DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

DESY 74/4
Februar 1974

=

i~ My

% IN
14 - 4y
iy

Asymptotic Behaviour at Exceptiomal Momenta

2 HAMBURG 52 . NOTKESTIEG 1




Asymptotic Behaviour at Exceptional Momenta

Dissertation
zur Erlangung des Doktorgrades
des Fachbereichs Physik

der Universitit Hamburg

vorgelegt von
Hans-Jiirgen Thun
aus

Liehﬁsch

Hamburg
1974




Genehmigt vom Fachbereich Physik der Universitdt Hamburg
auf Antrag von Prof. Dr. K. Symanzik

Hamburg, den 6. 2. 1974

Prof. Dr. R. Haensel

L R TR TN T UT PR TRY T TTR TR L AT TR T P P R ey

B T N R T R AL L R L R L iR L LR R I RE L LTt



Abstract

We develop a method for investigating the asymptotic
hehaviour of vertex functions at certain Minkowskian
exceptional momenta. It is a direct generalization of
earlier treatments of Euclidean exceptional momenta.
It makes use of formal expansions in momentum space,
closely related to light cone expansions in peosition
space. Our expansions have to bhe performed in those
channels which carry finite total momentum squared
and admit (in Ah—theofy) two-particle intermediate

states.
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1. Introduction

It is an old aim of field theory to determine the asymptotic
behaviour of Greensfunctions for large momenta. One can, for
example, investigate their behaviour under scaling of all

momenta

p —> Ap for A —> oo

1)

Dimensional reasons imply

M Aps - Apw, ™, q) = N T lpa pus Lo (1.1)

’

i.e. the asymptotic behaviour for large momenta at fixed mass is

expressed by that of vanishing mass at fixed momenta.

An important tool for investigating these limits is the technique
of mass vertex insertions, which gives rise to the Callan-Symanzik
‘z
(CS) equations 2,73)
2 2
ImSo v B 35~ )] Tleapn;mg)=

(1.2)
= AT (py- Pr, v %)

where A is obtained from [ by insertion of the soft 4)

mass vertex operator
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A= 2w gy Ao

and Zlo is one of Lowenstein's differential vertex operations 7)

Do = = (dx N TAT G0 = 5 N TN (o)

The parametric functions ﬁ y ¥» and ¢ can be calculated in

3,6)

perturbation theory '

Blg) = 2o ¢* + 0(3%) |

- 3
Yt yEae & 7 0

I
N
IR

¢ (g) O C5%)

These partial differential equations {PDEs) relate a change of
the mass to a wavefunction and coupling constant renormalization
apart from the extra term on the r.h.s. From (1.1) and (1.2) we

have

[QVWY(%)]P(\O:L"'Y)H';&;%) = AP(Y’i"'V’n}‘E‘;%) (1.3)

with

N L R N T S e WO T L T P T P T T S




ATHp Py 5, q) = -2 55 a@) Bellprn; B0 g) (1.%)

and the differential operator

o >
SO:-_— —?\-5&“ -i—fé(g,)-;-—%

- .. . Yyl
In perturbation theory r'(y:.l- P < %) can (at
least for Euclidean momenta) be expanded in a double power series

in A_i and £n A. The formal sum obtained by discarding all terms

which for large A are smaller by powers of h-l than the leading

r 3,7,8)

ones is called the asymptotic form of It can be most
easily obtained from (1.3) if for large A Al is smaller than [
(in every order of perturbation theory) by a positive power of
K-i, such that O can be asymptotically neglected. Such

momenta are called nonexceptional 7’8).

It is easy to give ex-
amples of nonexceptional momenta, whereas the question of which
momenta sets are exceptional usually requires a somewhat deeper
investigation, Euclidean momenta are nonexceptional if no (in Ak—
theory in 4 dimensions even) partial sum of momenta vanishes. This

9)

can be verified by application of Weinberg's power counting theorem .

Conversely a momentum configuration is exceptional only if in
(1.3) A7 is not negligible in comparison to [° . Then
i ..
r1(P1"‘Pn.) o %‘) must develop a sufficiently strong

-2
infrared (IR) singularity such that the explicit factor of A 7,

T R T P E PP L N T L LI T S T T T TR S L
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see (1.%), is not sufficient to suppress, for A —» oo |,

Al relative to 7 . For example, if r{ TS %%, %)
diverges logarithbmically in that limit then Ao T(- 3 %%, g)
10)

must diverge at least guadratically, or if [ behaves like

()L(AQ) for large A then Ao’ must behave like C)L(Ah) 1]).

The asymptotic forms at nonexceptional and exceptional momenta

9‘
are denoted by r;s and MNug respectively 7 ). It was shown
that the r&; are vertex functions of a theorv with massless

o
particles, the so-called preasymptotic theorvy 1“). They obey

homogeneous €S equations (equivalent to the usual renormaliza-

13)

tion group equations for a massless theory) which can be

=
integrated by standard methods and vield the transformation laws )

rhs(Yﬁ"'Ph} %}J %} =

=Qn(%1§()'%)) ]-1"‘5 (Y)ﬂ-“"p“j ", 5()“%’))

with an effective coupling constant %_(X,%) implicitly de-
fined by
ERIEY
A4
LA\ = jdc& — (1.66)
; Py

or equivalently by




g g0na) = PGON) . F(Le - g (1.6b)

such that

DFOg) = L% + pe 1 50n9) =0

and an effective wavefunction renormalization

3
_ (9
a(g, qxg)) = exp | dg ——It—
LR J pq)
3 (% q) (1.7)
o f
= ww‘j i(;\)’\— Y (53 9))
1
such that
D aly,3(09)) = (1) alg,30,9))
(1.8)

ag.9) alg',9") = alg,a") a(q,9) =1 .

Equation (1.5) effects a resummation of perturbation theory.
Apart from a g-dependent factor the r.h.s. of (1.5) can be
calculated by an expansion in terms of ii(k‘%) . If one knows
from (1.6) that §(>W§J apprdaéﬁes zeré f;f A —> oo (wpich

. b —
is the case in asymptotically free theories ! )) then Cfl(O,%(A,qn-



'rﬁqs(Pl-w Pn,) ™M, §(>;1J) can be calculated to arbitrary
accuracy. Otherwise one has to resort to assumptions outside
of perturbation theory. For example one may assume 8) the

existence of an eigenvalue oo with

i) Bl(ge) =0 | B'lgm) <O (1.9a)
such that 50 %) — 9o for A > oo

ii) !"QS(--- Lo %) left continuous at g, , (1.9b)

iii) Y (3) left continuous at g, , (1.9¢)

Under these conditions one finds (for nonexceptional momenta)

P()Pa”'kpn} Wl;%) = F(Pi“'Pn} %ﬂ %) =

b-n (1+ Y(‘aw))

~ T (-n *(A,‘g)) ’ Pas (Y’q_"' Pr; ™M, gbo)

where

g, |
rOg) = SR Iy (500g) - ygel] = o)),

i.e. the field A has the (anomalous) dimension

L RS T TR AT

B LR R R R TR U TR e O R T L R T T T TR T e TR RO R



[+4
in the sense of Wilson 1)).

The vertex functions of the preasymptotic theory are singular

(in perturbation theory infinite) at exceptional momenta. This
indicates that for such momenta the (true) asymptotic form ng
of 7 cannot be taken directly from the preasymptotic theory -
one must determine it from the CS equation (1.3) without neglect-~
ing A7 . Actually, the Fgﬁ_ are certain IR finite parts of

the ['aq 16) .

The ultimate aim is of course te calculatée the asymptotic be-
haviour of physical amplitudes where usually only a few momentum
invariants go to infinity (energies or some subenergies) while
most of them stay fixed (masses, momentum transfers). Such cases
can be realized as a one parameter limit if the appropriate mo-

menta are "stretched along hyperboloids" in the sense

o) = da+b+ 2 TC

with : (1.10)

such that



T L L R I T T B T e TR

[p()\)]z = 2ac+ b

remains fixed for A — oo . With the choice a = %%(1,0,0,1)}
b:..-(O ,bi, bl, 0), and c:%(i,o,o}—i) such parametrizations are

equivalent to the introduction of infinite momentum variables

°© - 4 2
Pri= P +P° =mA, b= p-r> = m 3, p o= (b b)) 17)
Dimensional analysis then yields
4-n -1 -2 .om
P({p(l)s)h«,%)zf)\ T {(f{a+X b+ 2 CI.K)T)%))
i.e. one has to study IR singularities near exceptional momenta 18).

