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Abstract

An eikonal expansion method of the potential scattering
transition.émplitude in impact parameter representation

is considered and evaluated, without approximation, through
third order in the inverse momentum. A sequence of four
approximations to the exact impact parameter representation
is obtained which consists of the eikonal representation of
Glauber and three systematic corrections to the Glauber
approximation. The correction terms agree with the form
conjectured by Wallace. Numerical results are given for the
exponential and Yukawa potential. The sequence of eikonal
amplitudes shows systematic improvement at all angles by

comparison with partial wave calculations.




I. Introduction

Eikonal or straight line approximations as used in geometrical
optics have been successfully applied to high energy quantum
scattering problems. The basic idea is that the propagation of

a high energy projectile is essentially unaltered in a very smooth
potential, so that it can be described as a weakly modulated plane
wave. Smoothness of the scatteripg potential means, in practice,
that the scale R on which it changes its value appreciably is

large compared to the wave length of the incident particle, i.e.
K-R> 1. Since the eikonal method is applicable to atomic, nuclear
and high energy collisiohs a detailed study of the range of validity

of the eikonal approximation is highly desirable.

Among the various versions of the eikonal representation that have

been proposed for nonforward scattering the original eikonal

amplitude of Glauber (1) has proved to be the simplest and most

accurate representation in practical calculations. The eikonal

path of Glauber is parallel to the average momentum L.=’§'(ﬁ;*'K¥),
e

The amplitude for a given momentum transfer Q = 2K . ShlE' takes

the form of a two-dimensional Fourier transform

Il

T (6) ’ifué“ e - 7(B) (1.1)

=,
where B = [B] is the impact parameter and in the approximation

of Glauber
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o , VNG
T (8~ T (B) = <[e - 7] e

The phase ZO(B) is given by the expression

20(3)-‘:— - {*‘i‘fo‘i{ V (1%) (1.3)

2
where V(X)) is the potential and % is the velocity of the incident
particle. Due to the particular choice of the straight line path
the Glauber amplitude is timereversal invariant and, for spherically

symmetric potentials, assumes the form of a Fourier Bessel transform

T(G)= K B8 Jt (Ba) /H[A/?) ) (1.4)
0

Abarbanel and Itzykson (2) bave sugpested the form

Aol
7;1 (B) = « “"’Sg[ e "rF - 7] (1.5)

3
TAI(B) differs from TG(B) by the cos-% - factors which arise from

using a momentum L = K cnsze along Glauber's eikonal path rather

thamn Glauber's K. TAI(B) is not a Fourier-Bessel representation




since it still depends on the momentum transfer via

. Fa
003:% = }4;~7:ﬁ2%;_i As TAI(B) varies strongly in the

backward region due to the cos % factors the Al-amplitude
is inferior to Glauber's at large angles. This will be sub-

stantiated numerically.

Several authors have tried to derive corrections to the eikonal

(2,3)

amplitude . Apart from being very complicated to evaluate,

these amplitudes, however, turn out to be worse than Glauber's

(4)

in practical calculations

(5)

In a very elaborate paper Wallace has calculated correction
terms to the eikonal approximation using the approach developed
by Abarbanel and Itzykson. He notes that certain terms which
arise from the expansion of cos:% in powers of E; cancel with
other termsoccurring in the eikonal expansion. The remaining

correction terms are calculable in practice and are in surprising-

ly good agreement with the exact amplitude at all angles.

Ags the findings of Wallace are very inveolved it is desirable to
cast some more light on this promising work from a different point
of view. Moore (6) and Swift (7) have shown that if the high energ:
limit of each order of the Born series at fixed momentum transfer
is calculated and the resulting series is summed the eikonal
amplitude of Glauber is obtaiﬁed. The high energy limit implies
that k = K R3 1, where R is the range of the potential. In
realistic problems nonleading terms in each order of the Born

series may prove to be important. In this paper we use k-1 as



the appropriate expansion parameter and systematically calculate
nonleading correction terms up to order km3 in each order of the
Born series. The Born series of the correction terms can be summed
in closed form so that the transition amplitudes are valid for
weak and strong couplings as well. With minor modifications we

obtain the corrections proposed by Wallace,

In Section 2 the eikonal expansion method is developed and the
first three eikonal corrections to the Glauber amplitude are
calculated. In Section 3 numerical tests of the sequence of
improved eikonal amplitudes are given for the exponential and
Yukawa potential which illustrate the angular range of validity

of the theory.

