussian coefficient '3' with 0 < g < 1 describes the divergence

diverges at x = 1,

at x = 1 of a pole term (1-x)" with -1 < Re m = g - 1%0 and § = 1
the divergence of a logarithmic term 1n (1-x), we can conclude that

(even in the case of divergence at x = 1)
oo

Fooay) = > P ()

. . . 1=
still remains integrable. 4
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APPENDIX B :

Now we want to construct "base" systems competitive to the B-functions:
y(x) has to be a smooth monotonically decreasing function ( y(o) =1,

y(1) =0 ) with y = y-1, i.e. won by reflection at the line g(x) = x.
Since the only polynomial in x to do the job is y(x) = 1 - x, we choose

as an example the parables upon the line g(x) =1 =x

Tt 5
4 T ey
T a 2
3 \ (§)=—"x(1-2%°)
(B'!) % \‘ ‘.l § 2@ f
. \
\
________ -1 L a &+1
v 4 x
oy
S
which gives
1§
x-%+-;--\{(‘l+a)2-4ax a0
(B2) y(x) =
1 = % a=0

The accompanying function £(x) has to obey (17) :

(B3) - v (x)-£(y(x)) = £(x)
Candidates always are real linear combinations of
5 4 1=2 '
(B4) £ (x) = [y ()17 T -y ()17 B o= 0421, 42,040

reducing to constants in the Veneziano case a = O.

Since

F(x, by ) = £(x). y(x)” %"

has to comnverge absolutely for |x| <1, we have to avoid branch points

in this interval by restricting a to
(85) -3+ 2f2'¢a g1

The complete pole spectrum is reproduced if £(0) #% 0. In this case,

e i bl A RN A 1L ) 104 A 3R 1 0] PRPREAT 1 PRIRRES B R RPN HE I IR | ¥ W0 SIS U WML PRI B g e TR MR TR e R e

g
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(B2) demands that possible divergencies of f and y' for x =»1 have to
happen in the same way:
If esge v Tuns like

(B6) y(x) ;_-:J‘il (1 - x)m O<m g1

this has to coincide with

(87) £x) 3 (1= 0™

Thus, the Gaussian coefficient { cf. appendix A )} will be equal to
For (B2) we find
1/2 a=1

(B8) m =
1 otherwise

In the following we want to study the simplest candidate for £(x),

namely
(B9) £{x) =1~ y'(x)
with the nice property ( cf. (20), (22) )
{B10) £(0) %0
Residues and Regge behaviour can be calculated by means of the deri-
vatives
v(a) =1
(811) y'(0) = - 222
T+a
y(k)(O) P 1-3---(.2k-3)-aIc 1 (1 a)“‘21c+1 k22
£.(0) =1~ y'(0)
(B12)
e, F)(0) = - s+ () X 21

The case a = 1 is the only one with y*'(0) = O which yields a Regge
behaviour { cf. (23) ) modified with respect to that of the Veneziano
amplitude,

According to (19), the residues are
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1 - o, -1 1t - %
(B13) Pj(dt) =-j_! ’axj {Y(X) t zx=0 + m‘! 'axj"'A §Y(x) }x:O

It is easy to show that in the case of y(k)(o) £0 Xk =1,2500es 1.ce

a 2 0 both terms in (B13) separately lead to polynomials with coefficients
of only equal (positive) sign. This property reflects a characteristic

of the elastic scattering of two spinless particles for all poles above
threshold, _

The choice a < 0, however, leads in general to nonuniform signs.

In part II it is shown that the amplitudes belonging to a 2 0 are

distinguished in another respect too: They admit an operator approach.

Now we are able to build a competitive family of "base" functions

V(l)(s,t) by choosing

\
(B14) y(x) = x - ; + g IY (1+a)2 - dax -3+ 22" € a<1
and putting

(515) {6 = Ayl (1 - )
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