We shall use such momenta only in section 3 and appendix B where

we deal with a simplified version of deep inelastic scattering.

The outline of this paper is the following. In section 2 we review

Symanzik's +treatment of some vertex functions with Euclidean ex-

8)

ceptional momenta

19)

. In section 3 we repeat Christ, Hasslacher,
and Mueller's discussion of deep inelastic scattering. We give
a version simplified to Aa-theory and scalar currents. In our
terminology it is a mixed exceptional configuratiom containing both
Euclidean (zero) and Minkowskian (essentially lightlike) momenta,
We give both an x-space and a p-space discussion. By the direct
momentum space analysis we circumvent the assumption of light cone
dominance. Section 4 is devoted to the discussion of two configura-
tions with lightlike exceptional momenta. We obtain results that

are straightforward generalizations of Symanzik's corresponding

Euclidean ones in the sense that his equations mow have to be

Ty R N T T H T T I R R A T e RV RTIET)




interpreted as (infinite dimensional) matrix equations.
Section 5 contains a summary and the conclusions. In
appendix A we recall the perturbation theoretical deriva-
tion of the Wilson expansion 20) and explain the notioen of

21)

normal product (NP) expansions in momentum space. Appen-
dix B contains the derivation of formal expansions of vertex-
functions involving lightlike momenta. This is the basis of
our momentum space analyses in sections 3 and 4, Finally in

appendix C some asymptotic estimates are derived which serve

to simplify the CS equations.



2. Buclidean Exceptional Momenta

In this section we want to briefly describe the method for

obtaining the asymptotic forms at Euclidean exceptional

momenta, We take Symanzik's examples °)
M (pdp oo _‘;_“-J%) with 2 <0 (2.1)
Flepppee), 5, q) with ¢’ p' (p2p)c0 (2.2)
PlpGp), 0, 2 q) with P ¢ 0 (2.3)

where in the latter case the entry "0" denotes the insertion

21) B 1

of a composite operator =35 N, [AQ] with zero momentum.

The CS equation for the function (2.1) reads

12 - uy] Flppoo; 2 a) = AT (Cpp00; &= 4) | (2.4)

It is easily seen that [ on the 1.h.s. of (2.4) is logarith-
mically divefgent for A — oo . Namely, logarithms of A

arise from the self-energy and vertex corrections, as is also

the case at nonexceptional momenta. But here one finds additional
singularities. They originate from two-particle intermediate
states with vanishing total momentum, cf. fig. 1a, such that

2‘ —
the integrand behaves like -~ (K""' - ":;_) z for small loop

A LR LR LR RS L D i U TR TR Ll L R L D L L L R N L T T e TN T CE R T T Y S R L L R R T R T L T e P
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momentum K . On the other hand Do I is quadratically

IR divergent. Such singularities arise e.g. from graphs with
two-particle intermediate states with the vertex insertion

in one of the connecting lines, c¢f. fig. 1b. Then the integrand
is ~ {(k?% - %;; -3 for smalll K. . Hence Al
cannot be neglected. The trick now is to extract from O only
those contributions which for large A have the same growth
properties as [ itself, These parts are given by the first

21)

term in Zimmermann's normal product (NP) expansion, the
momentum space analog of Wilson's short distance (SD) expansion

cf. appendix A,

ST {-p)p 00y

»{3

L) =

= ClEplp 00y 2 a) -24(g) + OL(XT)

with N N PO
A(q) = LT Bo) A AMGA(R)>

A
= 0 (g2
A6 r* ¢ 7 C%)

From (2.4) and (2.5) one obtains the homogeneous asymptotic CS

equation
[i)"zx‘i—yz_—] I—lgﬁ ((—-)FJ)Y)OO).-W-L)%) = 0

with

20)

(2.5)

(2.6)

(2.7)

(2.8)
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It is equivalent to the transformation law

Man (Cp)p 00, 2 4) =
(2.9)

= oy (g, G Az ly,30g)) Tag (Cplpoo; m, F(xg)

which differs from (1.5) insofar as two factors of Q. are

replaced by @, . The wavefunction renormalization constants
Ay and OLZ. are related to ¥ and ¥z @as in (1.7). Under

assumptions analogous to (1.9) the transformation law {2.9)

would give rise to a changed power behaviour

\ G- 2 (1+¥(qe)) = (2 + Y3 (90))

i.e. 2 X’ﬁ_(gw) is replaced by Yo (Fa) = 2 y.iC%N) +A«{(gm).

The second example of exceptional momenta, the function

M) pp'Cr); %, q) with  p5p'% (p2y)co (2.2)

is more complicated to deal with. After a similar NP expansion
of AT one does not yet get factorization into an IR singular

part times a {momentum independent) parametric function as in the
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former case. Here it is necessary to perform a second NP ex-

pansion in order to obtain the asymptotic CS equation

[ﬂ)"t!‘x&] Po;? (('P)P P]("Y")') ‘v;'\‘l%) =

(2.10)
=Tas (PP 008 o) - i¥y,(g) © Map (00 p'lp); 2 q)
with
Yau (g) = =i <TBlo) & B(0)>
1
= O 2 (2.11)
16nt C4%)

This time we end up with an inhomogeneous PDE. It can be integrated
since the A-~dependence of the vertex functions on the r.h.s. is

known from (2.9). It yields the transformation law

Mas (p)p p' ') ; S )

Y -
= a, (g,309)) { Mos (-p)p ey om, 5O g) (2.12)

+ U Tas ((~p)p 005w, 50x9)) 83, (g,5(%,9); 5(2,q)

. P"_‘:": (oo }o'(-p')} m,%(},o&)) }
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where another renormalization constant Az, 1is introduced,

3
olg' ,
%3209, 95 92) = [ 22 au(39.) yuuca) au(gign) (19
51P )
such that
Ddza = d ¥, a, ;o %22 09,9, 9,)=0

This constant is related to the subtractive renormalization of
the vertexfunction of two B-operators, < T B{(0D) g(q) 7.

In {2.12) the term proportional to Q,, is a specific solution
of the inhomogeneous PDE (2.10), the remaining solution of the
corresponding homogeneous equation is adjusted such that for

A =1 (2.12) reduces to an identity. In view of (2.9) and (2.13)

equation (2.12) can be rewritten as

Mas ((-¢) p pl-e'), “—;—,o&) =

4
= 2303, 53009)) Tas (Fp)p p'tr); m,30,9)) +

F e Tos (PP 00, 5 a) az(9,5004); 4) Mas (00 p'Ep) el

From (2.9), (2.12) and (1.5) one sees that at exceptional momenta
the transformation laws of the asymptotic forms differ from the
one at nonexceptional momenta which is the reason for the notation
[ﬂgé instead of rLs- They then depend on the actual momentum

configuration. This can be regarded as an alternative criterion

I gy e UL, TR Ry T e T B R IV R R T R T Tl PR e Py




of exceptionality. In general each exceptional configuration

2)_

necessitates a distinct investigation

.o .
The treatment of M yl-yp), 0, 5, C}) is closely
related to that of M{-p)p 00, "—‘—:‘\— . ca,) , the reason
being that they are "adjoint" in the sense that in a NP ex-
pansion the latter is the coefficient function of the —i— NL[Az]—

23)

operator of the former « The CS equation now reads

[ED"ZX:L"'X':L] Mpp), 0) % ) =

AP(p(—P))03 %) = (2.14)
= (’YD.Z(%’) (oo P(’P)') W—-)—\-loa_) + oL (x2)

which entails for the asymptotic form the transformation law

Pas (pl-p), 05 2 1q) =

(A (9,5009); ) Tas (00 pp); 5 ) + (2.15)

+ dy(9,300,9) A, (50,3),9) Tag (pl-p),0;m, 5 (A,g)) .