2, FEikonal Expansion

Let us consider the nonrelativistic scattering of a spinless
particle of mass M by a spherically symmetric potential

v(IX]) = v, U(/4/) of range R. The energy of the projectile

. T

.
is given by E = %ﬁ where K = }Kil = /Kfl is its wave number.
-~
We use coordinates X = (ﬁ: Z) where the Z-axis lies half way
between the initial and the final direction. The transition

amplitude is given by the expression

t&B - )Y'
Teo)= 4 fa ”f“fﬁd“ © /(Me Y
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where Q = Ki. - Kf is the momentum transfer and T{X,X ') ful-

fills the Lippmann-Schwinger equation
TIXT) = & (FF)- VIR + [V k) GIRTH X (2.

with the free Green's function

 PUT-X)

B L, €
. .-b-)-’!(' - -3 . P’
G772

. (2.3)
It is appropriate to introduce dimensionless variables and
parameters by measuring all lengths and wave numbers in units
of the range and inverse range of the potential, respectively,
7 .
> "g‘- 7 L = —’f\;— ; b= KR / ;;@,R (2.4)

and the dimensienless 'coupling constant'

v, R-M |
A= OK = Ae £S5 (2.5)

We rewrite eqs. (2.1) and (2.2) in the form of an impact

parameter representation

. 2 ' = 4.;,;. . |
T(q)ﬂ %;R— ‘folzé 14 7 -/[b) (2.6)
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where

Jib) = fcl?f-(fz'fc{*f’ L(575) . (2;7)

£(x, x ') is the solution of the integral equation

f(35)= A Zt(;:-'f)a'gfx—*)+/?Z£[/u)fd“” (XN T) (2.8)

with the modified Green's function

g o > "“‘E’?’
C( =7 "’,‘) e R e g(X,/{)(? , (2.9)

which by use of the average momentum

-7
R A A B » = - .25
4 = I( .@) y ‘[\.-- ?ﬁ! ? = V/ g (2.10)
can be put in the form
- . — ‘”( ,'y'-"f- *”'f)
C(awm) = [ & e’
(A, J2 7] 'K'F’%fl*'ii (2.11a)
> ; - (x ;‘}7
_0L3E - 4"0 (2.11b)

—
S e

Jl? ’[ﬂi 2 /a q},;’ns ,
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where in eq. (2.11b) the z-axis is fixed to the average

momentum direction. The iteration of eq. (2.8) leads to

the Born series

with

N

£oe = 1R U (6>

(2.12)

(2.13)

4 s>
In high energy problems it may be profitable to expand f;{dlizxq

in powers of k_l
. [fm,)
_g -2 -h,
’f (f;?’)“:Z—-—- ”{m»i(’ }
o / PR

3
3

TS > 7
%“f " ( }9:’{) = n+.d / d )
I g =e
. () aed L
where 7ﬂn*4 is of order )2 -k

(2.14a)

(2.14b)

« In the following

the leading term and the first three correction terms of eq. (2.14a)

are calculated. It will be shown that under the integrals of eqs. (2.6)

and (2.7) the summation (2.14b) can be done in closed form so that the

resulting amplitude is alsec reliable for a strong coupling constant ;l .
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As a first step in this direction the Green's function 6():—':;")

is expanded in powers of'khl. In order to obtain an impact para-

meter representation for the transition amplitudes, this expansion

is derived from the expression (2.11b) for G[,‘F‘;f”) . It reads

] -

Clz)= £ > (3 Jom (577

I T

[

(2.15)

