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The Significance of Conformal Inversion

in Quantum Field Theory

K. Koller

Abstract: The 2-point functions of Euclidean conformal invariant quantum field
theory are looked at as intertwining kernels of the conformal group. In this
analysis a fundamental role is played by a ‘two—element group W, whose non-iden-
tity element & = R-I consists of the conformal inversion R multiplied by a
space—time reflection I. The propagators of conformal invariant quantum field
theory are determined by the requirement of R-covariance. The importance of the

R-inversion in the theory of Zeta-functions is mentioned.
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I. INTRODUCTION

(1)

In his article on automorphic functions and the theory of representations
I.M. Gel'fand has drawn attention to the fact that >> the Zeta—functions of a
homogeneous space are Quite analogous to the Heisenberg S-Matrix <<. Some pro-
perties relating to this Zeta-function aspect can be studied in conformal in-
variant quantum field theory (QFT) where the physical space-time is realized

as a homogeneous space of the conformal group. The reason that Gel'fand's state-
ment is more transparent in the case of a conformal invariant QFT, lies in the
close interrelationship in this theory of group theoretic and quantum field
theoretic properties: for example, the 2-point functions are intertwining-
kernels, the 3-point functions are Clebsch-Gordan-kernels of the conformal group
and the higher n-point functions can be harmonically analysed in such a way
that the set of nonlinear integral equations in Lagrangian field theory can be
simultanedusly’diagonalised,with the Wilson expansions in the n—-point functions
corresponding to the Regge~poles in the S0(2,1) partial wave analysis. These

(2)

group theoretic aspects have been treated in some detail by Mack Further

discussion of conformal covariant 2-point functions for Minkowski space-time

(3)

has been given by Riihl and earlier work by a number of other authors on

related questions can be found in Ref. (4,5).

In this paper a more refined treatment of the conformal invariant propagators
will be giveg._These are the kernels of the intertwining operators for the con—
formal group; The central issue discussed in this paper is the significance of
the éonformallinvefsionlin defining the quantum field propagators. It will be

found necessary to change the usual conformal inversion

qu=-§— s U= 1,2,...,D (1.1)
X
slightly in that one must multiply it by a reflection from the orthogonal group
in D space~time dimensions Ie0(D) with det I = ~ 1. This modified conformal

inversion
= R+« 1 (1.2)

will be seen to generate the propagators in the conformal quantum field theory,

In this paper conformal invariance will be considered for Euclidean space-time

D . . . .
R° only, but there will be analogous results for the Minkowski case. Besides




the physical dimension D = 4, other space-time dimensions (D = 1,2,3 or 6) may
also be of interest. For this reason the discussion of the intertwining opera-
tors and the necessary representation theory.of the conformal group will be
given for all D = 1,2,.. There are, however, certain exceptions in the case
D = 1, which will not be mentioned separately. Mathematically the modified con-
formal inversion (1 will be an element of the so-called Weyl—group(6) W

associated to the conformal group
W = 0(D)/so(D) (1.3

which will be introduced in the next section. The Weyl-group (of the root space
of a semi-simple Lie group) on the other hand plays also the central role in
the theory of Zeta—functions on a homogeneous space. Hence, as will be seen,
covariance with respect to the Weyl:group W determines the propagators gives

rise to the symmetry(7)
d ~— D—-d (1.4)

and is also responsible for the Zeta-relation of Zeta-functions. Just as in a
Regge-pole theory, the symmetry d <> D-d plays an important role in the partial
wave analysis of n-point functions. Thus the conformal invariant QFT(interpret-
ed as the Gell-Mann-Low limit of a massive theory)provides a good illustration
of Gel'fand's statement on Zeta—functions. In (1.4) d is the dimension

of a physical field. The symmetry (l.4) has been called ""shadow-symmetry'" by

the authors of Ref.(8), who also show its relationship to the conformal in-
version R. Furthermore, the conformal inversion R has been used by Schreiegg)
to determine the 3-point function. The analysis of the conformal inversion given
here explains why this is justified. We have used the mathematical literature

on intertwining operators for semi-simple groups. More details, especially on
analytic questions and for other groups, may be found in the work of Kunze and

(10} (11) (12)

Stein , Knapp and Stein and Konsgtant.
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If. WEYL GROUP

Now we will give a global parametrization of the identity component of the
special orthogonal group G = SOe(D+$,1), which represents the conformal trans-
formations of the Euclidean space R and discuss the Weyl group associated to G.
The transformations of SOe(D+1,1) leave invariant the quadratic form

2. 2 2 _ 2
fo PRI T e T i T fpyg 2.1

There exist two basic decompositions of semi-simple Lie groups, the Iwasawa
decompesition and the Bruhat decomposition. These two decompositions lead to
a compact and a non-compact realization of space~time, respectively. The