The above method can also be applied to higher Euclidean vertex
functions with more elementary fields A and/or composite operators

B = _.1: N, [A?] . The generalization is straightforward if
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two-particle intermediate states with zero total momentum
arise in one channel only. If more than one even partial sum
of momenta vanishes then a more detailed investigation has to
be performed. Such configurations will in general give still

more complicated transformation laws.

5. Deep Inelastic Scattering

From seciion 2 we know, in principle, how to deal with Euclidean
exceptional momenta. An important contribution to the analysis
of the more complicated Minkowskian configurations is dne to

19)

Christ, Nasslacher, and Mueller Following them we now dis-
cuss the asvmptotic hehaviour in deep inelastic scattering. First
we pive an x-space version along their lines, simplified, however,
to Ahntheory and scalar currents. Then we give a p-space version,
which is not directly obtained from the former by Fourier trans-
formation. The difference between the two methods is that CHM
first use the CS equation and only then make light cone (LC) ex-
pansions Qh), whereas we prefer to perform the appropriate expan-
sion first and use the CS equations for the coefficient functions
only afterwards. Our method is also applicable to more general

configurations of exceptional momenta, as we will demonstrate in

the following section.

The inclusive cross section of lepton hadron scattering is related

by unitarity to the absorptive part of the forward Compton scatter-

R T T T R Ry L T T e o e e T R T T R T R T NI R TR
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ing amplitude

PrOP

L 9x

Tlq,p) := Solk e <T3'(x)j(o)?3§(p) Kepy> (5.1)
The Bjorken limit 23) is
qz —> - 00
Vo= Yaol — ¢
but Wi= — 2V and pt = m?
92
4)

fixed. CHM insert into (3.1) a formal LC expansion
. Cr X ~ 2 Ha M
J(£)i%) = Zn C () xP* .o xr O}"‘,,_"'}‘“n (o)

where the symmetric traceless operators (Djﬂi.ur«n (¢)

have matrix elements

PROP

<T Oppooojan (0 K(p) K (-9) > =
= [Ppi'" Pyn ;**mces‘] bh.{é%) %)

26}

for any momentum p s and are normalized such that
by (0,4) = 4 . (5.3)

Fourier transformation yields
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{ ol e ML) X

N R

so that one ends up with
Ty p) = > 6n(q2) " bh(%,,%) . (3.4)

Proceeding in the same way with the r.h.,s. of the CS equation

for T (q,p) they obtain

~ ~ 2 n r* 5
AT(qp) = Z Cala) w™ anlin, ), (3.5)
4
where the invariant functions 26) A {%1] o ) arise
in the forward matrix element of C)ﬂif"f‘w (o) and the
mass vertex operator A
PRoOP

KT Op-opan (0) & R(p) Rl-p) > =

Z
= IP}AQ_”-F)MH. - tf'O\C'CS] Ay (%’-I%’)

Comparison of coefficients of w”  at p2 = 0 yields, in view
of the normalization conditions (3.3),_homogeneous CS equations
for 6; (%) alone. These can be integrated and may give rise
to power behaviour. The coefficients bh(ilg) for use of (3.4)

on the mass shell must be computed separately.
In the above way of deriving asymptotic CS equations it is not

clear a priori why the insertion of a LC expansion is asymptotically

relevant, It seems to rest on the assumption that in the Bjorken

UULTHTR R O T
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limit the contributions from the strongest singularities of

the operator product J(X) 3(0) actually are those from

the LC. Furthermore the existence of a LC expansion (at least

in the sense of an asymptotic expansion) has not yet been de-
monstrated in perturbation theory 27). While we cannot im-

prove the situation with respect to the second remark we believe
to be able to give better arguments for the first one by directly

investigating the large momentum (respectively small internal

mass) behaviour of the relevant vertex functions.

We shall demonstrate our method not with the function WQ(Q,p)
but simplify the algebra by considering the itwice amputated

connected Greensfunction

E(2q,0, pO); m,g) =

L pRoe - (5.6)
= < TN [A@R O] AlpO) Al-pr) >

where p(A) is a momentum of the type (1.10),

p (M) = XNE ¥ 2 e’

with

and
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E:(}q, 0, P[A)) o %) is a special case of the
function E(xg, ps (X)), p-(X); m, 9 ) discussed

in appendix B. With the above parametrization of the momenta
A —> Oe corresponds to the Bjorken limit in deep in-

elastic scattering since both

2 2
A9

and vid) = Aq-p(x) = X (ql + X Zqe')

become large with asymptotically fixed ratio

v(A)
}2-

whry= -2 Lo

and the momentum p(A) is on the mass shell

e ] = M2

In appendix B we give arguments for what we call a "lightlike
momentum (LLM) expansion". It is obtained by formal iteration

of Zimmermann's identities 21). At each step only contributions
from two-particle operators need be kept. The others are smaller
by powers of A. From (B.18) we get an expansion, which is the

analog of (3.4),
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E( }«ﬁ) O,pM);m,q) =

= %; C““(}qJ}QJ’“n%)'bn(égwﬁ] + OL(X+) a (3.7)
with

(;“W (q)-e) V"‘l?) =

prRop'

4 n ~ ~ ~
= = % <TNo[A(o)A(q)]A(pz)A(—pz»IP
- =0
L oo C (3.8)
= <5 9 Elq,0,p25 w,q)] _
F—o
and
Pt g .
\Dn (ﬁ.%) = bn(o)ﬂ'}-\:;’z.,o,%) . (3.9)
Since Cun is of order wn in (the cﬁmponents of) the‘iight-
like vector £ it is clear that it could be written in the
form Etx(ﬁa) " s but ﬁe prefér to use (3.8), It is well

known 19) that the coefficient functions in deep inelastic. scatter-

ing can be isolated by calculating Callan~Gross integrals 28), i.e.
. ) ‘ : SN
moments with respect to the variable x = Lo~

We remark that .in our direct momentum space analysis we did not
; . 5

refer to LC dominance., However, it was necessary to assume that
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the formal expension obtained by infinite iteration of
Zimmermann identities in the limit of large A indeed con-

tains all non negligible terms.

In contrast to CHM we can derive CS equations directly for
the functions (.., (<:1J £ m, %) since by (3.8) they are
expressed in terms of derivatives of a Greensfunction., We

again express the large momentum behaviour by that of small

mass,
-4
Can (39,208, m,9) = X7 Cunlq,€;22,4) . (3.10)
The CS equations read

%Chn(q,i;%,o&)= A Con (Ol,‘e‘j g—‘-‘}) (3.11)

and with (C.9b) we obtain the homogeneous asymptotic equations

w3
[QH?_“] Cone (q)ﬁ-)-"i—-)}) =

(3.12)
as
= Y&. nn Chn (o‘)'e’) %l?) ;
where Yemn = 2¥1 * Ynw (3.13)
and, cf, (C.6), “rn {4) = dno 1—3—: 4:1?1 $ + OCs%) .
They are equivalent to
g_s' n
C“n (ﬂ,f.; =) °J—) = (3-14)

= a7 (5003),9) 23,5 (yg)un Crm (9, 25w, 5 (3g))
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where again O, ., is defined from Y, .., as in

(1.7).

We thus see that the asymptotic form of the Minkowskian

. Iy . m
exceptional function E("(, 0, pL, % %) does not
have a simple transformation law which relates its mass
and coupling constant dependence only, as it is the case
for the Euclidean analog f’((‘ﬁ)q 00 %}t a)
cf. (2.9). But (3.14) implies that different derivatives

with respect to f , cf. (3.8), in general transform

distinctively.

The above discussion of asyﬁptotic behaviour directly in
momentum space can be generalized to functions like TTq‘p)
which involve the product of two current operators. This,
however, would require in appendix B the use of bilocal
normal products of operators which themselves are local
normal products. If spin is included the same considera-

tions hold for the invariant structure functioms,
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4, Lightlike Exceptional Momenta

In this section we apply the method of LLM expansions to

more complicated cases of Minkowskian exceptional momenta.