where

[(PL i r ] T )
7}»1{;}‘ h ) f(zn)g z-/ €

5+ ag)7 . (2.16)
By use of the relation
..,L[j;.(ih '2") e f )
G"—}‘j'g e —_ — ('e 2
JLad g (- am ! 9“ 2 (2.17)
the lowest terms can be put into the form
O SR R
G TR = Gle-at)o (h7] (2.182)
o I
S o __‘__ . ,.0[2_,'(
94 X/Xf [(e 29 Ete- z)[":‘ tcr» )](/ (- 5) (2.18b)
2 -; 4(?_ 20’)15('2 _?4)(."’,2*4‘4-.'7)2
ﬂz (%5 $1) = - g ; 7 L, (2.18¢)

‘ . Fra o o LT
*2 é(?)'?‘)(v.t.z"r'tq.a)*é%é C'(? Q)JG(L b}
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3
g, (77 = - & [F(2-200G-2) (5547 7%)

+3(2-2) 9(?"?')(""12*""?‘1)2 (2.18d)
+ 30 (2-2) (v, +<77)
v A dGme) 1 -d (E-T)

In order to get the complete expansion of C"[X X) in powers of

k™1, 27! has to be expanded. After collecting like powers of b

wve get from eq. (2.15) the series

3

G ( - » — f (,i_)m G;h[x";’f’

m = (2.19)
where the lowest terms explicitly read
6}; [i—;x"b" = g (%, %) (2.208)
JEN — [/ )
G4(xj ! 7 (2.20v)
I A NEAY)
ORI N E 0 Bl AR L
6 v S (2.20c¢)
C e - =2 - "‘r)
oo = 9 0F ) = E TG )
Gg["/'k ) g? / 4 j (2.20(1)

' P
At first glance the expressions (2.20c) for (v, (4 ') and (2.20d)
for (&[4 #) , which combine g, (&, <)  with F§- go (47
T . 2 = o - P
and 4z [/r";.c’) with g? 9. (#, i s, Seem not to be justified
for large ¥ . It is shown, however, in the following calculations

that under the integral in eg. (2.6) those portions which result

R SR e e g e eyt e e e TR T U TR AR TSI L L I LR U TCE N URLE L LN R U
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from ; 57_?2‘90 [t K’) and };4 ?J"Z- 94 (i" i”’) completely cancel
with certain terms whieh result from §, (5 i’  and 3; (7 x"")}
respectively., It should be noted that the Green's funetions
G,,,(}j X'} are singular functions which always act upon 'smooth’
functions in order to be well defined. It is in this sense that

L‘ (x ""’) is 'small' compared to ﬁeC (f:;.') when k >>1,

Inserting eq. (2.19) in eq. (2.13) we obtain the series (2.14a).

The leading term and the first three correction terms are

T et - S~
PG = <RI U CEU) ] F>

(2.21a)

O o= £ T <A UGU(GWTIRS
‘?-414-/1 / (43 P (2.21]))
50 )= (GEATUGUGW”
h g /
+UG U EU (G, u)” J 2> (2.21c)

{w” (#)2 zm[u G, U (G

(2.214)

3 w-3_
6,6, UeW T F UG Y (Gu T 1>

where % denotes the sum over all different permutations of the

Green's functions Gn. The corresponding transition amplitudes are
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__(m) ﬁzf"{z" ‘ —»Z" /c»h)“)

M+ (") = (27) m.M'
K R? c(-t‘& &t fJ Ljiejée x7) (2.22)
= 2/7

The leading order (2.21a) yields the expression

o) 7 - ﬂ’ ’L';,L Ay, N+
}‘—h.}..? (q) = KR {27) € -t ( <)

Ty o W00 Ul b, Ut

/

from which one obtains

9 o+

6 (4 L (5))
’/mmu") (,,,,W;)j (2.24)

where
L) = - ’2, f”‘? ULk 2) . (2.25)

Clearly, the summation over n with the expression (2.24) yields

the Glauber amplitude (1.2).