Iwasawa decomposition of G = SOe(D+1,1) is given by
G = KAN (2.2)

where the maximal compact subgroup K is the special orthogonal group SO(D+1),
the l-dimensional abelian group A 1is the dilatation subgroup and the nilpotent
group N consists of special conformal transformations. If G is parametrized
by (D+2) x (D+2)-~dimensional matrices, the abelian group A and the special

conformal transformations N are parametrized explicitly by

chs|o..o shs

0 0
A= R . s € R (2.3)
0 0

and
La-h| 2 | L
= >
N = - ¢ E c (2.4)
- 1P T | el




while the compact subgroup is given by matrices of the following form

s0(D+1) |

C1ee 0O

(2.5)

The translation subgroup X of SOe(D+1,1), on the other hand, has the para-

metrization

1, 2 t 1 (2
=(2-1x|7) | - x - six
X = P E pe (2.6)
1 2 -t 1 7
5% x| 5(2+|x])

>
Hereby is E the DxD dimensional identity matrix, X € RD, c € RD are D-dimen-

. . -t =t .
sional Euclidean and x , ¢ their transposed vectors.

As mentioned in the introduction a two—-element group associated to the con-
formal group will play a fundamental role. This group is called in the mathe-

(6)

matical literature the Weyl group W and is constructed in general for semi-
simple Lie groups.as the quotient group W = M'/M where M 1is the centralizer
of A in K and M' 1is the normalizer of A in K. Hence in the case of the
conformal groups

(k€K | k a K! 2 a, for all a € A} = SO(D)

M

2.7)
1

M'={k€ K| kAaAk <A} =0(D

and it follows that the Weyl group of SOe(D+1,1) consists only of two cosets
W = 0o(D) / so(@) = {€,R} (2.8)

where the identity coset € consists of matrices of the following form
Ay

1 Jo..o 0
o |

g = } . ) m . m € S0(D) (2.9)
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and the &-coset is given by

-] |o..0| ©
R=( 211 |° (2.10)
) o
o lo..o0f |
where I €0(D), det I = ~1. It can be seen that & is the product of the usual
conformal inversion R with a space-time reflection I, where
R (CO’ g]s"':CD+1) = (“Coscls-'-’CD+l) (2.11)
. . . _ 1 _ -
Wl’211.Ch JiS equlvalerzlt to (l1.1) and as usual xu = ?;U, U =1,..,D, k = ‘:0+CD+1’
XU =X f ... X Hence one obtains with T € 0(D), det I = -1
I x
Rx =—1L (2.12)
u 1{2

Later we will taKe as representative elements of @R,

<ﬁ.=RIt if D 1is even (2.13a)

A =R I, if D is odd {2.13b)

and the time reflection It and space—time reflection Ist are simply given by
It(x],xz,..,xD) = (-x],x ,..,xD) (2.14a)
ISt(X]’XZ’..’xD) = (_xlswxzs"s"xD) (2.14b)

Note that the usual conformal inversion R 1is not an element of SOe(D+1,1) and
therefore should frequently be substituted by the #-inversion, which is an
element of S_Oe(D+l,]). It is the R-inversion, as the non—-identity coset of the
Weyl group, which fundamentally enters in the construction of the 2-point func-
tions as well as in the analysis of the higher n-point functions in conformal
invariant QFT. The symmetry (1.4) of the n-point functions and in Wilson ex-

pansions are a consequence of the (R-operation.




The conformally compactified Euclidean space-time is the D-dimensional sphere
SD, and is obtained as a homogeneous space of the conformal group with the use
of the Iwasawa decomposition. It is the quotient space of G = SOe(D+1,]) with

‘o D
respect to the stability subgroup P at the zero wvector of R

P=MAN (2.15)
which is called the minimal parabolic subgroup of G.(6) Hence
G/P = KAN/MAN = SO(D+1)/SO(D) = §° (2.16)

The representations and intertwining operators will be given later on the non-
. . . , . . D

compact realization of space-time, the D-dimensional Euclidean space R°. In

order to get R as a homogeneous space of the conformal group, one can use

(6)

the Bruhat decomposition of G

G=PWP

m

PEP+PAP (2.17)

which involves the Weyl group W. The decomposition (2.17) means that the space
of double cosets P g P, g ¢ G, is in 1-1 correspondence with the elements of

the Weyl group. Using the relations

RIvR-=x (2.18a)
®RPAR= A .. (2.18b)
R MR=-n (2.18¢)

and the definition (2.15), then the decomposition (2.17) can be rewritten in

an equivalent form

G=PX+PR (2.19)

which shows that the Euclidean space RP = X is obtained as a homogeneous space
of G except that it has to be supplemented by points at infinity. Note that
(2.18a) reflects the fact that the special conformal transformations X may

be generated by the translations X and the {® operation.
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In order to do explicit computations it is more convenient to transform the

metric (2.1) by

1/v2)o..0 11//2]
- =

.