We are able to derive the asymptotic form of a vertex function
whenever only one lightlike momentum vector is involved, e.g.

for the functions

E(lqjd1£)p2€}mqﬁ)t=

(a.1)
~ ~ trop’
= <TNo[AANg-adL)] K((etp) M) A ((-p)22) Y
with oﬁ(o) L% - ©
and
F(lp))e)lr]}w;j?) : =
(2.2)
~ ~ ' ~ . peop’
= LT N TAD A(Ap-28)] NoTA (M p428) A(-2Ap+2e) >
with YJEJ P‘zt(}a-_\;va'jz 4 D 5 Lazo
For dimensional reasons we have
EQiq, «dl, Al m, q) = N El(a,u,pt; 5 ),  (hia)

' -8 i L4
F(’AP, ‘)‘C, }Y',‘M:“}) = A }:(PJe;P} T;%) (1“-23)
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in these more academic examples we confine ourselves to
exactly lightlike momenta, but it should be clear from
‘the previous section that momenta of the type (1.10) could

be used, too.

The above functions are generalizations of previous ones

in the sense that lightlike momenta replace zero ones. We
therefore expect related results. Indeed, (4.1) and (4.2)

are generalizations of (3.6) and (2.1) and of (2.2), re-
spectively. Namely, for a=0, p=4 we obtain from

(4.1) the function E(Aq, 0,285 wm, o) . It is
equal to (3.6) except for the replacement A& = AL+ Ntel,
If both « and (3 are set equal to zero the function on
the r.h.s. of (k.1a) reduces to £ (9,0,0; -?', o).

Apart from amputation this equals the Euclidean exceptional

vertex function ['{(-9)g 00 . —?, g ) of (2.1). Similar-
ly F(p,0,¢; & o) is related to
Mi-pde v -r); 5, 9) , ct. (2.2).

In section 3 we already dealt with the special case o= 0

in (4.1) which corresponds to forward scattering. The gemeral
case of nonforward scattering (lwith, however, q2 > 0) is re-
lated to deep inelastic annihilation 29). Its discussion is
along the same lines. We first expand E(lq,aL?\&, pAL; lm,g,)
in terms of Euclidean exceptional functions by use of iterated
7immermann identities. This yields the formal LLM expansion,

cf. (B.16,18), vhich expresses £ in terms of its derivatives

at Euclidean exceptional momenta,
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E()\q,ol)‘ej ﬁ){,;ml?) =

= :Z.:o ij Cq-...,()el)ﬂ%)‘wx,c%,) T [5*
R ven

with

CT’V\. (ﬁ){) M'%) =

4 4 n-r 4 N - N prop’
o = o 9 <TNOIAto)A(q)JA(f¢+p)£JA(ca-p)x))>,
. . ' o{:P:O

A 4 n-+ ro

-(_P_H—-!T,‘!-T-'—‘_ aot aP t(qguk)ﬁa)—m’%)ldg,P;o

From the CS equations

bem(ql-E;f‘il%) =ACrn(°l,£')%l%)
and an expansion of ACrw (g, 2, = oy) y cf,

(C.9b), we obtain the system of asymptotic equations

D_\._S
|9 +24. 7 ¢ (9,2, 2 o) =

=2 . Co g, =
Té¢r'¢n ¥asr Crn (“], ’ )'%)
Lven
with, cf. (C.5,6), Yo oe' = 2 ¥, 4 M,

Similar equations are implicitly contained in the paper by

29)

Mason - At the level of the leading logarithm approximation,

were only the lowest order terms in the parametric functions

(4.3)

(&.4)

(4.5)

{4.6)

(&.7)



- 27 -

[3(?), Y(%) FERRTE are kept, he constructs certain
integral operators, They are equivalent to the PDEs (4.5)
plus boundary conditions which are taken from lowest order
graphs. Using these operators Mason is able to derive the

30)

Gribov-Lipatov reciprocity relation in the pseudo-
scalar theory. It connects the scaling functions of deep

inelastic scattering and annihilation.

Equation (11.6) can be read as a homogeneous partial differen-

tial equation for infinite dimensional triangular matrices

as s as
C= =(Cvn , Ta = © for ton

¥a ( Yz.rn) J Y2eu=2 for v 7n

The transformation law then is of the familiar form

C%C"liz} '?_r%—) =

(4.8)
= qi'(%()\,%,)'%) q‘-(%)é(‘)‘?)) C‘E (°IJ{'J W‘ajé()‘l}))
where Q, now has teo be understood as a triangular matrix,
too, It is the solution of the differential equation
B( )__a_ ( Y = ' (4.9a)
J og o, (3,9) = Y.lg) a.(3,9) .

normalized such that
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a,(g,9) =1

and obeys the (matrix) multiplication law

Az (g, %') A, (%';%“) = Ol‘,_.(g,%")

It can be obtained by iteration from the integral equation

a;(9,90) = éq’-(‘gl'ﬂ") Al

3, P

where 6:32_ is the diagonal of the matrix

3
dg'
Cga_z_(ealj,) = Rap 350 5is) 8\(2.(%‘)

and

AY, = Ta ~ 63’1

ol o' i
+S @ Jo‘z_(‘a.'b') A\[a_(?!) qz.(%,"ao)

&, given by

(4.9b)

(4.9¢)

(4.10a)

(4.10Db)

(4.10c)

is a matrix with nonvanishing elements only above its diagonal.

For the calculation of any matrix element @Az ¢n

- with +

and n even, * &n - only a finite number of iterations is

n- T
2

necessary, namely



It is clear that (4.8) generalizes (3.1%) and (2.9). The
equations (3.14) are contained in the diagonal of the
matrix equation (4.8) while (2.9) corresponds to the first
term in the diagenal. The o, -factors are different in
(2.9) and (4.8) because r’"_‘i ((-P)P oo %: %') is
totally amputated whereas (%! includes two external

propagators, cf. (k.4).

If in (4.1) & is different from zero it may be set egual
to one since the normalization of the lightlike vector L
is free. For fixed + the sum over n can be performed

in (4.3), and one formally obtains

A
E()o,)).&}p)l) W\I?JE ?;_D Cr()ﬁ)?\ej V"\;a') pf‘
Zvan

with

Colaqtymig) :hz,:f Crn (o, 25 m,9) =

i

- af-v E(ﬁ,'ﬂ)ﬁéj- ""‘;‘})

!

From (4.5,6,8) one finds in the same way the differential

equations

D 6\{- (‘1,‘&,%:",'}) = A er(ol,‘?_}—t\:loa,)

(4.3%)

(&.4")

(4.5")



- 30 -~

N oas - sl
[$+2Y4_] C‘.—- (D]I-e.) 1;— '%) = ;;/f Xz ' ! (‘1;’8) Tf%—)

and the transformation law

=l (50u)g) (3,300 ¥ (5,2, m, 3009))

2 as &g . . e
where now (= = [C,.) is an infinite component vector
which, in view of (4.4'), is formally obtained by summing the

S
column vectors of the matrix CQ’ .

In our second example of lightlike exceptional momenta (5.2)
a direct LLM expansion, e.g. for the first No-product, turns

out not to be useful since the formfactors of the composite

operators depend on A through the invariants py Jil
)L -2 . .
and o If, however, in the CS equation

L2449 Flp 2,p, 2, 4) = aF(p,e,,, 2e)

we perform two LLM expansions on the r.h.s. we obtain the

asymptotic equation, cf. (C.21),

l—-_%_“LFX.:L] F%CF:‘QJPIJ% ):

ad

s as
=2 2 Cralp, 2 2.8) (4, Con (o2

hzrzo w'i3t'zo

even

(4.6")

(4.81)

(4.11)
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!
Here again the sums over n and n can be performed. In

A
terms of the vector (= and a symmetric matrix -,

(4.12) then reads

[ 2)+'H-K1‘] Fzgé(fvn‘z) Pi; %}; %’) =

(4.12')
_ /\CLST ™ . Axs
= C (p, L, 5 9) ¥ (g) = (p')E)v -";’}) :
Using (4.8') we find the transformation law of the asymptotic
form
-9 |
F&"(Pj‘ejf} %,%) =
Y as
A (‘3()\(?)!3’) { F-(W}QIY"} i, %—()‘r?)) +
(4.13)

/

+ 0 CT (p, 8 m, 500 q)) a;, (9,50,4); 5300 q)) E\"LS(P’},@J. mlgu,%)};
_ q‘Cﬁ x5 . | -
= 0 (500g)9) F7 (e, ps m, 300 g)) +

. 2 T o - |
+ ¢ C_"S (P\'E} %l%’] A2z C%; oé'(A"-}))%) Co—\} (YJ”Q) %‘1'%)

where a symmetric matrix of renormalization constants

has been introduced,
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9

Aa' T, , !