In the calculation of the correction terms the :—dependence of the

Green's functions g% can always be dropped by integration by part

LT TR S A TR N DY IR LT DT TN TR DR L T LI i [T TN AUERY TERRTY 1T
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27> 4;.? ; 3 .A (.2 4'
[T O N CARL AT R ivm)'(\gu{u)  (2.26)

a) First Eikonal Correction

The Green's function C‘z‘,, (}; %?) can be inserted in n possible

(1)
ways into \ﬁh#, . Employing the notation

2 Z, ?€~4 _‘
je.(/z_d_li (A,e,,)fc,l.zz Uthe,) - - - f Az, ULk 2,)
—ba — o0 — 0
i ¢ ~ ' (2.27)
= 2;7 [ J 2, 'U[!}e,,ﬂ = g-; (C+.(A,e)) =27
and .
ng Ulh,) f,,(,? Ulbz,)- - f"&*e U 2)
‘a'e_.,; é
dr, U(h2,) — ( T_ ('5,%)) (2.28)
4] fus] |
where

4
_ _ — oA A = - Z.,
T+ (4 2) + T_ (432) ,_fcj?’U[ X 4 @ ! (2.29)

the first eikonal correction takeg the form
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7_;( () = KR (-4) 275 & fat L[GL 2 [ola! -

e +4‘ i
> i (Totha) G g, 62U (mm) £ (2.50)
ffz} [

from which by use of the relation

¢ ol
o~ ) —_ — . /C’.p (é?)
(L‘i“’f?)) U l4e) T (led) AR SRR (2.31)

and eqs. (2.18b) and (2.26) follows

’ swed oy 2 aili? Miavé. la {7
T“) (9) = KR* (--kizl)’h { i—)z Slera) € fc ’%fo 3
Mot

( } (~ e}’ {(LJ,CH) (o (4 ?’)) Z((Ja)Zf(é%)o(e 2') (2.32)
Z b
h-@-,-[:?_
t G“D L%(b (l,{) ](f ? (- ?) b r (-é il)) Jf
6'(»”;;) ¢ C Z { Z “

After performing an integration by part in the z-variables the sum
in eq. (2.32) is of binomial expansion type and can be carried out

with the result

47 Z UJ) ."—.‘ . e
#*n(-r,q (b) = (4 i ) . A qub;)

(-1} ' ' (2.33)




where

(Je+£l:t) d‘t‘,(éﬁ)]

YROE fo("*[ Ul +2 I Ab

(2.734)

By use of eq. {(2.31) with £ = 0 and the relation
d r) =bf Ulr) (2.35)

which holds for spherically symmetric potentials, and integration

by part we finally obtain for the first phase correction

o) - - L2144+ b F) o 18D (236

b) Second Eikonal Correction

Second order corrections in j_,ﬁ,, (¥, ¥’}  arise from terms with
one G2 ~function and two Gl-functions. A new type of correction
terms already appears in the second Born approximation

pP e = (E) AR U 6,075 UL

2 (2.37)

- 5 ,
Inserting the explicit form of C%:[x/x'q and using twice the

eq. (2.26) and the relation
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el it ol.n’lu cl.ul)l G(T(U

(81 c; ,4.4.(5)) ( 31 C):j ’L‘”Uﬂ): okt P -r‘ db db (2.38)

one obtains for the transition amplitude

(2) A, _,.:: “’
T = KR < [ 5 *fde

LU AUk g o(amuau 2 ’
[fm (S w19
3

Juds ddd AUE g0 oy + (i) _—‘iﬁi’ J2- )

2 d l) c{ l)

250 U4y 02 W) 7

- 4

The z and z' factors can be removed from eq. (2.39) by use of the

following relation (and a corresponding relation in the z! variable)

= BT 4+ o’ -
ol alh) o -2 o (baclha)
207 2 -G——-f-— 4o 3t) = - {.\[’2‘ J;,-—.;) ""_—"_""9( Q)
_&L” T @ (- 2) i [( e
: _{2.%0)
.11—-'-‘ i /)
+2 4 (b i 2) d (- '))
A 5 ;

which holds for a spherically symmetric function /LL(.D‘51+?1}
and follows from eq. (2.35) and an integration by part. The result

is

< (-42

‘ﬁiﬂ(m N ,C[“L'Cz(m + 74 vl (%2’(&3) ]

(2.%1)

L UNL L LT
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where

PR 2
y, ALl ¥ L)
w, b) = 3G b b L et (2.42)

The second term in eq. (2.41) does not contribute to the scattering

amplitude as it involves the null operator of the Fourier transform,

that is

Y (2.43)

T
which holds if A Jgﬂb) satisfies the usual conditions for Fourier

transformation.