» E *
O 0

’“I//f 0..0 |1//2

to the equivalent form

2 2
Byt i T 28t

This changes the parametrization of the subgroups to

es 0..0| © 1 V2 €;= |c|2
A = °le |9 N= {2 E {VZ <
o o o :
-3
o [o..0 e 0 |0..0 1
i |lo..0 |o 1 |o..o |o |
M = ° 1 u |° x= V2% E.[° J
) 0O 1. 1o
o |[o..0 |1 |X|2v/2_}’c-t 1 i
This parametrization yields for the products
s V2 &5 2F | |x|?
MAN = { 7 U VZIue
: |
-8
sl e 0..0 e ‘
es(1+2 c'x+lc|2|x[2) V2 es(zt+Lc]2.§t).“ e® clz
MAN X=|/Z(Ux+|x]? US) U+2(UQ) vx° VZUe
¢ %|x]? /3 e S %t e s

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)



and the two elements of the Weyl group are now given by

1 jo..0c] © | o |o..o| 1
0 o] 0 o
€ =1 . m | R=1":]|T1 : (2.25)
) 0 0 0
o jo..0]| 1 1 (o0..0] ©

with m € S0(D), I € 0(D), det I = -1. The matrix representations (2.22)-(2.25)
will be needed later for the computation of the conformal invariant 2-point

functions.
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III. REPRESENTATION THEORY OF THE CONFORMAL GROUP.

In this section the irreduciblerepresentations of G = SO (D+1 1) will be con—

structed They will be realized onm certain function spaces over space-time R .

The intertwining operators for the conformal group G will also be given in
the RD formulat1on whlch allows a direct comparlson with the expression for the
2- p01nt functlon used 1n QFT On the whole, 1t has to be said, that the non-
compact formulatlon of conformal invariance is a completely 1eg1t1mate proce~
dure. One should bear in mind, however, that the action of G on Rp will be
undefined at certain points, and if this happens, the compactified version of
conformal invariance allows for a more systematic analysis in this case.
According to the general theory of induced representations, the representations
of G can be induced from those of the stability subgroup MAN at the origin of

D
R'. Hence, let

1

n +DFm) = D@, me M= 50D
(3.1)

a ->£d(a) oﬂ(a), a €A

be irreducible representations of SO(D) and A respectively.
The tensor representations of SO(D) are then labeled by the weight vector &

ceey Rz,kl) in the case D even
P (3.2)

= (g se++s8nyl.) in the case D odd
l(D*l) 2771
2
where the &, are integers restricted by
0 < £ < ... <4< for D even
1y 2 1
2 (3.3)
| Rl ) | < .. < Ly <2y for D odd
= (D 1)

and the l-dimensional representations of the dilatation group A are given by

£%a) = W&D/2%n 2 (8D/2)s (3.4)
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where o maps the generator of a onto the real number 1 and d is a complex
number. The representations of G = SOe(D+1,I) may be induced from representa-
tions of MAN in a standard way where N 1is represented by the identity repre-
sentation. The unitary characters of A 1lie on the line Im d = D/2 parallel

to the imaginary axis and induce the unitary principal series of G. Denoting

the Hilbert space for the finite dimensional representations of M by HR, the
principal series of representations of G may be represented in the Hilbert
space LZ(X,HR) of square-integrable functions over X with values in Hg, and
this Hilbert space may be identified with LZ(RD,HR). The matrix elements for
other representations can be obtained by analytic continuation in the Casimir

variable d.

Let the modular function GP = § of P = MAN be defined by
[ [
-1
p drflpa ) = 3(q) JP dpf(p) (3.5)

(13)

where it can be shown that 6 (man) does not depend on m €M and neN and that

S(man) = §(a) = e—Dalna = e—DS (3.6)

According to the construction procedure of induced representations the functioms

f € LZ(X,HQ) obey the covariance property

fman 1) = 6 /%(a) L8 @ £ (3.7)
x€X, man € MAN; in particular they are homogeneous of degree d

£ox) = 0% £x) 0 >0

and the representations Ui’d of G 1induced from the representations de(a)-

£
9] (m) of MAN are then given by right multiplication

-1/

vh ) £60 = 67 2y ey L A, (re)) 9 (xe)) £ (xe))  (3.8)

where g€G, =€X, xgEMAN X , £€L2(X,H2) and the projectians
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HA: MAN X -+ A
HX: MAN X » X

etc.