Ay 2 (%,%1; 9.) = S_Efs} A (3,92) Yo (5) As(g' ), (&.1%)
%1 .

i.e.

ﬁfs)% A2z (94,91, 9.) = 02(3,3;,,) ¥2.09) X2 (3 9.),
Ry (ﬁ,c‘}; ﬂa)‘—“ o .

(%.13) and (4.14) are obviously matrix generalizations of

(2.12) and (2.13).

We close with the remark that the formal resummations in
(4.4', 5', 6', 8', 12') indicate that the expansions in

the throughgoing momentum might be superfluous from the
beginning. We have, however, not succeeded in deriving

(&.3', 6', 12') directly by expansions in the relative
momentum variables only. Apparently this would require

the use of normal products which are subiracted at a through-~
going lightlike momentum. But then asymptotic estimates which
replace (A.?) are not available. They are necessary to single
out the asymptotically leading contributions from two-particle

intermediate states.

LTI TRETE R TR R R R T T R T PR T L R T I R T S LT IR LI, L IR
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5. Summary and Conclusions

The Callan-Symanzik (CS) equations provide, in conjunction
with dimensional arguments, for a tool of investigating large
momenta limits. They give quick results, however, only in the
nonexceptional cases where, loosely spoken, all momenta go to
infinity far off the mass shells and all subenergies become
large, too. With this understanding the physically interesting
high energy limits are exceptional. It requires detailed
analyses to see whether nevertheless any useful information

can be gotten from the CS equations for these limits.,

The asymptotic behaviour at exceptional momenta is related to
the infrared singularities of a massless theory. In Ah-theory
in four dimensions the singularities at Euclidean exceptional
momenta originate from (the iteration of) two-particle inter-
mediate states in those channels which have zero throughgoing
momentum. We have reviewed how they can be extracted by the

application of a normal product expansion in momentum space.

We generalized this idea to some Minkowskian exceptional
situations where large lightlike momenta are involved. This
led us to formal infinite normal product expansions, closely
related to the light cone (LC) expansions in position space.
In our special examples of (nearly) lightlike momenta (LLM)
they again reduce asymptotically te the contributions from
two-particle intermediate states. Assuming the applicability

of such formal expansions we obtained asymptotic CS equations
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of the same form as in the corresponding Euclidean cases, with
now, however, some expressions to be understood as infinite

dimensional matrices or vectors.

With this direct momentum space analysis we were able to re-
derive Christ, Hasslacher, and Mueller's results on deep in-
elastic scattering in a simplified model. We did not use LC
dominance in position space. Instead we had to assume that the
formal LLM expansion actually carries the asymptotically lead-

ing behaviour,

Maybe our method can be generalized to other physically interest-
ing cases. But it is hard to believe that these momentum space
expansions are adequate for more than a few situations. Probably
it is necessary to find expansions (or integral transforms) in

31)

different variables depending on the process under considera-
tion. In section 4 we already encountered the possibility that
for the asymptotically leading terms our expansions could be

partly resummed. This indicates the relevance of operators which

are different from Zimmermann's composite fields.
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AEBendix

A, Normal Product Expansions

In this appendix we review the perturbation theoretical
derivation of the small distance (SD) or Wilson expansion
and explain what is meant by the notion of a Zimmermann or
normal product {NP) expansion in momentum space. The start-
ing point of the derivation of the SD expansion are the
Zimmermann identities which relate bilocal normal products
of different degree 21). They read in operator form
(&, b even, ®“vb%0)

(o)

Ny DA (g ) Alx-5) ] =3 Gﬁ';‘;(g) By X0 F

(a.1)
+ Na[AG+§)A(x-§)]

The composite operators and corresponding coefficient functions

32)

are defined, respectively, by

(@) . T E);
B{}“‘Efx) :-.:L—_id.;\_.‘_..._..._ N&]:A(}“);_'“A(r\)m] (x)
| (A.2)
Por o % wm+ TH
i ~ ~ PROP'
6(:) (§) - <TNb[A(§)A(-§)]A("‘)*(o)... AP 51>
W#(}*)ﬂ.

(A.3)
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with the notation

2
A(},\)J (k) = af’.«)J-A(X) = ("9';‘)()&).* A(X)

A’(}AJA (p) = Q(PJ‘K(p)

%)™ R

(Wi = Pis 7 Pim , w) =H8(p; 20

Dips; = Opgy o Opimiy 5 Cppi;= 4 A m(g)=0
P = (W () , w22

The summation in (A.1) is over all sets {/«B with

b < v+ Z8(p),;, £ a . Parity and Bose statistics
restrict m and 2 H(n); to be even in A*-theory.
This is also why we need consider normal products of even
degree only. The Zimmermann identity {A.1) relates a bi-
local operator of degree b +to one of higher degree o
plus a sum of local composite operators multiplied by

c-number coefficient functions.

The bilocal NPs are defined through the matrix elements of

their Fourier transforms, e.g.

CT N DA€ ) Alx-E)] K(aqy) - Alqa) > =

dK "‘:ZKf ~ P ~ ~ ~
= { € CTNLJIA(F4x) R (E-w) ] A0V AG,) - Alo) >

}

P o= Lo

(A.4)

(A.5)
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LT NG L A(E4x)RE )] Al Ala) - Alqa) > =

(A.6)
__:L__ 0*4"'1- O{fks () P P
) % ¥(o) Yy Gor Ro (FH0 K Ry g, o)

is the appropriately subtracted integrand integrated over all
internal loop momenta ,/Pki R (for details we refer
to Zimmermann's original papers 21)). The subtractions made

. (o} . .
in RA imply the large momentum behaviour

prov
CTNLTK (k) A (520 AP A() - Ala) > =

(A.7)

- oL (N

f_or A—> X KZ&_O

at least for Euclidean momenta. The same estimate holds if a

mass vertex A is inserted in (A.7).

Setting a = b + 2 and iterating (A.1) one obtains an expansion

No [AG+E) AG-§)] = 25 G (g) By ) +
!

+ N TAx+§) Alx-8§)] (A.8)

in terms of minimally subtracted composite operators and

corresponding coefficient functions
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(o)
B{r\!, ()() = B{rg (x) for [ W\+Z&()«)J- (A.Q)
3
GU&J (f) = G?;) (§) for = m+ LH{p); -2 (a.10)

(A.8) is not yet an asymptotic expansion since for f~a O the

remainder approaches Na [TA*] (x) which in general does not

vanish. This, however, can be remedied by introducing the so-called

M-products 21)

MalAGHOIAG-E)] = (1-£77) Na TAG5) Alx-§ )] (A.11)
which have the small distance behaviour
MaTAlx+g4) Alx-54)] = o(¢7") (a.12)
for g—-—)D)/v]L#O)O(72
In terms of them (A.8) can be rewritten as
MoTA (x45) Alx-8)] = {%: R (e) By (x) +
(4.13)

+ Mo TAG+ Y A(x-£)]

AL LR B S L DU LR T LT S LR LR T DT R T TR AT ERCEY, T R Tl e LR R L] UL LT ROV T TR TITTRN Ty e
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21)

with modified coefficient functions

i A (), (A prROP
HP(g) = <T R, TALE) ACDIAM 15y XM= ()5
(A.1%)
b = v+ ZTH{(p,; -2

In view of (A.12) equation (A.13) is an asymptotic SD expansion.