The second term in eq. (2.41) displays the cancellation of that

. ..’.’-"'2 radied - - .
portion which results from 79 jb(ﬁn*) with certa;n terms which

result from ¢, (x <)

272

._From_this we conclude that, even at large
9", %, U?: X’} can not be regarded as small compared with

% E;blgc ("::;,) ..

The second correction term of the third order of the Born series

reads

O sy ()7 (5 A [GUER W02 Gy
153 AT ' 7

. - L (2.44)

w G (ZRIUGRY G (50 + G (£ 29U (19 G (22 )

which under the integrals in eq. (2.22) and by use of eqs. (2.26)

and (2.38) can be written in a form which contains besidesE;- and
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clm’ll(ée)
A o™

a straightforward but rather lengthy calculation to remove

d -functions factors of the form 2 It is

()
all z-factors from ﬁg (b by use of eq. (2.40). The result

is

(v, +7°) L2,
AR LY

3/

) s . < ? .
)Py = i [ A WA 2 Bl (2.45)

where (U, (b) is defined in eq. (2.42) and

ka4, -t (4 2w)
2;_(1,);~;:ff23%(4+ $bap 3t W‘“‘ & -."1"’(45 ).(2.46)

Finally a strict anmalysis of the second correction of the (n+1)-th
order of the Born series, similar to eq. (2.32), leads to the ex-

pression

-l . ) a1
(A%%)  _ . w (< &olh))
[ = [k T T T
, n-3 R Y (2.47)
(,L fdlé)) (< 2,(0) " _l‘j-’__ C—ﬂz‘f"‘;z} (4,2’0&)) J
.2 ! Cm-‘g)! \5'-}?2 ’ (.—h—wf‘}! f

where the last term displays that typical cancellations occur in

each order of the Born servies.
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¢) Third Eikonal Correction

Due to the increased complexity of the third correction the
calculation of {wiziéi is rather extensive but straightforward.
New types of phase corrections only appear in the second, third
and fourth Born approximation. By use of eqs. (2.26), (2.38) and
the equation

d3lh) Al ()3 A dh

~

( C; c:'a‘ c'-;;‘, -La“’)) (CJL cj ('..‘Fé v (1;)) = 6“13 c{br bﬁi L:U:»z déi

I AT et (2.48)
*fx‘(i'ﬁ)( db b )

we obtain

#:ﬂ(&) = A L»{r ‘fi (,1)) + 4‘7?“ '-}—f '“2)( /{4 (u)]

.’[“’U—,) = o (i RB) e h L (7 () 2,0) (2.19)
3

[(LI(L’)( £, &) i 4, [é))("(ﬂ;[é)) + A A (b

v L_(i)( 2 (u)]

v ‘m

with the phase corrections of third order




—20«-

(L) c’(}‘,a“’) Ly -
[012’ VLWt E l’o(“]

w, k) = (2.51)

a1y L, gLk +,__1,'>’0‘ )joxfeuuoe)
d (2.52)

With these phase corrections the third correction to the (n+1)~-th

order of the Born series is expressed by

-2

1) - ,2/ (é) , 21 &)) -
3 - (2.53)
(’L_“_‘il(  2,0)) + (JCH (W) Z,0)
m-1
y B Llb TR 4 g (ZHO {“}
’-((‘%._g‘))f 3.’ ;rﬁ?-[? T:—Z (-’11""4)-' ( /Z’; ) .