(3.9)

of xg ¢ MAN X will be computed below. In (3.8) the Bruhat decomposition (2.19)

of g £ G will be used, i.e. almost all g £ G (except a set of Haar measure

zero) may be uniquely decomposed into the product MAN X and for such a g £ G

fixed HX(xg) again belongs to X for all but one x ¢ X. Hence using for g ¢ G

the parametrization (2.24) it follows that x+g has the following general form

esc(c,b) V2 es(gt+JcI2 bt) eslc]2

V2 esc(c,b)§ 2¢° ;(gt+|clz gt) V2 es|c|2 x

-H/E(Ug-!-]bIZUZ) +U+2(Ue) Bt 7 +2 U2
*T 87 eS!x[2 o(c,b) V2 es|x|2(zt+[c|2 gt)

+2xt(UE+}b|2 Ug) +V2 xt(U+2(Ug) gt) e ° o(esxtU,c)

ve *lp|? w7 e ° Bt

> D . g D .

where x € R~ parametrises x € X, b € R parametrises b € X € MAN X and as
usual

obt,c) =1 + 2b + ¢ + }b|2 le|

2

Comparing matrix elements of (3.10) with those of (2.24) yvields

es[c(esxtU,c)]_]J 0..0 )
- ‘0 0
Ty(xg) = : E :
b b
o 0..0 e_S U(esxtU,c)

(3.10)

(3.11)

(3.12)

and by the same method the transformed vector %' e RD of x' = HX(x-g) e X is

derived to be

v o ezs}x]2(3+]c]2 b) + eSUt§+2eS(§t-Ug) b+ b

o(esxtU,c)

(3.13)
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from which follows the conformal space~time transformation law.

eS Ut§ + ezs|xl2 E

(3.14)
O(esxtU,c)

- -
' =b +

The rotation U' = HM(x-g) ¢ S0(D), finally, is again computed by equating

matrix elements {(2.24) and (3.10)

Ut os 20" - GNE = 2e°% @ +[e? BN + U+ 200 - BT
(3.15)
W2 = ele|%% + W
which determine the rotation
U'. = U., + 2e° x.c. + 20(Ue), + Iclz e%x. ] (b.~x!) (3.16)
1] 1] 1] L 1 J 1]

where xi is given in (3.14) and Uij € so(®) i, = 1,2,...,D is a generalized
. . . . . . L

Wigner rotation. Hence, identifying L2(X,HE) with LZ(RD,H ) the represen-

tations Uz’d(g) of SOe(D+1,1) are given by

9 £ = %9 [0(extu,0)170d oy £t (3.17)

where £D£(U') is a representation of SO(D) and the transformed elements

U' € s0(D), x! € RD may be taken from (3.14) and (3.16).

vvvvv
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1V, INTERTWINING OPERATORS

Let us define representations RX = (Rz,®d) by
3
..‘f)('2 @ =D *®'aR) nmem=som
't Rd ofd(ﬁ—l
(a) a) aea

(4.1)

Choosing for [ the representative elements (2.13) one obtains if D is an

odd integer for all m & M,
Tla® - n (4.2)

and this means that the representation % is always equivalent to £ for D

odd. If D 1is an even integer, on the other hand, it follows that

Ro= -9 , + 4 sees gs8y) (4.3)
5 D '2—(D—2)
and this implies that £ 2is equivalent to % if and only of £ = 0. Secondly,
=D
observe that 2
R am = 4! (4.4)

which yields for the representation .{,ad of A

!i

i@d(a) - e—(d-D/Z)s =£D-d(a) . 5)
and hence
R4 = D-d (4.6)

is the shadow dimension of d in the language of Ref.(8). Next, we will write

(11)

down the intertwining operators AX-, which are maps

; o] = 5] ,Q_
A% c. @®”,5h - ¢ G : (4.7)
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®

L. . . , 2
and which intertwine the two representations U2 d(g) and U™’ d(g), e.g. they

satisfy

. Ra

AX g gy = (g) AX (4.8)

Writing down the integral representation for

i

AX f(z) = [ aPx AX(x) £(xez) (4.9)

RD

it will be demonstrated below that the kernel Ax(x) is the conformal invariant
two-point function. In (4.9) x'z means multiplication in X, which is equivalent
to X+z in RD. In the construction of the intertwining kernel Ax(x), X € Rp or

x € X essential use is made of the {-operation. The final expression for Ax(x),
however, will not depend on any particular choice of the inversion I, where

R = R*I, but only on the entire coset (R of the Weyl group {€,R}. Hence the
(R-dependence of AX(x) has been dropped. The resulting expression for the inter-—

twining kernel looks as follows
) = a0 8 2, cRNLT O, R DRI T I, xR)) (4. 10)

and will be computed explicitly with the parametrization introduced in (2.22)-
(2.25). The normalization factor a(x) is very important, it is related to the
Plancherel measure of SO (D+1,1). This will be discussed in Section V. Apart
from the representations-£_1 = Lf?]_l of the dilatation group A and the re-
preéentationéa_l = [@%7 of S0(D) the facﬁoriaﬂﬁ) also occurs in (4.10).