Since we are interested in the asymptotic behaviour for large

momenta we take the Fourier transform of matrix elements of

(4.8),

Lred ~ [a g PRDP‘
LTNITAR+)R(E-I] A A(g) - Alqu)? =
o /\-{r‘g ~ ~ ~ PRoOP

= EESO G k) LT By (0) AlQ)Ala,) - Alqu)>  + (4.15)

prov’

+ NS TA (B AE )] AR (qy) - A lgn) D

In view of (A.?) this is an asymptotic expansion for large
spacelike k. As distinguished from the Wilson expansion in
x-gpace we call it Zimmermann or NP expansion. It is not
identical to the Fourier transform of the SD expansion. The

33) relates the large-k-behaviour to

Riemann-Lebesgue lemma
the strongest singularities in g , not necessarily to the
small- § -behaviour. However, according to (A.11)

Mal A(x+S) Alx-5)] differs (for a » 2) from

Na [LAOHS) Alx-5)] by a polynomial in § only.

Therefore the Fourier transform of the former differs from
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Na LA ("E,-PK») A (%"")] by terms which are
proportional to derivatives of a O(K) -function. We
stress that for momentum space considerations the ex-

pansion (A.15) is the adequate one.

B. Formal Expansions at Lightlike Momenta

We first recall how in position space the light cone (LC)
expansgion is related to the SD expansion. The main topic

of this appendix is, however, to find a similar formal ex-
pansion in momentum space, which we call "lightlike momentum

(LLM) expansion".

The LC expansion is formally derived 24) from the SD expansion
(A.13) by reordering the terms according to the singularities
of the coefficient functions }+{P5 [f) on the light
cone EZ =0 . This cannot be done rigorously since "in
principle it is conceivable that ndne of the leading terms

of the Wilson expansion carries the leading light cone

27).

singularity" In a SD expansion up to any finite degree
the remainder may be more singular on the LC than the other

terms.

In the following we want to make use of the NP expansion (A.15)
in the case when the relative momentum K ‘becomes large in
spacelike region and the momenta o; become large, too. Thie

seems to be possible if the latter are essentially lightlike

RIS S | BRI LR AT UL 9T B LI LR LI | 1 ] 0 bl e s e
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and parallel, such that their components become large but

the invariants g9, étay fixed.

We are interested in the large momentum behaviour of a

function which is used in sections 3 and 4,

E(AOI) P-p(}\),‘{’-()\)} W\'ra’) =

(B.1a)
~ A PRO?I

= <TN0[A(°)3\(PL()))] A(YJ3()))A(P\,(A))>
where

bre ) = Fha - ()

P, « )y = P+ )t oo OO (B.1b)
and P+ () are momenta of the type (1.10),

pr (2 = oy (A2 - X))

| (B.1¢)

oo (3) = oo e + X2
with

/ezl‘ Zi& = © ) (olf—oz_f)Zez'z M 01240 .

The mass squares

Pyt = sz = M®
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and the momentum transfer
2 ]
E = (F§+ﬁa*) = — & d+?,f£

stay fixed in the limit A — oo ., The NP expansion (A.15)

reads in this special case

o '\-ﬂ{q‘} A A PROP
E = Zo G (1‘1) <TB{¢3(°) Alpa ) A (pe(N) > +
{s}
(B.2)
~ ~ ~ Pro®’
+ <T N LA X (o, )] K(ps ) Alpy (M)

with

~ig} gl N ~ (6) e Proe’

G (}\o[) = <TNn[A(D)A O\q)] A 0) A( s (0)>

TU 4 (s); |

(B.3)

n = s+ L#H); -2

It can be seen that asymptotically only the operators which
are composed of two elementary fields contribute to the sum
in (B.2). Thie comes about as follows. From (A.7) we know

that the coefficient functions have the asymptotic behaviour

’G"{G'B (Aol) = OL (A_r\,—-(ﬁ) . (B.4)

IR0 0 IR I QSRR 1 (RRT (RRURL S LU L SR8 e e § UPTITIRBR IR I TN (BINORINK (R 1M YR A
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The matrix elements of the composite operators in (B.2)
obtain contributions both from the trivial and from non-
trivial diagrams (recall PROP = PROP' + TRIV). The normaliza-

21,34)

tion conditions of the NPs imply that the nontrivial

parts

N N pro®’
ST Bugy(0) Awps (M) Al pe (M) > (B.5)

vanish like O (3% "*%)  for small 3 since they must be
even in 3 and all terms up to order vt have been subtracted.
Now in the tensor decomposition of (B.5) the % -dependence can
arise from explicit factors (}c- V1,4 CX))S and from the
invariants }cllﬂz) }th . Since the latter are A«independent
the maximal power of A's, namely Z:ii(E)J =n+l-5

arises only if all indices are generated by the large light-
like vector N2 . So we obtain

p RoOF'’

T 81 (0) A () Alpe())> = g2 N £y P+ O(A") (B.6)

where we introduced a shorthand notation similar to that in (A.4)

’e{_G'S = ey, (6)g = fe.“ Loy, - Loy, (B.7)

The "formfactor" f depends on o+ , M  and t., Clearly the con-
tribution from the tri#ial diagram has the same A~ and &£ -depen-
dence as in {B.6). Combining (B.%4) and {B.6) we see that the sum

in (B.2) reduces asymptotically to contributioms from operators

which are composed of two elementary fields as was stated above.
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Furthermore only the symmetric and traceless part of their
matrix elements is needed which is proportional to the large

lightlike momentum A /£ .

At this point it is convenient to reparametrize the relevant
set of operators in terms of total and relative momentum

variables,

Oy (x) == 7 CE)T N TA S AT 0 (.8)

with ¥+ = #(3)_

According to Lowenstein's differentiation rule 35) we have

n-+

(:EL) (¢)+ 0(3)_ (x) = % (%)n Nh+2. [9(3)+(A g/g),A)] (x) (B.9)

with  g(s)l=r gy, = n-r

The corresponding coefficient functions are

(3)4 (8- (3)4(¢). PRoP’
Con (g mg) = <TNIAGKGO] Xen © > (8.10)

with

(SJ-P{S)— 1 l

— = (R 5 Re) ()
n-r)! ! .

1]

Tw
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The matrix elements of the operators (B.9) are

. h=¥ ~ o
("5..) LT r"’)(s)Jr Ors),(O) A(ﬁ(k))ﬂ(y)ﬂ))))n P:

~ ~ pProv
= (P+ (X))/S)-» LT O(S)_ (0) Alps) Alpe (W) = (B.12)
n n-r Mz ¢ _
= ,A t?(s)+(5)__ O£+ b,—-(d+)o€--} ;}‘);;tj%) 4+ OC)\"‘- ?-) )
The "formfactor" bgs(----) is a homogeneous polynomial in

oly and ol of degree + . It is easily verified from the dis-
cussion after (B.5) that for exactly lightlike and parallel
momenta p, (») , i.e. &£'= 0 in (B.1c), only the trivial

diagram contributes and yields

+

be(ss,d.,0,0,8) = o . (B.13)

In order to get rid of the indices we define scalar coefficient

(g)e (5.
functions by contracting Con (,\q b .a_) with the
/7

large lightlike momentum A€, i.e.

Con (g, A8, m,a) i= Gt ™ (N m,9) L. A (B.14)

Now in the Zimmermann identity

()sls). PROP'

TN LA® A D] Xew > =
w oA (§) ) (8)+(3). _PRoOP
=2 o Gfo) (Xq) <7 Bigt o) X > + (8.15)

i} |
~ ($)+(s). _F*°F
+ < T N, A A{Aa)] Xru >
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(w)
the matrix elements of the composite operators B{G’} (o)
cannot be traceless in (¢);(g). since s' 4 Z#(G'JJ 4 =

= H (3 +HGB)- , s '3z,

Therefore in (+, the N, -product may be replaced

by Nc 36 )’

Ct”'(kﬂyle}‘ul?] =

N ($)4(5). PROF

= {TNJTA®MAONG] Xpn ™ D Lot A < (B.16)
S 9:_' DL LT No LA A(Aa)] :E\(fotﬂ.‘:))\ﬂx((kp)l&)>MOP'

v}t T P (&‘-p:o
So we finally obtain from {B.2) the simplified Zimmermann
expansion
Ef)\qj P.{.()\)}}/I—()\)/\ w‘?) =

a-2
B Ec> rz Crn g, 24 Y or b, (e, ot {—"A—:J £.a)+

e (B.17)

proP’

T LT NG LA Ap, )T Rlps00) Al 0)) > =

+ oL ()

Letting hereina go to infinity does not yield an asymptotic
expansion in A since for every finite @& the remainder is
CL (A'L’) like the separate terms in the sum. The expansion

(B.17) suggests, however, that all terms of order OL(A"‘*)

AL R L LR LTI B R TR TR R R T T LR ITR R R N O FOOR T e e T T R e T R e Rt TR R R A I
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are contained in the formal series which is obtained by

letting the degree a go to infinity and discarding the

remainder. This assumption apparently is similar to that

of the existence of LC expansion, which has not yet been
27)

proved in perturbation theory either . We therefore

write a formal "lightlike momentum (LLM) expansion"

E()\OIJ P+()');P' ()\))m,n&,) =

[~ .