Again typical cancellations under the integral in eq. (2.22) occur.

d¢) Summing the Born series

An important result of the foregoing analysis is that the impact
g lm)
parameter amplitude ,2‘% ) differs from the Fourier Bessel
Y J Y T lhn)
transform /_,,, () of 7) only by terms which involve
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the null operator ?124-;?2 of the Fourier transform (2.43).
This behaviour was confirmed in a few leading terms. There is,
however, a conjecture of Wallace (5) that it is maintained in
general, i.e.,

C»—)
) ,TC»J Z(_V -f-gz) h

4 (b) (&) =+ (2.54)

for arbitrary m.

The Born series (2.14b) of the correction terms (2.33), (2.47)

and (2.53) can be summed in closed form

AL (b
TU)U’) - [ ¢ (< A, h) — 7]

'_r,(zl“)) . [él’z""(li)(,;%[b)-m éf_._’{_(ﬁ. — /J (2.55)
/ :

LZ 4}(19)(4/3’ (b) = w, (b)+. L;f[A)

T%W -
b (0 2 ki) e )+ £ 2 zg))) ]

As all necessary cross terms are present’exponentiation of the

various phase corrections is suggested., However in the calculation

te)
of special terms of the fourth order eikonal correction 1£n*4 [b)
2
L) M
one finds the term — .« “ﬁ« Wit -%—J{éjé—) with a minus sign, which

. =, (b))
would suggest the factor }K;i— 2’“}[6) instead of e ‘ o
Indeed, this behaviour is confirmed by considering the classical

limit (Jf“¢’0} K~><) of the scattering amplitude (8). Thus we are
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led to the three phase corrected eikonal amplitudes

_ kR? :coe‘-b (bg) T ;(5)
T, (9 = KR of Fo(bs

(2.56)
where
(2 B+ Z, (5) .
TI == [ ‘ - 4'] (2.57)
PR XLy o)+ A, b)) 4}
= 4/ € N FEYIRU NS
TE e (2.58)
IO AUAYAL M 2L h)+ L 1e)+ L) ;
b)) = A V-2 (b ()
T = A e V1= (b .

— 1]

i

which systematically add k_i-, k™%~ and k™ -corrections to the

eikonal amplitude.

%. Numerical Comparison of Eikonal and Exact Amplitundes

Analytic forms of the eikonal phase and various phase corrections
can be obtained for exponential, Yukawa and Gauss potential. The
phase corrections explicitly vanish for the Counlomb potential. It

is a simple task to compute the impact parameter integral (2.56)

e e 8 HAWHe o A= EITETE T R L L L ettt E e ST SRTEARTCTL WEL E IR SEL DR TERL G LL (L
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with the Glauber approximation 7;;(5) and the improved re-
presentations {I(é)} [Eiél and 7};(6) .
In this section we compare the resulting amplitudes with partial
wave calculations for the exponential and Yukawa potentials. We

choose a system of units where f =0 = 2M= 7

a) Exponential Potential

For the exponential potential

the various phases are expressed by standard integrals (9). The

Glauber phase is

,Z",a’)" ~ 24 b K, (b)

where K;h (4] is the K-Besselfunction of n-th order, and the

phase corrections are

' ] 2_ .
yxop _.,.}; () ok, (20) — 267, (28))

# ;o Y ol [0 £ 2 W ) e L & "(‘JMB

(3.1)

(3.2)



- o4 -

3 .
V) = —~%(§b K, (4) _ s BH, () + EE LKA, (4)
3

— e ——

26 1,0 K (46) + (3h Ky(28) "2525,(26))52(%5“)1)
22 V2= L3, () Ka(h)
w, (b) = %I‘(“"(Kow) b K () Kah) (5.3)

1 2 (24 Koth) Hi(2) + £bKo8) Kotz
w, (b) = 7 ry

24b Ko lb) K, (20 66 i, (26) K, () + 465 K, (4) K,,(zz,))

302 (K -4 bKe)+ 45K 28 ).

In our first numerical example we choose the parameters Vo = -12,
R”1 = 1.45, K = 5 which are those of Berriman and Castillejo (4).

' 2
However our amplitude differs from their by a factor of (2”’*)4 .