For arbitrary representations yx SHR) is not well defined, because & E.QQ is a

representation of S0(D) and Re 0(D) only. It is possible, however, to extend
. L . o

the representation 9" of SO(D) to a representation o % of O(D) on the same

Hilbert space H2 if and only if(l4)

AL =4 (4.11)

If D is an even integer this condition restricts the representations y
which can be used for the intertwining kernel (4.10). In accordance with the
remarks following Equ.(4.3), this implies that 2%(x) is defined only for re-

presentations

R——pr T e e UL E L TR RO LALLIREL]
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X = (23d) = (2 d) with g2

1/2p = 0, D evgn {4.12)

1202 4 0ps

and resembles the fact that unitary representations of the complementary series
exist only for 21/2D = 0. For example the complementary series of SOe(B,l) in
our parametrization of the Casimir labels is given by

¥ = (03d) with 0 < d < 2 (4.13a)

and the complementary series of SOe(S,l) lies in the intervals

= (0,03d) with o < d < 4

>
I

{(4.13b)
X = (Rl,o;d) with 1 < d < 3, 21 #0

etc., here d is a real number and there are two equivalent sets of unitary
representations divided by the point d = D/2. For these representations of the
complementary series the intertwining kernel (4.10) gives rise to a scalar pro-
duct

(f,g)x = Jf aPx dDy f(x) 25 (x-y) g(y) (4.14)

RD

On the other hand there is no restriction on the representation x in (4.10)
for the groups SOe(D+1,I) with D an odd integer. In addition, there is a
* sign ambiguity (a signature factor) when extending a representation & of

(14)

SO(D) to a representation . of 0(D), we will take here the +sign by re-

quiring positivity for the 2-point function.

It will now be demonstrated that the intertwining kernel (4.10) reduces to the
usual 2-point functien in conformal invariant QFT. In order to do this we will
now compute HA(xﬁD and HM(XR)Jkdﬂg the matrix representations for x ¢ X and
R (2.22) and (2.25) one obtains for their product

o |0..0 ]

x R = °
; 1 3 I €0() (4.15)
1 ";Z—;E:[t lx!z




Recalling that
xR E€P X = MAN X
and the definition of the projections Iy» il

M

I, MAN X - A

A
(4.16)
Mt MAN X > M
one obtains the relation
e = x|’ (4.17)

by comparing matrix elements between x (R and MAN X in the parametrization
(2.24). Hence

2l0..0 o

o )
HA(XR) = 5 E 5 (4.18)

2
o lo..ollx]

and using the expression of the modular function (3.6) it follows that

2, R = 67 R, )= [kl 4.19)
and similarly for the representation -{ of A Equ.(3.4)

-1 2(D/2-d
L7, xRy x| 2D (4.20)
This shows that the propagator for scalar particles
X 2.d4-D = (3.d)
M(x) = a(x) (1x]%) X ; (4.21)
. . -1/20-1 : ' . :
is obtained as the & matrix element of HA(xR), e.g. it arisegby right

multiplication with the conformal inversion @ on x € X. In the more general

case when the representation & of S0(D) is not the scalar representation

AT A BRI W [
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2 = 0 one has to evaluate in addition the factor ﬁ(ﬂ{)D-](wM(xﬂQ))- Hence,
comparing three matrix elements of (4.15) with those of MANX in (2.24)

U + 2(ud)zt

Wy

wd)

2t - Tml-zﬁlt (4.22)

where x € X and z € r? parametrizes X 1in MANX, U = FM(XOQ) can be
computed by solving the equations (4.21)

-1 -1 2% x°
U = T (E - —T—X—l"z-—) . (4.23)
Hence
-1 - 2% %°
D (m(xR)) = DI (E - ) (4.24)
Note that
- =t

det(E-Z-T—;El{T)=-1

and therefore the expression E - 2§§t/|x|2 is only in S0(D) when multiplied
by the reflection Iul. Combining (4.21) with (4.24) then allows one to write
the intertwining kernel (4.10) as

> >
A

SHR) 9 a N - B

X

t
))

2X(x) = a(y)
|x|2(D“d)