- 1
= KZSD 2 Geu O\o‘,}ijw\,?) ol_:lr b« (“Jd‘}%,%h‘a-) + (B.18)
.ﬂ.\/eu."
+ OL (X ¢).

For exactly lightlike and parallel momenta pi (A it
reduces, in view of (B.13), to a formal power series in

oly and d_ . Then the OL (X®) terms vanish identically.
The point of the formal series (B.18) is that it expresses
a function with Minkowskian exceptional momenta by its

derivatives at Fuclidean exceptionral momenta.

C. Asymptotic Estimates

We now make use of the previously derived NP and LLM ex-
pansions in order to extract the asymptotically leading
terms from Greensfunctions with mass vertex insertions,

Our first example is the function A, ("I, ‘t} %,- 3-)
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which oceurs on the r.h.s. of the CS equations (3.11) and

(2.5).

~ PROYP
A CTH, (chﬂjmr%,_) = <TNDI:A{0)A('])] A le‘yrv\ >
(c.1)
0[?' <0 L =0
with
(31408}
L Xew t= Ligy, 15, Xrm
(c.2)
COMESN . ) .
and i is defined in (B.ll). Weluse a Zimmermann
identity to express the N, -product in terms of Nusa 37)
- (8)4(s). _PRoOP
LTNLAD R(g)T & X ? =
nez agg'l __(ner) (3)4(8). PRO?
::Zio G (@) L T8y (0) & X(\n 2 +
{s'
(c.3)

""{“H; fn) fgl+ (%) Pro¥

+ z: AG[Q) (91) <T B{“"B (D) yrh > -+
{5"3

N (24181, P®OF
+ KT NG TAD AT A Xen D

where the second sum arises from renormalization parts which
contain the mass vertex & . When contracted with (@),,(5;_
the second sum in (C.3) does not contribute because of the
argument which was given after (B.15), namely the matrix

: w
elements of the composite operators B{G,),} cannot be trace=~
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less in (8)4(%)- since S"-J—Z#(U'")J £ n o= Hig), 1) )
(e. L H(s") < T B#g).

f
For the same reason it is necessary to have 5 =2 and
p #(0—’)‘{ = n in the first sum. Transforming again
to total and relative variables, with + = #(3')_ and

h o= ;‘i(g’)_,_ + #(g')_ s one sees furthermore that in

fact only terms with + & e give nonvanishing con-

tributions,

Pror

(-+)"

f‘
4 T 9(5‘)+ O(gi)’ /'O) A f'yrﬂ. >

pRroY
’efs')4 LT Oy (o) O L Ny > = (C.4)
=: L) g, e, (a) .
The functions el g (%) can be isolated from (0.4) €L,
by introducing an auxiliary lightlike momentum £ ,
~ (3" __ PROP
411.]{ (a&) = f_ < 7 O(") {0) VAN Ie‘yf‘-' > =
2 1 1 a‘J‘" Yz A ~ )””
AL S T 0. ( )
L g % Orgy (00 &5 Allasp)e) A ((a-p)2) > }¢=p=o (c.5)
-7 -
with L =% =0 Z-&2=4 . ¢ =fif¢) and t even.

/7 J
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An explicit calculation of Alrtr (g) in perturbation

theory gives, cf. (2.6),

1 4
v (q) = O + O(4%) . c.6
Yoty %) To 1t 16 7 a %‘) ( )
Since the lowest order graph for
PROP®

LT Ogy (0) &5 Allatp)e) K ((a-p)2)>

is independent of the relative momentum {3-2- it contributes

to Y,r, only.

So {C,1) can be written as
JAS Crv\. (Oth M“a) =

- (Z' Cr’n (‘7113 w‘l%') ety (?') -+ (0'7.)
even

pPROP

+ LT Ny TAD A ()] b £ X0 Y

The last term in (C.7) is negligible under overall momentum

scaling or, equivalently, if the mass m is replaced by %‘— .
This is seen as follows. We replace in (C.7) the momenta by

Ag and )2 . According to the definitions (B.14) and (C.2)
the dependence on the vector A£ can be factored off. The

large-A-behaviour of the remaining functions is, in view of

(B.10) and (a.7),

T R T A L TR TP TR T R PR
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L " .
Co™ Oiqym,q) = oLG™™) (c.8a)
~ (824(3). P*°° e
T Ny TAOARG)] 8 X > = oL (377°) (c.8b)

I

since q2 4 0. Therefore we obtain the asymptotic behaviour

AC"‘V‘_ (AC},}{J M‘%) =

(c.92)
= Eén CT'W (.)\C]’)'a)m.r‘a—) A ety (%_) + OL(»\-GJ
or for dimensional reasons
w
As(?rn ( ﬂ) A 5 3({ %f) =
(c.9b)
i 2
= 2 Gu (a2 % 9) wo, gy + OLOT)
€vewn

We remark that the above extraction of the asymptotically leading
[ ' ‘ |

terms from AHCrn (aq, N 3') makes use of the

Zimmermann identity (C.3) which relates NPs of finite degree. It

does not contain formal infinite sums.
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In contrast to the previous example we need the formal LLM
expansions in our second one. The function & F (p, 4, y"‘; “—fl a)

is the r.h.s. of the CS equation (4.5).

AF(p2,p's m q) = TN IA® Alp)] O Nol gy, pe 1> (c.10)
with Pra T FP-L , Py = Fples
£t = 0 B vy, (pay)t <0

and the shorthand notation

MQ[P:‘IP""l = N’“[K(PS)X(P‘*]] . (C.il)

The formal expansion of the first No ~-product in (C.10) is

AF(Ple)YJ’)W‘Ga)-T

o~ (ni2)
=7 % % Gﬁ} (‘f’) LT Bygy (0) A N°II°3,I”-+]> +
G

nzo )
Tvew

+Z} AG('h) (P) LT B{TS (o) No[(’;,f’q]) +
i

4 11""* LTNLTAR Alp]A N [ ps,pel? j

The summation is over sets 4G} Y%} such that

!

S+ L#(s); = n+z , E+ THE), = n . (c.13)
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The "overall subtraction terms" are defined by

—a 1

CRIT
<= o A (55 e < 7 T,

a = () (C.14)

[+ 9
Tz, {0 P = 0 ,,‘,f; o < 0

They arise for n 24 since AF  is the vacuum expectation
value of NPs only (as opposed to both NPs and A-fields). They
would be absent if e.g. the second Nj -product in (C.10) were
replaced by a Wick product. This is an example that the Ng-
prescription in genmeral is not identical to the Wick product.
Further expansions of the reméining Mo-products' in the two

sums of (C.12) give

(n+l)
{T By (0 & Nelpy,ped? =

() i
o (W) ~ {g'} .
-z } T KT B (0 8B 0> 6

even (c.15)
(i) (W)

+ Z LT Bw; (0) Byeny (227 Aa(:h\i (¥') +
47

M -2

(htr)
+ T,Q <T5{G} (») B Mn' [‘l"’z,,r’q]> }

(w)
(T B{TB (D) ND [P3IPQ]> =
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" A~ (wiz) ~ lg'}
=S T TR (o By Go> 0y (ca16)
ol o
w2
+ 1, <TB{?5(°) Nulps, g, 17 f(
with 5'"‘2:&‘5')3 = w2 | tae THE), sw | (c.17)

In the following we show that in the formal expansion of

5 F (X 1] )\{, A'(”J' b, ra,) again only two-particle
contributions must be kept in the limit A —> oo . We list

the asymptotic behaviour of the various terms in (c.12,15,16)
if the momenta are scaled with the common factor A.