The expansion parameters are

2% . - :
2::—'“2-‘5 j‘ - C'.Zg ) (3.4).

Berriman and Castillejo showed that for these parameters the simple
Glauber amplitude is not worse than the correction amplitudes of
Saxon and Schiff (5) and Blankenbecler and Sugar. In figs. 1 and 2

the Glauber amplitude 7& and the phase corrected amplitudes TI ’



TII and TIII are compared to the amplitude of Abarbanel
and Itzvkson (2) and the partial wave calculations Tex

The figures clearly show thé bad behaviour of TAI at large
angles. The phase corrected amplitudes are systematically

improved at large angles and converge to Tex for both real

and imaginary part of the amplitude.

A similar comparison is made in figs. 3 and 4 for the parameters

A = - —é:—' ; ‘1:2_.1’: (.54 (3.5)
29 i .
Even in this case where k is not very large compared to 1 the

convergence of the phase corrected amplitudes to the exact

amplitude is surprisingly good.

b) Yukawa Potential

The eikonal phase and phase corrections of the Yukawa potential

N7 P S
a L B VEEEE (3.6,

are expressed by standard integrals. One obtains (5)

X, ) = —24 A, ()

| 2 A k.2
2. 24 Keaw

AT TSR RWHR I DR W ORI U KRR W UIUL BRI Wi B RN W Rt R ORI R < i R e e
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>

N s feiy = . - 2 L3
Zztb) = - 37’}& (k,(s’a) %IK,,(;J,) 3 (¥ 1)) )

-

) 247 a6 1 b e 2 b K20 (K (L 2)
Vo= 2 (T kothr = Eiun b KEROGWY)

W
~fa~

e

b K, (8 Ko ()
£t

. .
-,
I~
.
c‘-.-
—
11

4
2
A3 J ( Ko (b) K, 126) 2K, (26) 'Kyﬁ‘;)/}

4
.
[
—
5
s
il

2 o _ . j
Y )= -7+ f—; (K, (20 + 26 K, (26))
T3 ‘

Figs. 5-8 show the real and imaginary parts of the various

eikonal scattering amplitudes corresponding to the expansion

parameters
2 4= 02
= =05 . = L
! (3.8)
and
- o
,2 = - / ko= 62 .
(3.9)
The parameters are those of Byron, Joachain and Mund (10) in

their figures 1-4, The examples are high energy problems for
which the Born approximation dqes not dominate. For comparison
the amplitudes TB2 given by the second Born approximaticn are
displayed which yield a very poor result. The phase corrected

amplitudes converge very well to the exact amplitudes for both

[ g eI LT R 3 LT TR L ST TR LU R LT L A e D R i
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real and imaginary part of the amplitude. The already quite

good Glauber approximation is systematically improved at all

angles.
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Figure Captions

Fig. 1. The real parts of the scattering amplitudes for an
exponential potential of the form given in eq. (3.1)
1

o

TAI = Abarbanel-Itzykson, TEX = partial wave, TG’ TI’

'TII and TIII = Glauber and phase corrected eikonal amplitudes.
Fig. 2. The imaginary parts of the amplitudes of Fig. 1.

Fig. 3. The real parts of the scattering amplitudes for an
exponential potential with Vo = -6, R_1 = 1.45 and K = 2.5

Sy 2% L= .
(475 , & =os2).
Fig. 4, The imaginary parts of the amplitudes of Fig. 3.

Fig. 5. The real parts of the scattering amplitudes for a Yukawa
potential of the form given in eq. (5.6) with VO = 5, R =1
-1

and K = 5 (4= -0,5, k = 0.2). TB2 = second Born

approximation, Tex = partial wave, TG’ TI’ TII = Glauber

and phase corrected eikonal amplitudes.
Fig. 6. The imaginary parts of the amplitudes of Fig. 5.
Fig. 7. The real parts of the scattering amplitudes for an
exponential potential with Vo =-10, R = 1 and K = 5

(2: -1, k-l = 0.2) -

Fig. 8. The imaginary parts of the amplitudes of Fig., 7.
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