D - 2% x° )
X

a(x? |x|2(D_d) ‘ (4.25)

where x = (L;d) is a represenﬁation of SO(D+1,1) with the requirement that

2 1is equivalent to A s and .E)g is a representation of O(D) extended from
the representation JD‘E of SO0(D). This shows that the intertwining kernel
(4.10) between the representations Uz’d(g) and UR’sz(g) of S50(5.1) 1is

the analytically regularized propagator of Euclidean QFT and is postulated

to be the 2-point function for interacting fields in conformally invariant QFT.
In this case X = (il,O;d) is a representation of SOe(S,l) and the spin label &

1
takes on the values Ly = 0,1,2 ... , for example in the spin 1 case one has
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X X
Uy

6uv " 217

200 T D

| ngx)' (4.26)

where fjv= 1,2,3,4, Ri = 1, and the higher spin two-point functions may be
“ébtainéd by taking tensor products of 5uv -2 xuxvllxlz .
More generally, 1t 1s p0331b1e to construct intertwining operators between the

representatlons ( Y U (g). Define

WX —DR)YEX I _ | (4.27)

then it can be seén‘froﬁ (4.8) and (4.1) that

(g) ‘ ca)u’*ﬂd(gw(@) 3

_ ‘ S .(_4.-28) _J
@.i ﬂd(g)ax | B | | |

hence. EX intertwines Ug’d(g) with Udzi’azd(g) , however in this case the

AX operators are left with the I“1 dependence from (&4.24).

It has been shown by Kunze and Stein(lo) that an equivalent definition of the

intertwining operators can be given by

SRR Ex) = aly) [ £z RV xydz (4.29)
< .

where f_ obeys the covariance condition (3.7) and
g(x) = J f(z ﬁi_lx)dz (4.30)
X
has the property ORI T - y

a(man ) = 2@ 22409 @) ¢ ) (4.31)

man € MAN, and using (4.31) it can be immediately proved that ax obeys the

intertwining relation (4.28). We sketch a proof that the integral representa-—
tion (4.29) is equivalent to the representation (4.9) (4.10) in the appendix.
The significance of the modified conformal inversion R for the definition of

the propagators in quantum field theory is demonstrated very clearly in (4.29).
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V. NORMALIZATION

(11)

It has been shown by Knapp and Stein that there is a close relationship
between the pole structure in d of the intertwining operators and the zeros of
the Plancherel measure. Dropping for a moment the normalization factor a(y)

of AX then it can be seen from the defintion of the (unnormalized) intertwining
operators A = a(x)nz\.X that

1

A X AX 2
: c(x)

1 (5.1)

in the domain of the unitary complementary series of representations. For
example in the case of scalar particles c"l(x) will have (according to the
analytic structure of [x]zd as a distribution in x ) a double pole at

d =2 and simple poles at d=2+k>0 k=1,2,3.. . In (5.1) I is the
identity operator and dﬂx = dax(ﬂl_l), Ry = (dlz,ﬁ{d). In order to have non-
singular intertwining operators for all representations of the complementary
series one can identify c¢(¥x) with the Plancherel measure of SOe(D+1,1) and

then one obtains the normalizing condition
al@)a(x) = c(x) (5.2)

for the intertwining operators AX , which in turn. satisfy

Fx px . 1 . (5.3)

For even dimensional space-time D the Plancherel measure c(x) of SOe(D+1,1)

is given by (15)

c(X) = ¢ il (e2 = p2) ‘ (5.4)
1<s<r$§ + 1 s x
where
p. =3 - n + % n=1,2 2
n 2 n » ] A 4 2
e =q-2

X = (2],..., ED;d) is a representation of §0,(D+1,1) and ¢ 1is a constant.
2
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It can be seen that the zeros of ¢(x) are distributed symmetrically around

the axis Re d = % , with a double zero at d = %- if and only if lD = 0,
2

The normlization factor a(y) isthen determined by the requirement that

a(x) contains exactly all the zeros which lie left to the Re d = %- axis. This

gives in the case RD =0
)
D/2 %_—
a() =c¢ { I (o +op HOon (pé - pi) } (5.6)
5=1 ”7 + 1 1Ss<ré§

and if in the case £D¢O a(y) is required to be independent of the sign of QD ,

) 2
then this condition changes the factor (pD + oy ) in (5.6) into
fury _+]
2 2
02— o232 L v d - Dyma, +a - 23172 (5.7)
p,, D 2% 2 ‘
2 2 2 2

which again reduces with the above choice of the sign of the square root to
_ . _D ., .