1. From (A.7) we have

“'& [
(:) (X Ay M.fa.) = oL{xnT™t) (c.18a)
3 -
LG t: ()‘Y’ i) = oL (X ) (C.18b)

2. The three matrix elements which contain two B-operators,
cf., (C.15,16), depend on A through the momentum )X 4{£ onrly. By
definition they are subtracted at zero throughgoing momentum
up to the order nNn+w'-2 . The argumentation used after (B.5)
then implies, in view of (C.13,17),
CW+2)
LT Bm (0) & Byyy (22&)> =
(C.19a)
= Js, Jiy AT Aisy iy ,f;(g,) ,

PN ORI 00 I R E LD 1 TRES A0 RE 0 by BP0 OO 0 | P RIS IR O[S 8+ w4 0111 PP SmMe A 8 A1 4 lor] e QT T
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(w42) ~ (4} .

LT Byey (0 By (22X > =0 ) (C.191)
(w) A (nH2) |

LT Bygy (00 B gqy 2O4)> =0 (€.19¢)

-1
We remark that a throughgoing momentum AL + AL gives
n4n -2
sdditional terms of order O (A ) on the r.h.s. of

(C.19) which do not invalidate our reasoning.

3. Finally the overall subtraction terms have an asymptotic

behaviour as expected from naive dimensional analysis ,

T CT N JJADEOp] AN DA 2p 17 = 0L OT™) | (c.20a)

men' =2

¢+t n-6
T, <T By (P2 A Ny Idp, Apely =OL G0 (c.20v)

nin'-2 (h)

T, LT B (D Nplipy, dpel s ot "¢) . (c.200)

We postpone the proof of these latter estimates to the end of

this appendix.

LR L L R R L T TR TN T T E
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It is now straightforward to verify that the asymptotically
leading terms of AOF O\P,)ej)r)’; W\,%,) come

from the composite operators 5(0—)’ (Gla . Transforming
again to relative and total momentum variables we find after

some algebra

AF()\YO}}C,APJ’; M‘%) = ZT CrnC)\P.A’eth,?)'
n2tzp wTZo
RASL
(e Y. (%))rr‘ ) Cr‘n' (’\f", )»{’} "“',3') -+ (c.21)
+ oL (\7%)
The functions (X.lz (%\))I‘r‘ are given by
A A Doy (22)> 27
(Xu(ﬁ))n' = -1 £77 LT O, (o) Oceny (22 (c.22)
with 75 =42 = 0 £ -4 = 4

T =H{g) and ' =tt(¢') even.

They are symmetric in r and r', and from the lowest order graph

we obtain, cf. (2.11),

1 _ 1
1++t+c' 46 7*

(‘J’zz_(";r))fr' = + O(a,") . (c.23)
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We still have to verify the estimates (C.20). By the usual
dimensional argument the l.h.s. of (C.20a) can be rewritten

as

£.4.s. 0f (C.20a) =

- (o) )
= X camtg) A LT a0 fy, (e B)
(o)}

with

bo Fuylpr; &) =

(2 )ewy <TNn TAOY R(p-0)] 50 No Lpht ph 217 (5) ]

#(t) = n-b
The estimate will be established if one can show that
A, {-‘M) (io, p’; _"_‘;_) diverges at most logarithmically for
A = vo

. To this end we investigate the IR divergence of

the mass zero function ADF(,U ,(p) p"} 0)

Zimmermann's renormalization scheme is strictly speaking not
suitable for zero mass theories, since the subtractions are

performed at zero momenta. The "finite" counterterms which

appear in his Lagrangian are(at most logarithmically) divergent

for w — 0 . As long as such logarithmic divergences do

not add up to positive powers they do not spoil the following

argumentation 38,39) .

(c.24a)

(C.24b)



- 58 =

We consider a given diagram Do " which contributes to
Ao(‘(&)(l”ffrjo) and a given routing of p,p’, and the internal
integration momenta. The corresponding diagram without the
vertex insertion is denoted by [° . We identify the end
points of the external lines with momenta TP and -_t_}o' and
denote them by Vn and Vo y respectively, c¢f. fig., 2, Since
p and y)' are spacelike all integration momenta can be Wick
rotated. Then IR divergences can arise only from lines with
vanishing throughgoing momenta. We consider the contribution
from a given part of the integration region where some {or
all) integration momenta are small and define a degree ¢o of
IR convergence which counts the powers of small momenta. An
integral will superficially converge if w > 0 for all

possible subintegrations.

The lines with nonvanishing momenta form a set {X'S of
mutually disjoint proper subgraphs and two situations may
arise, cf. fig. 3a,b,

a) V, and V, are in different subgraphs ¥, ¥Yoor

b) V. and V/, are in the same subgraph Y o

In addition to ¥n, Yo ©OTF ¥no there may exist other subgraphs
which do not contain the momenta P and )o' « The reduced
diagram X is obtained from I by shrinking all subgraphs of
the set {g‘} to a point. By definitioen it consists of lines with
small momenta only. Let +, be the number of external lines of Y.
H{); and H()y denote the numbers of derivatives acting

on lines in ¥, and X ., respectively.

AR LA OEAR AT ] 1L SIS Y | UG I PR KL O e e I g em B e e e
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We find the following values of ¢V

Case a:
[
W(X) = Y F (rp-9) +(ro-t) + 2 (r-4) ~H (), (c.25a)
= :
follows from power counting,
W (yn) = max {n-v, - ##)+4 , 0) (c.25b)
is implied by the Mn -prescription
Wiy,) = O (€.25¢)

gince the No -prescription does not imply overall subtractiomns

wy) = max (Y-v; ), 0) i=4 2 ... ¢ (c.25d)

since the renormalization conditions of a massless theory imply
that selfenergy insertions vanish of second order in the through-
going womentum. Adding up the values (C.25) we find a total degree

for the diagram r
c
W (M) = X)) + w(yn) + wye) + Z wly:) 3

2 G4(r-u) +(ro-4) + 2 (r:-4) — Bty +
&=t (0.26)

c
-, —He), + 1L+ T ($-rp- #HL)) =

iz

=[n b - #@yx ~fl@), ~ T HW ] + ror 1

> 3

R T PP S R R ST IR T L R T I TR U IR U RO TR T ERU RO LR LY
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The value of the square bracket is nonnegative since the

total number of derivatives is »ri—Y, and +, 22 .

Case b:
WiX) = v, + :é Cri-%) - H{d)y (€.27a)
W lYeo) = max (n-% =7, - #H(),, +1,0) (€.27b)
w(yi)= moex ( W~ -~ Hl) ,0) (=42, ¢ (c.27¢)

These values add up to

|

wp(T) % Ln-4-tHa)y - Hlet)n, Z Blt)i]+4 =4 . (c.28)

So far we have neglected the operator A which may be inserted
in X or any proper subgraph of the set {x?, . It is easy to see
that for all possible insertions A, can lower the values (c.25),

(C.27) at most by 2, Therefore we obtain
Wa (Do (") 7 +1

b\)b (Ao r’ ) >/ - 1 ,
i.e. the worst IR divergences of A, G(ul-) (\0,(3')- o) are
linear ones, but symmetric integration reduces them to logarithmic
ones. Thus (C.20a) is verified. The proofs of (C.20b) and (€.20¢)

go through similarly.
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Figure Captions

Fig. 1a A diagram which gives rise to a logarithmic

IR divergence in [ ((~p)yp 00 V—:‘, ‘Q—) -

Fig, 1b A diagram which gives rise to a quadratic IR
divergence in D, M((-p)p 00 -"3"):-| c-a_) .
The ci-_oss marks the insertion of the vertex

operator AR

Fig. 2 Diagram contributing to fc‘“ (p, yv'J- o) =

9 N srop’
= (52 )e) < TNLTAM K (p-2)7 No Lp'seps217 | (me0)
{=o

Fig., 3a,b Reduced diagrams which are obtained from fig. 2
by contracting subgfaphs with nonvanishing momenta.

The vertices V,, and V, are in y,. y, (=) or in y,, (b),
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