(QB-+ p2+l) =d 7 in the limit %E

2 2 2

for SOe(S,I) and ¥y = (&, 0;d) reads

= 0, Hence the normalization factor a(y)

r{d+&) T(d-1)
T(d=1+2)T(d-2)

a(y) = cofd = 1 +2)(d - 2)(a+l) = ce(2+1) (5.8)

and the normalized inverse propagator for scalar fields is determined to be

s B () = ¢ Dz 1 (5.9)

which is regular in the strip of the complementary series 0 < d < D and has
singularities at the integer points d = 4,5,... . The use of the normalizing
factor a(x) and its relation to the Plancherel measure (5.2) prevent

singularities occurring at d. =2 and d =3 in Aax(x). Choosing the constant

8¢ . @
© = T Yetermines the value of A (X) to be
1
RX (5 = A d=1
By = 64 a=2

ARy = -4 84 (x) d=3 (5.10)

R e e e et U EUEC L L R T L A L LA L, o
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where A is the Laplace operator. Hence in contrast to the normalization used
by Gel'fand and Shilovcls) Aﬁtx(x) is not singular at d = 2,3 and reduces to
§%(x) at d =2 as is required by group theory. It can be shown that &%

is positive definite in the “critical strip” of the complementary series (4.13b),
i.e. it maps positive functions f€ Cz(RD,Hg) into positive functions. At

the limit points d = 4 for 2]=2=0 and d =3 for 2] #4088 is a positive
semi-definite operator, i.e. it maps non-vanishing functions into the zero
function. The positivity condition of Euclidean quantum field theory for the
2-point function in the massless case is here identical to the requirement

that the corresponding quantum fields transform as representations of the
complementary series of S0(5,1), limit points are meant to be included. Further-—
more, the length of the strip d =0 to d = 4 seems to relate the renormaliza-
bility of Euclidean quantum fields ¢d(x), d = 2,3,4 to the existence of
unitary representations of the conformal group SOe(S,I) at these points. It

(173

has been suggested in that one can use non integer powers of fields in order
to obtain summation formulas for Feynman graphs in perturbation theory. It can
be shown that at the integer points d = 4,5,... there exist in the language of

8)

Gelfand, Graev and Vilenkin(1 operator irreducible representations which
have however two invariant subspaces, one finite-dimensional the other infinite-
dimensional. Moreover at these integer points the usual equivalence of the re-

presentations

X = (£,0;d) with #x = (2,0;D-d) (5.10)

breaks down. For all integers d, except those in the critical strip d = 1,2,3,
the representations yx are only partially equivalent to £x and one has to
form quotient spaces in order to recover equivalent representations. The
representations on the boundary of the complementary series have to be treated
as limiting cases, see (4.13b). The proof of these statements for the Lorentz
group SOe(3,1) can be found in Ref.(18). From this group theoretical point

of view the ultraviolet divergences for d outside the complementary series

are a manifestation of the appearance of inequivalent representatiod® at the

integer points.
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VI. ZETA RELATIONS

In this last section some remarks concerning the Zeta-function aspect will be
given. As has been stated in the introduction, the conformal invariant n—point

functions in Euclidean invariant QFT will possess the symmetry

d <« D-4d . (6.1)

that is the partial wave amplitudes are symmetric with respect to the symmetry

axis, which lies at

‘Re d =% (6.2)

e.g. half of the dimension of space-time. This symmetry is a Zeta—function

symmetry in the sense that the Riemann Zeta—function for the real line R

oo

t(s) = § - 6.3)
n
n=|

obeys the functionmal equation

z(s) = p(s) ¢{l - s) (6.4)

with {~s

1Ts—-1/2 2

(6.5)
I3

p(s)

1
5
e.g. again given by (6.2) with D = 1. In order to see the analogy in the D = |

Hence the value of z(s is "symmetric" with respect to the line Re s =
P

dimensional case more clearly one has to go over to the corresponding "local"
Zeta-functions, as will be done now. Consider the local Zeta-function on the

real line

1 dx

EEE

Z{f,s) = f f(x) (6.6)

RX
Here R° 1is the multiplicative group of the real line R® = GL(I,R) = R~ {o}
and dx/lxl is the Haar measure on R*. It can be seen that Z(f,s) essentially
coincides with the intertwining integral (4.9) and kernel (4.25) for D =1 and
if f 1is evaluated with =z at the origin {e.g. f(z*x) = f(x)) and further-
more a{X) =1 and s = 2-2d 1is taken. Z(f,1-s) is the Mellin transform of

f and we may suppose that f has compact support f'ecz(Rg).
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Introducing the Fourier transform of f

3ﬂkf(y)) = f(y) = [ £ (x) A XY 4y
RX

(6.7)

one may consider

- - - H dx
Z(f, 1-5) = J F(x) |x|° = (6.8)
RX =l

and establish that the ratio Z(f,s)/Z(f, 1-s) does not depend on f EC:(RX)
but only on s . Because of this independence the local Zeta-function may be

computed for the special function

2
f(x) =e " ¥ (6.9a)

which is an eigenfunction of the Fourier transform and gives therefore

£(x) = f(x) (6.9b)

Introducing the GauBian (6.9) into the Zeta integral (6.6) and (6.8) allows one
to establish the local Zeta relation for fEICz(Rx)

Z(f,s) = p(s) 2(}, 1-s) : (6.10)
where
p(s) = —ZL5,8) 2 (6.11)

Z(f, 1-8) | for f(x) = e ™¥
is again given by the expression (6.5).
The relationship of the global Zeta-function t(s) to the local Zeta-function

Z(f,s) is explained by introducing the more general global Zeta~function ¢ (f,s)

and writing it as an infinite product of integrals

_ I 5 X
r(f,s) = > f fp(AP)|AP}p a*x (6.12)

x
QP

P

where the product runs over all prime numbers p = 2,3,5 ... including p = « and
Qg is the multiplicative group of the p~ adic numbers with the measure dXAp
and the p-adic norm Ihplp‘ Formula (6.12) is a generalized Mellin transform

and for more details the reader may consult the references(lg).

e A R e R R R R TR R AR TR L e T TN ORI SR L TR MIE S B E UNEMIEE L LI 1 S (8 e s i e bk
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Taking for fp p = 2,3,... generalized GauBian's which are eigenfunctions
of the Fourier operator, then expression (6.12) reduces to the Riemann Zeta-

function (s) in the product representation

il -5,-1
t(s) = o (1 -p ) (6.13)
where the product is taken over all prime numbers p = 2,3,... On the other
hand the Zeta-function Z(f,s'), s' = 1-s, 1is contained as a local factor

of z(f,s); namely, in the limit p - =« the p-adic numbers will go over into
the real numbers
lim Qx - R
pro P

(6.14)

. hence Z(f, 1=s) is just the local factor of (6.12) at p = » ., This explains
the relationship of the local Zeta-function Z(f,s) to the global function

GL(1,R) and its

resulting Zeta relation (6.4) with symmetry axis Re s = % . This Zeta—-function

(19)

z(s). The above discussion concerns the real line rR®
analysis can be generalized to higher dimensional groups.

In the partial wave analysis of n-point functions of Euclidean conformal
invariant QFT ‘the symmetry axis Re d = 2 again occurs when the dimension
of space-time is 4, -This symmetry plays a very important role in the analysis
of the short distance behaviour of amplitudes and in Wilson's operator product
expensions. It is always needed in the transition from functions of the first
kind to functions of the second kind (as used in Regge-pole theory). As
explained here, this symmetry is generated by the conformal inversion R, it
manifests itself in the functional equations of Zeta—functions, and plays a

fundamental role in defining the 2-point function of QFT.

VII. ACKNOWLEDGEMENTS

The author wishes to thank G. Gremsing, H. Joos, G. Mack, J. E. Roberts and

M. Schaaf for useful discussions.

et L ey Rty pr AR L R R LN S T ALl

R AL



25

VIII. APPENDIX:

We sketch here a proof that the two expressions (4.10) and (4.29) for the
intertwining operators of SOe(D+],1) are equivalent. A more detailed proof
can be found in Ref.(10). Extending the representations Jf(a)ékm) = V(p) of
P =MAN p€P to function on P+X in such a way that

Vip*x) = V(p) (A.1)

for all x € X, choosing a positive function hGECZ(G) such that

J h{pg)dp = 1 (4.2)
P

for all g € G, and the using the covariance property (3.7) and the integral

identity

J dg £(g) = J dx f dp f(pz) &(p) (A.3)
G X P

yields the desired result

X f(z) = J dx f(xﬁ.ﬂlz)
X

= f dx ‘[ dp h(px) f(x ﬂ,_] z)
/X P

- (dx f dp npx) 812 pyv  (pye(ox R '2)
X P

1/

- f dsx [ dp h(px) §(p) & M2 (px)v ! (px)E (px R 12
X

P

1/

= ( dg h(g)s v @R 2)
G

{ dg (g5 2RV (R (g2)
G

1

- f dx j dp h(px®) 5(p) 6 2 (ox®)vV ! (ox R) £ (pxz)
X P
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- [ dx [ ap hpxR s 2 oxm) v (px® 2 (pIV(p) £ (x2)
x 'p »
—1/2 -1
= { dx J dp h(px® 6 (x®DV () f(xz)
X P

= J ax 6 V2RV R £ (x2) (A.4)
X
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